Contents

1 Basic theory .. 2
 1.1 Discrete-time Markov chains 2
 1.1.1 Definitions ... 2
 1.1.2 Finite-state Markov chains 3
 1.1.3 Asymptotic behavior and the classification of states 5
 1.1.4 Markov chains with infinite state spaces 8
 1.1.5 An example .. 9
 1.2 Continuous-time Markov chains 9
 1.2.1 Definitions .. 10
 1.2.2 Transient probabilities and the Chapman-Kolmogorov equations 12
 1.2.3 Asymptotic behavior 13
 1.2.4 Uniformization and other embeddings 14
 1.2.5 An example .. 17

2 Computing Distributions 19
 2.1 Exact computations 19
 2.1.1 Stationary distributions 19
 2.1.2 Transient probabilities 27
 2.2 Numerical computations 36
 2.2.1 General numerical methods for stationary probabilities ... 37
 2.2.2 General methods for transient probabilities 41

3 Simulation ... 47
 3.1 Simulation of Discrete-Time Markov Chains 47
 3.2 Simulation of Continuous-Time Markov Chains 48
 3.2.1 Trajectories and the construction of generators 49
 3.2.2 Simulation Algorithms 51
 3.3 Structure-based simulation 53
 3.3.1 A dynamic Ising model 53
 3.4 Sampling from stationary distributions 57
 3.4.1 Forward simulation 57
 3.4.2 Backward simulation 58
 3.4.3 The Hastings-Metropolis Algorithm 63
 3.4.4 Uniform sampling 66

87
Index

algorithmic complexity, 37, 80
directed, 74
directed acyclic, 5
strongly connected, 75
valued, 74
infinitesimal generator, 12
Ising’s model, 53, 62
Jordan
block, 74
decomposition, 74, 76
\(\mathcal{M}\), set of matrices, 73
Markov
property, 2, 11
Markov chain
constructions, 49
continuous time
definition, 11
continuous-time, 9
discrete time
definition, 2
discrete-time, 2
embedded, 16
homogeneous, 2, 12
reversed, 26
reversible, 26
uniformized, 15
matrix
aperiodic, 6, 38, 67, 75
bistochastic, 66
block triangular, 5
constant speed, 30
diagonalizable, 28, 74
ergodic, 7, 15, 57
irreducible, 5, 6, 19, 38, 67, 75
norm, 43, 79

doubling method, 42
distinct, 5
connected component, 5, 75
coupling, 58
CTMC, continuous-time Markov chain, 12
countable, 2
distribution
Bernoulli, 51inomial, 34, 54
discrete general, 51, 82, 83
exponential, 10, 49, 51, 82
geometric, 22, 23, 86
initial, 4, 47
Poisson, 11
stationary, 6, 19, 57
uniform, 82
doubly stochastic, 38
DTMC, discrete-time Markov chain, 2
eigenvalue, 73
eigenvector, 73
equation
characteristic, for recurrences, 25
global balance, 20
normalization, 24, 25
equations
balance, 19
Chapman-Kolmogorov, 12
local balance, 26
local stationary, 6
local time, 25
ergodic, 7, 64
ergodicity condition, 22
generating function, 38
geometric
cconvergence, 7, 14
graph

directed, 74
directed acyclic, 5
strongly connected, 75
valued, 74
infinitesimal generator, 12
Ising’s model, 53, 62
Jordan
block, 74
decomposition, 74, 76
\(\mathcal{M}\), set of matrices, 73
Markov
property, 2, 11
Markov chain
constructions, 49
continuous time
definition, 11
continuous-time, 9
discrete time
definition, 2
discrete-time, 2
embedded, 16
homogeneous, 2, 12
reversed, 26
reversible, 26
uniformized, 15
matrix
aperiodic, 6, 38, 67, 75
bistochastic, 66
block triangular, 5
constant speed, 30
diagonalizable, 28, 74
ergodic, 7, 15, 57
irreducible, 5, 6, 19, 38, 67, 75
norm, 43, 79
periodic, 75
potential, 7
power, 75
second largest eigenvalue, 73, 78
sparse, 81
spectral radius, 73, 77
spectrum, 73
stochastic, 3
transition, 3

MCMC, Monte-Carlo Markov Chain, 57, 63
method
doubling, 42
Hastings-Metropolis, 63
of aliases, 83
power, 38
rejection, 67, 86
Schur, 42
Walker, 83

null recurrent
chain, 8, 22

periodicity, 75
Perron-Frobenius
eigenvalue, 79
theorem of, 78
Poisson
distribution, 11
process, 11, 51
positive recurrent
chain, 8
power method, 38
probabilities
transient, 3, 12
transition, 3, 12
process
birth and death, 21, 33
counting, 11
Markov, 11
Poisson, 11, 51
semi-Markov, 15
pseudo-random numbers, 82
random walk, 65
recurrent

chain, 8
state, 5
reversibility, 26

sampling
exact, 61
from a stationary distribution, 57
from subsets, 67, 86
general distribution, 82
uniform, 66, 86
uniformly, 65
with a random walk, 65
sojourn times, 49
spectral expansion, 42, 77
spectral gap, 57, 67
state
absorbing, 5
null recurrent, 8
positive recurrent, 8
recurrent, 8
transient, 8
stationary
distribution, 6
terminal class, 5
theorem
of Perron-Frobenius, 78
solidarity, 8
time horizon, 48, 51
transient
chain, 8, 22
state, 5
transition diagram, 3, 13
truncation, 26, 68

uniformization, 14, 39, 44, 46, 51

vector
column, 73
probability, 73
row, 73
stationary, 6, 8, 14

Walker’s method, 83

Version 2.3, February 6, 2013