Chapter 2

Computing Distributions

We classify the techniques in two categories. In the first one, the accent is on the exploitation of
some form of structure of the problem in order to arrive at exact formulas for the probabilities
of interest. This family of methods is called here “exact” even if the complete solution includes
sometimes numerical calculation.

The second category of methods is based on numerical linear algbra. The accent there is on the
speed (algorithmic complexity) and robustness (numerical stability).

Except when explicitly mentioned, it is assumed that the Markov Chain under consideration
has a unique stationary distribution. According to the results of Chapter 1, this happens when the
chains are irreducible.

2.1 Exact computations

2.1.1 Stationary distributions
2.1.1.1 Balance equations

According to Theorem 1.4, the stationary distribution of a DTMC, in vector form, is the solution
of the linear system:

P = 7w,
together with the normalization equation 7.1 = 1. For a CTMC, the linear system to solve is,
according to Theorem 1.14:

™ Q = 0 )

still with 7.1 = 1.
For each state ¢ € £, one of the equations of these systems represents the equilibrium or
balance equation for this state. In discrete-time:

> pigm() = D 7w (i)psi - (2.1)

je& je&

In continuous-time:
(Z qij)m(i) = Z (1), -
ji ji
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The intepretation of these equations is that, when the Markov Chain is stationary, the “probability
flow” into state ¢ is the same as the flow out of state ¢. These balance equations are interpreted as
flow conservation equations.

This conservation law can be generalized to any subset of £, which gives a property very useful
for computations.

Theorem 2.1 (Global Balance Equations). Assume a Markov Chain over € has a stationary dis-
tribution w. For any S C &, if S is the complement of S in &, there holds:

o if the chain is in discrete time:

Yo ow(i) Py = > w(i) Py
i€S,jes

i€S,jeS
o if the chain is in continuous time:

Z m(i) ¢ij = Z (i) Gij -

i€S,j€S i€S,jes

Proof. We prove the result for discrete-time chains. The proof for continuous-time ones is similar.
Starting from the individual state balance equations, one has the series of transformations:

Y w@Py = Y i) Y Py (2.2)

i€S,jeS €S jes

= > a@) |1 - Y By (2.3)
€S JES

= > @) - > Py (2.4)
€S 1€S,jES

= > D> )P — Y Py (2.5)
€S jEE i€S,JES

= D |\ 2m0B + D or)Pie | = 3 Py
€S \jES jes 1€S,jES

= > wDPu+ >, w(i)Pu— Y. Py
i€S,jeS i€S,jeS i€5,j€S

= > w()P- (2.6)
JES €S

The passage from (2.2) to (2.3) uses the fact that transition probabilities from state ¢ sum up to
1. The passage from (2.4) to (2.5) uses (2.1). The result is equivalent to (2.6) with a change of
summation indices. O
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2.1.1.2 Application: birth and death processes

We first illustrate the use of Theorem 2.1 to the case of birth and death processes.

A birth and death process is a CTMC on the state space € = N (or an interval of it) where
transitions occur only between neighboring states n and n+1. The transition upwards is interpreted
as a birth, the transition downwards as a death, hence the name of the process.

The evolution of the state (population) X (¢) is according to the transition rates:

n — mn-+1 withrate A\,
n — n-—1 withratey, n>0

In other words: the entries of the infinitesimal generator Q are:

Qn,n+1 = )\n ; Qn,n—l = Mn , Qn,n = _()\n + Mn)

and all other entries are 0. The transition diagram of this process is illustrated in Figure 2.1.1.2.
)\nfl )\'n, n+1

Ao A A
7N
@ ®- - @ - -
\/ \/
U1 Hn—1 Hn Hn+1

Figure 2.1: The general birth-death process

Let us compute the stationary probabilities. The equilibrium equations for the stationary prob-
abilities 7(n) are:

(A +pn) 7(n) = Apam(n—1) + pnpr(n+1) .

output flow input flow

provided that n > 1. This set of equations has to be solved for the unknowns 7(n),n € N.

This task is simplified by using the global balance equations. Take the set S = {0,1,...,n}.
Applying Theorem 2.1 to this set, and using the fact that only one transition goes out of S and
only one goes into .S, we obtain:

Anmt(n) = pppm(n+1).
This is a simple recurrence, the solution of which is: (to be corrected)

x(n) = =(0) [] Aifl : (2.7)

1 Hi

1=

There remains one unknown value: 7(0). It is obtained using the normalization equation: 1 =

Zn T (n) ['his leads to:
-1 Hn

n=0 1
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Then, two situations occur. Either the term inside brackets is finite. Let G be its value. Then
m(0) = 1/G. In this case, there is a summable solution to the system 7Q = 0, and according to
Theorem 1.10, the chain is ergodic.

Or else, the series in the term in brackets diverges to infinity. In that case there is no stationary
distribution, still according to Theorem 1.10.

2.1.1.3 The constant-rate birth-death

The most used birth and death process is the one with constant birth rate and constant death rate.
It corresponds to the model of the previous section with the particular values:

Ap = A Hn = f

for all n. The transition diagram is illustrated in Figure 2.2.

A A A A A
7N
a a o o o o o
N
W u u u
Figure 2.2: Constant-rate birth-death process

The expression (2.7) specialized to this case gives:

m(n) = (0) (2)n . (2.9)

The unknown value 7(0) is given by (2.8) which reduces here to:

> A\ (0
1 = n(0) [Z () ] = 1—(A)/u (2.10)

n=0 H

The expression above is valid only if A/u < 1. In that case, it provides indeed the value 7(0) =
1 — A\/p. Gathering the elements of solution, we finally find that the stationary distribution exists

and is given by, for all n € N,
A A\"
mn) = |1—— — .
o= (-3) G)

This is a geometric distribution. The result holds under the condition that A < g, in other
words, that the birth date be smaller than the death rate. Such a condition is called an ergodicity
condition.

If this condition does not hold, there is no stationary distribution. The precise analysis of the
case (out of the scope of this document) leads to the conclusion that: if A\ = p, the chain is null
recurrent. If A > mu, it is transient.
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2.1.1.4 Discrete-time birth and death processes

The discrete-time version of the process studied in Section 2.1.1.3 is represented in Figure 2.3. Such
a process is sometimes called a “random walk”, or the “drunkard’s walk”. The image is that of a
particle (or a drunk man) who wanders in the street, choosing the direction “at random” at each
step.

Figure 2.3: A random walk on N

Here, p and ¢ are the probabilties of a birth and a death, respectively. It is required that
p+ g < 1. The remaining probability 1 —p — ¢ is the probability of status guo. Observe the specific
value for the probability of staying in state 0.

The Global Balance Equations applied to the set S = {0,...,n} gives, for all n € N:

pr(n) = qrn+1),

and as a consequence, for all n:

As in Section 2.1.1.3, two cases have to be considered. Either p < ¢ and there exists a stationary

distribution given by:
p p
m(n) = (1—= -
= (3) ()

This is again a geometric distribution. Else p > ¢, and there is no stationary distribution.

2.1.1.5 Tree-like chains

When the transition diagram has a structure such that the one displayed in Figure 2.4, Global
Balance Equations can also be used to provide a simple solution.

Indeed: consider two states s and ¢ which are connected in the diagram. If one removes the two
transitions s — ¢t and t — s, the tree is disconnected in to exactly two connected components. Let
S be one of them. Then the Global Balance Equation applied to this set gives:

m(s)pst = w(t)pes -

Next, pick a particular state Q (the “root” of the tree). For any state s, there is a unique path going
from Q to s. Let us denote it with v(s) = (2 = so,...,$m = $). The length of this path |y(s)]| (still
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Figure 2.4: A tree-like chain

measured in number of jumps) is called the depth of s with respect to the root 2. Applying the
equation above, it is clear that:

The unknown value 7(£2) is obtained by normalization:

(s)| !

W(Q) _ Z H Psi_1,s;

se€ i=1 Psiysi-1

provided the series converges.

2.1.1.6 Stationary probabilities as recurrences

When the transitions have a regular structure, the solution can sometimes be computed using

recurrences. These recurrences in turn can have an explicit solution. We illustrate the principle

through a CTMC example. This principle applies to more complicated examples, and also to DTMC.
Consider for instance the chain depicted in Figure 2.5.

S v
Q'QOG---Q'QQG ---
o 0 H 0 m

Figure 2.5: A CTMC with regular structure

The state balance equations are the following:

A+v)m(0) = pn(1) (2.11)
A+v+pr(l) = wpn(2) (2.12)
A+v+pnr(n) = pr(n+1) + vr(n—2), n>2. (2.13)
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This last equation can be seen as a recurrence allowing to compute 7(n + 1) as a function of m(n)
and m(n — 2). This is a linear recurrence with constant coefficient, of order 3.

If one applies the Global Balance Equations to the set S = {0,...,n}, one gets instead: The
state balance equations are the following: Equation (2.11) and

A+v)r(n)+vr(n—1) = pur(n+1), n>1. (2.14)

This is still a linear recurrence with constant coefficients, but it is of order 2.
It is known that the general solution of Recurrence (2.14) is of the form:

m(n) = Aol + Baj ,
where oy and ao are the two roots of the characteristic equation
po? — N+ v)a—v = 0.

The solution of the problem of computing 7r is complete if we can determine the constants A and B.
To that end, we use two equations not used yet: the balance equation (2.11) and the normalization
equation w1 = 1. Given the general form for m(n) and if |ai| < 1 and |ag| < 1: we must have:

A B

1 = .
1—a1 1—042

Equation (2.11) writes as:
(A+v)(A+ B) = p(Aai + Bag) .

The analysis of the characteristic polynomial yields the following facts: one of its roots a; is always

in the interval (—1,0) if v > 0, and is 0 if ¥ = 0. The other root s is positive, and ap < 1 if and

only if > X4 2v. If this stability condition is not satisfied, there is no stationary distribution.
Assuming therefore p > A+ 2v, the final expression for the solution can be expressed as follows:

m(n) = Aal + Baj
— % —
4 - ko )\(1_)\4—1/)
21 A
At
B A+ v — pas
A = V(A+v)??2+4uv
A4v—A
o = —
2u
A+v+A
g = —— .
2p

This solution reduces to that of Section 2.1.1.3 if v = 0.
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2.1.1.7 Reversibility and truncation

If {X(t);t € R} is a stationary CTMC, its reversed chain is the process {X(—t);t € R}. It is also
a stationary CTMC.

Let Q be the infinitesimal generator of the chain { X (¢)}, and let 7 be a stationary distribution.
Then the infinitesimal generator of the reversed chain, say Q’, is given by:

r_ - m(j)
Q’LJ - Q],Z ﬂ'(’L) .
It can be verified that 7 is also a stationary distribution for the reversed chain. However, the
generators do not coincide in general. They do for a special class of Markov chains that we now
introduce.

Definition 2.1 (Reversible Markov Chains). A continuous-time Markov chain is reversible if
{X(t)} have {X(—t)} the same generator, that is, if for all pair of states (i,j) € € x &,

(i) ¢y = 7(J) g - (2.15)

A CTMC is said to satisfy the local balance condition if for any transition j < k:

w(J) ¢ = 7(k) qrj -

This implies that when transition j — k exists, transition £ — j must exist as well.
The class of Reversible Markov chains has property very useful for computing distributions: it
is stable with respect to truncation.

Definition 2.2 (Truncated Markov Chain). Consider a CTMC over a countable state space £ and
generator Q. Let A C £. The truncated Markov chain over the sub-space A is the CTMC with
generator Q4 defined as:

(g)jk = { 0  otherwise. (2.16)

In words, the transitions of the process are the same as the original process as long as the state
is in A. But transitions outside A have rate 0. If the process starts inside A, it stays there forever,
and it can be considered as a CTMC on the space A.

Theorem 2.2 (Stationary distribution of truncated reversible chains). Let A C €. Consider some
reversible CTMC, with stationary distribution w. Then the truncated Markov chain over A is also
reversible, and its stationary distribution is given by: fori € A

i)/ (D =) -
jeA

We illustrate this principle on some examples. Cousider first the Birth and Death process of
Section 2.1.1.2. This CTMC is reversible because, as we have seen, it satisfies the local balance
equation:

Anm(n) = ppirm(n+1) .
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Figure 2.6: The truncated Birth and Death Process

Consider now the same process, truncated to the set & = {0,..., K}. The diagram of the resulting
CTMC is represented in Figure 2.6.
Applying Theorem 2.2, we obtain directly the result that the stationary distribution of this
truncated chain is of the form
Ai
m(n) = G H =

iy M

for some normalization constant G. This result is however obvious using global balance equations
as in Section 2.1.1.2.

As a second, less obvious example, consider the CTMC displayed in Figure 2.7 (left), which
evolves in the state space & = N2. This chain is also reversible, with stationary distribution:

= (-2 Q) () 6

Indeed, it can be checked using this formula that the transition rates satisfy the two families of local
balance equations: for all (i,7) € N x N,

T, j) A = w(i+1,j)p
(i, ) a = w(ij+1) 5.

Next, consider the chain with the same transitions but truncated to the state space & = {(i,7j) €
NxN|i<3,j<3,i+j <4}, by simply removing transitions that go outside this set. The diagram
of this chain is in Figure 2.7 (right). Applying Theorem 2.2, we find directly that the stationary
distribution of this truncated chain is of the form: for every (i,j) € &',

AN\ fa)!
o= (3) (5)
G.3) I g
where G is a normalization constant such that > »yee (i, j) = 1.

2.1.2 Transient probabilities

According to Theorem 1.3, the transition probabilities and state probabilities of a DTMC can be
computed using the powers of the transition matrix P. Section A.3.2, in particular Theorem A.2,
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Figure 2.7: A two-dimensional reversible CTMC (left) and a truncated version (right)

provides general formulas for powers of matrices. In particular, if P is diagonalizable, there exist
rank-one matrices A; such that:

P = ixgﬂ Ay
i=1

where the \; are the eigenvalues of matrix P.

Similarly, according to Theorem 1.13, the transition probabilities and the transient state prob-
abilities can be computed using the exponential of the infinitesimal generator: e!Q. We look now
for ways to obtain explicit expression for this matrix.

If Q is diagonalizable, there exist matrices R, S = R™! and D = diag(\1, ..., \,) such that:

Q=SDR.
Then:
e)qt
e = 8 S (2.17)
eknt
As a consequence, we have the spectral decomposition: there exist matrices (with rank 1) Ay,..., A,
such that:

n

Q= Ze’\it A; .

i=1

It is therefore possible to obtain explicit formulas for P™ or e'Q and 7w(m) or w(t), if it is
possible to explicitly diagonalize the matrix P or Q.
In the following paragraph, we study several such cases.
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2.1.2.1 The two-state DTMC
Let {X,,n=0,1,...} be a DTMC with state space £ = {0,1} and transition matrix:
P—( @ 1‘“) 0<a,B<1
-6 8 =erst

Define, for all n = 0,1, ..., the vector 7, = (mp0,mn,1) = (P(X, =0), P(X,, =1)).

The eigenvalues of P are 1 and o+ 3 — 1.

First, get rid of the case where the two eigenvalues are equal: o+ 3 = 2 that is, « = 3 = 1.
Then, P = I and P is already diagonal.

When a + § # 2, define
S — 1l 1—«o
“\1 8-1)"
one has:

_ 1 1 1-a 1 0 -1 a-1 1
P = SDS _(1 ﬂ—1><0 a—l—ﬂ—l)(—l 1 >a+ﬁ—2'

As a consequence, the spectral decomposition gives:

pn _ 1 B-1 a-1 +(Oz—|—ﬁ—1)” a—-1 1-«
S a+p-2\p-1 a-1 a+f-2 \1-8 -1 )"
Note the case a + 3 = 1 where P = P for all n. Also, if a + 8 = 0, one can get directly: P" =P
for n odd and P™ = I for n even. If a + 8 = 2, the formula above does not hold, but P"* = I for
all n.

The state probabilities are obtained as follows. When « + 8 = 2, m, = mg for all n, of course.
In the case a + 3 < 2, the above expression and the relation m, = mgP™ give, for all n € N:

Mo = g B 1+ @+ A= 1((@ = Droa-+ (1~ Hma)
Mt = g la— 1@+ A= 1@ Do+ (L= B)m)]

The sequences m, o and 7, 1 converge if and only if -1 < a+ -1 <1, ie. if and only if & > 0 or
B > 0. The limiting steady state vector is then:

. < 1-7 11—« )
lim 7w, = ™ = .
n—oo

2—a—-p'2—a-4
In the last case a4+ 8 = 0, the chain is irreducible, but periodic and has no steady state either.

2.1.2.2 The two-state CTMC
Let {X(t),t > 0} be a CTMC with state space £ = {0, 1} and infinitesimal generator:

.
= Apu>0.
Q ( i M) %
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Define, for all n = 0,1, ..., the vector p(t) = (po(t),p1(t)) = (P(X(t) =0), P(X(t) =1)).
The eigenvalues of @ are 0 with right eigevector (1,1)" and —(\ + u) with eigenvector (=X, u)t.
The eigenvalues are always distinct because A > 0 and g > 0. One gets:

o= ()0 b ) (5 )

The spectral expansion is:

th _ 1 " )\> n e()\+ﬂ)t< A _)\) '
Adp\p A A -1

From the above expression, and p(t) = p(0)e®, one has:

po®) = s (0 e O () — i (0)
n® = 5 (A=) - ()

As A+ p > 0, the functions po(t) and p;(t) always have a limit when ¢ goes to infinity;
. W A
1 t)y=p=[—,— ) .
tggop() P <>\—|—,u )\+u)
This is the stationary distribution of the CTMC. Note that the convergence is exponentially fast.

2.1.2.3 Felsenstein-81 generators

The model of Felsenstein is used in Genetics. Felsenstein-type matrices (F81 for short, see [6]) are
such that

Gij = HpiiFJ, @i = —pl—pi),
where 7 = (p1,...,pn) is a probability distribution, and g > 0 a rate parameter. Algebraically, we
have:

Q=pulmr - 1) .
These matrices are constant-speed matrices.

The stationary distribution of this generator is, by construction, 7.
The analysis of the spectrum of Q yields the following facts:

e the eigenvalues are a; =0, and ao = ... = ay = —u;

e left eigenvectors are S; = 7 and for 2 <i¢ < N: S; = (0,...,0,1,—1,0,...,0), where the “1”
is in position ¢ — 1;

e the system of right eigenvectors compatible with the above left eigenvectors is Ry = 1 and for

2<i<N:
i—1
R, = (1,1,...,1,0,...,0) — ij 1.
i—1 times =1
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For instance with N = 4, we have:

P1 P2 P3 P4 o0 0 0 1 p2+ps+ps p3s+pa P4
Q - 1 -1 0 0 0 —u O 0 1 —p1 D3+ pa D4
0O -1 1 0 0 0 —u O 1 —p1 —p1— D2 D4
0O 0 -1 1 0 0 0 —u 1 —D1 —P1—P2 —P1—P2—DP3
Using this decomposition, we obtain the formula:
e = eI 4 (1—e M) 1m. (2.18)

However, in this specific case, there is a direct way to obtain this result. First, since the matrix I
commutes with any matrix, we have (see Appendix A.4):

eQ eut(]_ﬂ' -I) _ eut]_ﬂ' -l _ eutlﬂ' o ht

Next, from the definition of the exponential:

00
Hm
6#75171’ — Z (:u )' (17T)m .
m—0 m:

But (17)° =T and (17)™ = 17 for all m > 0. Consequently,
m

LLt].ﬂ' _ I 1 = (lu‘t) _ I 1 ;U‘t 1
e =1+ 1w Z I + 1w (e =1).
m=1 ’

This gives (2.18).

2.1.2.4 Felsenstein-Churchill-96 transition matrices

A discrete-time analogue of the model of Section 2.1.2.3 has been proposed in [7| in Genetics.
Assume that the transition probabilities are such that:

pij = (1=XNpi,i#], Pii = A+ (1 —=Np;,
where @ = (p1,...,pn) is a probability distribution, and A € [0, 1]. Algebraically, we have:
P = M+ (1-)\lw.

The stationary distribution of this generator is, by construction, . By recurrence, the powers of P
are computed according to:
P = AT+ (1 - \N")1mw .
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2.1.2.5 Tamura-Nei-93 generators

Tamura-Nei matrices (TN93 for short, see [25]) are 4x4 matrices with the following structure:

- el KRTG T

TA - TG  RyTT
Q RRTA TC - T

TA  RYyTC  TQ -

where 7 = (w4, 7, 7@, 7r) is a probability distribution, kg > 0 and ky > 0 rate parameters. The
diagonal terms are such that Q is an infinitesimal generator. The stationary distribution of this
generator is 7. Special cases of this family include Hasegawa-Kishino-Yano-85 matrices [8] when
KR = Ky = K, and Felsenstein-81 [6] matrices when kp = ky = 1.

The diagonalization of Q yields the following decomposition:

1 1
0 —ng —Tny 1 01 T Ty (1) Ty
-7 0 mr 1 - 0 = 0
Q =RDS = o an P me R ow | (219
TR Ty TR Ty
TC 0 TR 1 TA T lye! T

where D = diag(— (g + kKy7y), —(krTR + Ty), —1,0), and with the notation 7r = 74 + ¢ and
Ty = T¢ + 7.
Next,

Q= 1x + eft(ﬂRmeTrY) R1S1 + eft(ﬁRﬂR+7rY) RySy + eftR;J,Sg.

The vectors R; are the columns of the matrix R given in (2.19). The vectors S; are the rows of S in
the same formula. A detailed closed-form expression for transition probabilities is given below. The
convention used in these formulas is that states belong to pairs R = {A,C} and Y = {G,T'}, and
that if 7 is a state, i’ is the other state of the same pair, p denotes the pair of i whereas p’ denotes
the other pair.

(th)ii = m + 7TZ'7TpI et + e 6_(’ip7rp+7rp/)t
Tp T

() = m + my 2 et — I8 o (mpmptmy )t (2.20)
7Tp ’ﬂ'p/

€@y = m (1 =€) JEp.

Kimura-80 matrices. Kimura-80 (in short, K80, or sometimes K2P, see [13]) are matrices of the
form TN93 with m4 = 7¢ = ng = mp = 1/4 and kg = Ky = k.
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The transition probabilities of Equation (2.20) read as:

(eQt); = §(1+eft+ze*t<n+1>/2)
(@) = 1 (1+e—t_2€—t(ﬁ+1)/2>

4

1 _ L
(eQ);; = Z(l—et) VEXNE XA

2.1.2.6 Some Birth-Death Processes

The explicit diagonalization of the generator is known for some birth and death processes.

(2.21)

The Constant-Rate Birth-Death Process. The constant-rate birth-death process was studied
in Section 2.1.1.3. We consider here the truncated version with IV states, see also Section 2.1.1.7.

The generator of the process is the matrix of My« n:

—A A
poo—(p+A) A
M(N; A, p) = ' .
poo—=(p+A) A
1 —p
The eigenvalues of this matrix are 0, and
km
wr = —(A+p) +2\/)\ucosﬁ, k=1.N-1.

Let p=A/p. For k,p € {1,..., N — 1}, define the values:

Op = sinzﬂ — p71/2 sin pi(k: — D
N
o N _1/2 k7r -1
Ve = 2(1—2p COSN+p .

For k = 0, define:
b = P
1—pN

Yoo= T,

if p#1, and y9 = N if p = 1. Finally, define the matrices:

® = ((dpk))1<p<N,0<k<N, U = & = ((drp))o<kaNi<p<N -

Q = diag(wo, . .., wn) I' = diag(vo,...,YN) -
We finally can state the result:
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Lemma 2.3. The matriz M(N; \, u) is diagonalizable if and only if 0 # Ap. In that case,

M(N; A\ p) = D7V2@Qer—1/2 (2.23)

Using Lemma 2.3, it is possible to write down explicit formulas for the transition probabilities
eMt and the transient probabilities.
As an illustration, consider the case N = 4. We have then, defining ¢ = p~

expressions:

1/2 o simplify

v R S

d — ot ﬂ—am -0 — 2—0@
T |0 ViZ—ovE -1 J1240v2
o3 —a\/m o —a\/m

1i

I = diag <1”4,4(1 — V20 4+ 0?),4(1 + 0),4(1 + V20 + 02)>
—p

Q = diag(O,—()\+u)+ 2Au,—(A+u),—(/\+u)—\/2)\u>.

A Variable-Rate Birth-Death Process. Consider now the following generator Q = M(N; A, p),
where N € N, X and p are strictly positive real numbers:

—NX N
po —(p+(N=1A) (N-=1)A
M(N; A, p) = . (2.24)
(N=Dp —(N=Dp+r) A
Nu —Nu

This is a Birth and Death process with transition rates
M=(N—-KX 0<k<N e =ku, 0< k<N

and 0 otherwise. The transition diagram corresponding to this generator is represented in Figure 2.8.
The stationary distribution of this process, is according to Expressions (2.7)— (2.8), is the binomial

distribution . N
- - A" N—-n ]
) = G ()

This process appears in many situations that can be interpreted as the superposition of several
identical, two-state “particles”. One example is the absorption/emission process in lasers: the state
of the system is then the number of particles in the “excited” state. Another instance occurs in the
modeling of sources of traffic in telecommunications: the state of the system is then the number of
sources that are currently active.

Define, for k € {0,...,N}:
wp = — k(A +p) . (2.25)
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Figure 2.8: A Birth and Death Process

Define further: o = —p/A. The numbers 1 and o are the roots of the equation
Mo? — A= — p = 0. (2.26)

Let ¢, = (¢1(0),. .., ¢x(N)) be the row vector with coordinates given by the coefficient of z* in the
polynomial function (z — 1)*(z — o)V =F:

o) = lla—1)F (- o)V
B (_1)i§<§> (T:]k»’] (2.27)

Finally, define the (N + 1) x (N + 1) matrices out of the row vectors ¢; and the column vectors ;:

e = ((6i(M)ig: T = (%0))ig = ((dilj) a7y (2.28)

We then have the following result (see [2, 19, 1]). For this algebraic result, we consider that A and
w are arbitrary complex numbers, although in the Markov chain application, these are positive real
numbers.

Lemma 2.4. The matriz M(N; \, ) is diagonalizable if and only if 0 # X+ u. In that case, if
Q = diag(wo, ... ,wnN),
M(N;\p) = (0—1)"" Q& . (2.29)

The fact that Q® = ®M is a direct application of the analysis of [2] and [19].
In order to establish (2.29), it remains to be proved that:

¥ = o-1)VI. (2.30)
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By definition, we have:

N
Z GikVr; =
k=0

ol N Y (@~ 1)z — )Ny )y — DMy — o)V e

o Nyl — o)™ (@ = D)2 = )|y 1)/ (o)

Nvely—1) -1y —o0))ie"Ni(y—1—y+o)VN

ol (y—a)N

vy —o)

S CER VAT
(O’ - 1)N 51‘:]' .

From (2.30), we can conclude (2.29) provided that 1 —o # 0, or equivalently, A+ = 0. This is the
condition required in Lemma 2.4.

Using Lemma 2.4, it is possible to write down explicit formulas for the transition probabilities

M

e¥* and the transient probabilities.
As an illustration, consider the case N = 3. We have then:

M(3; 0 pu) = (0—1)7° TQP

-1 3 -3 1 —03 302 30 1
B 1 -1 240 -1-20 o | —0? 20+0? —-1-20 1
T (0—-1B3| -1 1+20 —(0+2)0 o? —0 1+20 -0-2 1
-1 30 —302 o3 -1 3 -3 1
where
Q = —(A+p)diag(0,1,2,3) .

2.2 Numerical computations

This section is devoted to methods that compute the probabilities of interest, in a numerical way,
with little or no attempts at exploiting the structure of the chain, as it was the case in Section 2.1.
There are two types of questions that one should be concerned with, when considering numerical

algorithms:

numerical precision when computers execute arithmetic operations, they typically introduce
(small) errors. Some errors are due to the fact that numbers are stored in a memory with
limited precision. This causes “roundoff” errors. Likewise, operations such as multiplication
or division are executed only approximately. When several operations are chained, the errors
tend to propagate and are amplified: this phenomenon is called “numerical unstability”.

A consequence of this is that some operations are considered as undesirable because they tend

to produce errors:

adding or subtracting numbers with very different orders of magnitude,

and manipulating numbers of different signs.
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Another source of errors lies in the computation of some non-elementary functions such as
exp(), sin(), log() etc.

algorithmic complexity there exist usually several methods (or algorithms) to compute a cer-
tain result. Some may use more time and/or memory than others. A criterion used for
comparing algorithms is their algorithmic complexity. Evaluating the complexity of a given
algorithm consists in computing the number of “elementary” operations it performs. The exact
interpretation of what is elementary depends on the context. Elementary operations may be
arithmetic operations (+, -, *, /), binary operations, assigments of values to the memory, or
calls to some function.

Very often, this number of operations does not depend on the exact value of the data, but on
some “size” parameter. For instance, numerical algebra algorithms typically have a complexity
that depends on the size n of the matrix, and not on the precise entries of the matrix. Likewise,
graph algorithms have typically complexities that depend on the number of nodes n, of edges
m or some other graph parameter, and not on the exact configuration of nodes and edges.

Even when the number of operations of the algorithm does depend on the data, it is often
possible to talk about the worst case complexity. Evaluating it provides a bound on the
running time.

In some cases, it is possible to compute exactly the number of operations as a function of n (or
other parameters). However, the most useful information is the behavior of this count when
n is large. Accordingly, the presentation of the complexity is usually limited to the highest
order term, as in 2n?/3, 7Tn3/8 for instance. It is often sufficient to talk about the order of
magnitude of the complexity. One uses then the “big-oh” notation as in O(n?) or O(n?).

In summary, the choice of a numerical algorithm is usually governed by a compromise between
both aspects: numerical accuracy and speed. It is worthless to use a fast algorithm which does
not compute the right answer! On the other hand, performing exact, full precision calculations, is
usually too time consuming. Specialists of numerical computations (see e.g.[9]) have selected families
of methods which have a reasonable numerical accuracy and a reasonable algorithmic complexity.

In the following, we review some of the principal candidate methods for computing stationary,
then transient probabilities for Markov chains.
2.2.1 General numerical methods for stationary probabilities

Recall from the beginning of Section 2 that computing the stationary probability of some Markov
chain amounts to solving the linear system P = 7 or wQ = 0, with the additional constraint that
w.1l=1.

2.2.1.1 Direct solution of the linear system

The direct method consists in simply solving the linear system. In both the DTMC and CTMC
cases, the system to be solved is of the form:

mA = 0, wl=1
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with either A =P —Tor A = Q. If P or Q is irreducible , then the rank of A is n —1 (if n
denotes the size of the matrix, which is also the cardinal of £). This means that any row or column
is “redundant” in the linear system, in the sense that it is a linear combination of the other rows or
columns.

Let us denote with A the n x (n — 1) matrix obtained from A by deleting the n-th column (or
actually any column). The linear system to be solved is equivalent to the new one:

0
—t )
A L= :

0
1 1

Exceptionnally, we have written this linear equation in the usual “matrix times vector” form, since
this is the convention used by most software libraries which provide functions for numerically solving
linear systems. When using them, never forget to transpose the matrix P — I or Q and be careful
not to truncate a column of A instead of a row.

The numerical accuracy of this method is not considered as good, because the operation is
equivalent to inverting a matrix, which is not usually very stable. The result is usually satisfying
however for matrices of small size: n typically up to 20 or 30.

The algorithmic complexity is that of solving a linear system of equations: of the order of n?
(arithmetic) operations.

This complexity is considered as relatively large. The direct method is considered as inappro-
priate for large values of n (above 100, say) both because of problems of accuracy and algorithmic
complexity.

2.2.1.2 The power method
The power method for DTMC uses Theorem 1.6, specifically, see (1.15):

lim 7o P" = .

n—oo
The idea is then to compute 7, for successive values of n until some N. If N is “large enough”, the
vector 7y should be “close enough” to 7r. Note that convergence occurs only if P is aperiodic. This
idea will not work if this is not the case. Note also that convergence occurs theoretically for any
choice of the initial vector wo. However, in practice, some choices of 7o are better than others.

It is important to realize that this method is approzimate: its aim is not to compute 7w but an
approximation of if. Even if numerical computations were perfectly accurate, this algorithm would
not give the exact answer.

In practice, it is not easy to determine the value of N such that the vector computed is within
a distance ¢ of the exact value w. According to Theorem 1.6, the distance between 7, and 7 tends
to 0 as:

ren =l = O(") .

which means that there is some constant C' such that:

e =l < Cp" .
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for all p such that || < p < 1, where |\2| is the second largest eigenvalue of P. So, in order to be
sure that the distance is less than some &, the number n should be such that:

logC/e  logC —loge
logl/p —  logl/p

Cp" < ¢

Since neither C' nor Ay are known exactly in practice, this rule does not provide a concrete way to
determine N. It is important however, since it says that the closer |\2| is to 1, the larger N should
be.

In practice, one uses a stopping rule. For instance, given a desired accuracy €, one runs the
algorithm until the value N such that:

7y = 7n-illoo = max|my(s) —mn-1(s)] < €.

This property does not imply that each value 7 (s) is closer than ¢ to the exact value 7 (s).

The numerical stability of this iterative algorithm is considered as good, because all numbers
involved are positive, and between 0 and 1. There may be problems with orders of magnitude. The
usual consequence is that the sum of the entries of vector m, is not exactly 1. In that case, it is
necessary to renormalize this vector periodically. This adjustment does not change the convergence
behavior.

To summarize, an approximation of the stationary distribution can be computed using Algo-
rithm 1 or one of its variants. Several points need to be made precise for the algorithm to be
operational. First, about the initial choice for the vector. Since particular vectors (such as distri-
butions concentrated on a particular state, or uniform distributions) can result in a pathological
behavior, some authors advocate the choice of a random vector of probabilities. Second, the period
for renormalizations has to be chosen. Renormalization is done using Algorithm 2. The choice may
depend on the relative cost of one multiplication and one renormalization, see below.

The algorithmic complexity of Algorithm 1 is N times the number of operations required for
a vector/matrix multiplication, where N is the final number of iterations (see above). The cost of
one vector/matrix multiplication depends in turn depends on the way the matrix is represented. In
the worst case, this is O(n?) operations. With sparse matrices, this is O(m). See Appendix B.1.2
for details. The cost of a renormalization with Algorithm 2 is 2n operations. Depending on the
value of m, this may be negligible in front of a multiplication, or be comparable. In the first case,
renormalization can occur frequently at little cost.

The power method for CTMC. When the problem is to find 7r such that wQ = 0, it is possible
to use uniformization. Indeed, according to Theorem 1.19, the stationary distribution of Q and any
uniformized matrix P, = I + v~1Q is the same.

The Power method for DTMC can be used with any value of v that satisfies the uniformization
condition (1.33). However, choosing v too large has the effect that the eigenvalues of P get close
to 1. As we have seen above, this makes convergence slower. On the other hand, if v is chosen as
the minimum allowed by Condition (1.33), there is a possibility that the matrix P, be periodic, in
which case the algorithm does not converge. The choice of v should produce a compromise between
these two dangers.
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Algorithm 1: The power method for computing approximate stationary distributions

Data: A probability transition matrix P

Data: An integer parameter K for periodical renormalizations

Data: A precision parameter

Result: A distribution which approximates the stationary distribution of P
begin

x «— any probability distribution

n—0

repeat
n—n-+1

y—zxzxP

dist — ||l — 9]

x—y

if n mod K = 0 then
| « < Renormalize(x)

until dist < ¢;
x < Renormalize(x)
return x

Algorithm 2: Renormalize(x): Renormalization of a vector

Data: A vector of numbers z indexed by &
Result: A vector proportional to z which entries sum up to 1
begin
sum «— 0
for i € £ do
| sum «— sum + x[i]
for i € £ do
| x[i] « z[i]/sum
L return x
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2.2.1.3 Relaxation.

The method of successive over relazation has been proposed in numerical linear algebra to, at the
same time, speed up the calculation of solutions to linear systems, and reduce memory consumption
by storing only one vector.

The principle, applied to DTMCs, is to rewrite the system of equations to be solved as:

(1= Py) 7(i) = > _7()Py,

J#i
or: P
. . i )
= ef.
(@) = > 70) § Syl
J#i
Then, one fixes some w € (0,2) and iteratively computes a sequence of vectors @ x®

according to the formula:

06 = (1 -w)r®6) + g | A6 B+ A G) P
I=Pa \ 55 i

When this computation is performed with increasing values of i, the special form of this formula
allows to store the result 7(*t1) in the same array as the data 7(¥): after state ¢ is handled, the
value of w(*) (7) will never be used again. In addition, with a proper choice of w the convergence
may be faster than that of the power method. Unfortunately, there is no simple way to compute
the best value, or even a “good” value. The value w = 1.2 is recommended in [26]. It may even
happen that the method is unstable and does not converge at all.

With the choice of w = 1, this reduces to the method of Gauss-Seidel. This method is known to
converge under the sufficient (but not necessary) condition that P; > >, P;; for all i € £.

2.2.2 General methods for transient probabilities

Several situations may occur in practice. First of all, the computation may involve the probability
vector(s) 7y or the stochastic matrices P™ or €!Q. Then, assuming for instance that we are concerned
with vectors, the problem may be (with small variations between discrete and continuous time):

A) to compute 7, for all values of n and some ¢ (in discrete time), or 7, for a sequence of n
time instants ¢; (in continuous time):

B) to compute 7, for some value of n and some 7ry;
C) to compute 7, for some value of n and many values of 7;

D) to compute an expected value of the form
> u(s)mals)
se€

for some given vector v and some value of n,

and combinations of these. The choice of the best algorithm effectively depends on the problem,
the value of n and the size of the state space £. We therefore provide here elements of information
to guide the decision.
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2.2.2.1 Discrete-time chains

Recurrences. Using the recurrence mw, 1 = 7, P provides the values of 7w, for all 0 <n < N, and
so solves Problem A) as well as problem B). This recurrence is actually Algorithm 1, in a variant
where the iteration stops after NV steps, and not when some convergence condition is encountered.
The algorithmic complexity of this is N x O(m). See the comments above.

In certain cases, it is useful to compute P for some specific value n.

The question of computing a power using a minimal number of multiplications is the topic of
[15, Section 4.6.3]. For instance, if n = 2¢, one can use the doubling formula:

A = (AQH)2 (2.31)

which allows to compute the power P" in ¢ = log,(n) matrix multiplications. Using this technique,
any power P" can be computed in less than 2logy(n) multiplications.

Diagonalization. Assume that P has been numerically diagonalized. Since we have the spectral
expansion: (A.8) (see Theorem A.2ii/):

P
Pn = Z)\;L W;.V;
i=1
then the general formula for vector 7, is:
P
T, = Z)\? (mo.w;) Vi .
i=1

The n scalar products mp.w; can be pre-computed. This costs p x O(m) operations where m is
the number of non-zero entries in my. The evaluation of a power A} is considered as an elementary
operation. Then any evaluation of 7r,, consists in computing the linear combination of p vectors of
size p: this costs O(p?) operations, independently of n.

Unfortunately, the Jordan decomposition (including the diagonal decomposition when it exists)
is known to be numerically unstable. This is due to the fact that, in some cases, the matrices R
and S can have entries with different sign and very different magnitudes. Any algorithm which tries
to compute them is prone to numerical errors. This method is therefore not recommended.

A more robust method that is recommended in [9] and [24] is based on Schur’s decomposition
and a “quasi-diagonalisation”. This topic is too technical to be developped in this version of the
document.

2.2.2.2 Continuous-time chains

As in the case of DTMCs, diagonalizing Q provides a way to compute numerically transient proba-
bilities. But the method is numerically unstable. The corresponding spectral expansion is (assuming
that Q is diagonalizable):
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and the general formula for vector m; is:
P
Tt = E eAit (WU.WZ‘) Vi .
i=1

Evaluating the exponential series. One idea is to compute directly the exponential series (see
A.10), suitably truncated. The general idea is to find N such that the following approximation
holds in some sense:

Q o) o N m
€ - Z n! ~ Z n! :

It is necessary to quantify more precisely this relationship.

First of all, it is possible to choose a number N in such a way that the “rest” of the series is
smaller than some €. The simplest way to do that is to use the following bound: let z be a positive
real number. Then

00 n 0 n+N+1 n,N+1 N+1
Ry(z) = Z il - Z( j—N+1)' < Z ;2(15+1)' - (]\Zf_|_1)| e’ .
n=N 41 n. 0 n . "0 n. . .

The sequence N — 2V /N! is monotonously decreasing for N > z. It converges rapidly to 0, so that
given some ¢ and some real 2, it is numerically fast to find some N (e, z) > 2z such that Ry .) (2) <e.
Next, consider the “rest” of the series defining the exponential of a matrix A:

0o N

A" A A"

Bn(A) = Zﬁze _ZF'
n=N-+1 n=0

Let ||A|| denote a matriz norm (see Appendix A.6). Since ||A"™]] < ||A]|", we have:
Ry(A) < Ry([|Al]).

Therefore: if N is chosen as N (e, ||A||), then the finite sum

N n
Sn(A) = ZA (2.32)

n!
n=0

approximates the exponential e with an error less than ¢, as measured with the matrix norm ||-||.
The truncated series Sy can then be evaluated using N matrix additions and N matrix/matrix
multiplications.

Let us consider the application of this principle to the matrix e'Q:

S _ Z% Q" = Sy(1Q) + Ry(1Q) .
n=0
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It is convenient to select the mazimum row sum norm defined as (see also Appendix A.6):
1A e = max 3" |4y
J

From the properties of infinitesimal generators, we have:

11Q e = tmax ;cxm@m = tmax (|Qul +1Qul) = 2tmax|Qil
VE

which should be used to compute N(e,t|Ql|). However, using this method directly with Q is
considered as bad because this matrix has positive and negative terms. In addition, the magnitude
of the elements of Q™ is not bounded when n is large. As a result, numerical unstabilities may
appear when evaluating the sum Sy (¢Q): the evaluation of this sum with a good precision is also
a problem.

The right approach is to use uniformization to transform the problem. For all v satisfying
Condition (1.33), we have (see the proof of Theorem 1.18 p. 16):

0o
mn

€tQ _ et(—uI+(Q+VI)) _ e—yt et(Q+VI) _ e—ut 2 :7 (VI + Q)n . (233)
= n!

Then if an approximation within ¢ is needed, it is enough to obtain an approximation of HQ+v)
within e”’e. In addition, we have:

[H(Q+vD)|| = tnlgleaéx ZQz‘j—FV—FQu‘ = tv.
J#i
So if v is chosen as max;eg |Q;i|, the norm of the matrix is smaller and it is possible to choose some

N(e) smaller than with Q. Finally, since the sum Sy (¢(Q + vI)) only involves positive matrices,
the method is much more stable.

The approximation technique can be applied to compute the 7r; instead of the matrix Q. Indeed,

= mo e!Q = g ] mQ" = e E -1 70 I + Q)" . (2.34)
n=0 n=0

The error of an approximation of 7r; is measured with a wvector nmorm. In order to apply the
method above, one should select a matrix norm compatible with this vector norm, in the sense
that ||Az| < ||A|l |lz||- In that case, we will have:

I = oSN (Q) < lmoll [[e¥ — Sn(Q)]|

which can be made less than some € by a suitable choice of N. Likewise,

Hﬂ't—e_”t oSN (VI + Q)H < ol Hth—e_”tSN(vI + Q)H }
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Evaluating the sum 7Sy (A) for some matrix A can be done using vector/matrix products and
vector additions: it is therefore faster than computing the matrix Sy(A), then multiplying by the
vector 7.

The maximum row sum for matrices, used above, is compatible with the sum norm for vectors:

Il = > I

€€

This norm is always equal to 1 for probability vectors.

Numerical integration. One method is to exploit the fact that the function ¢t — Py is solution
of the differential system (1.27) (see Theorem 1.12 page 12):

dP;

— =QP;, =P
T QP 1Q

with initial condition Py = I. A related method uses the fact that ¢ — ; is solution of the
differential system

5 = ™ Q (2.35)

with initial condition 7rg. This is a consequence of (1.27). The idea is then to integrate numerically
this system, using a dedicated solver.

The choice of the solver is important in order to avoid numerical errors. In order to illustrate
this, consider Euler’s scheme applied to (2.35). Given an integration step ¢, the scheme calculates
successively approximations 7,5 according to the recurrence:

%(n+1)6t = Tnst + Ot Tpst Q.

Since these are all linear manipulations, the recurrence can be restated as:
Tost = Tm-nar (I+01Q) = mo (I+5Q)" . (2.36)

The good news is that this form is similar to the recurrence for DTMC. Indeed, the matrix in
this recurrence is that of a uniformized matrix Py s, if v := 1/6t is large enough to satisfy Condi-
tion (1.33), or equivalently if 6¢ is smapp enough. As a consequence, the limit of the recurrence is
indeed the same as the limit of P; when ¢ — oo (see also Theorem 1.15). But this does not mean
that every term of the recurrence is close to the transient probabilities 7.

Euler’s scheme is just the simplest of a family of numerical integration methods that have been
proposed. Another widely-used one is Runge-Kutta’s method of order 4 (abreviated as RK4). In
the present situation, it can be shown that it is equivalent to computing

Tonst = T(n_1)st (I + 6tQ + %(57:)2(;2 + %(5:5)3(93 + 214(575)4Q4> . (2.37)

From Equations (2.36) and (2.37), we see that both numerical integration methods produce approx-
imations of the probabilities that are based on the approximation of the exact equation:

%(n—l—l)ét = Tnot e = Tnst SN (QOt)

Version 2.3, February 6, 2013



Advanced Markov Modeling — Chapter 2 46

where Sy is the finite sum defined in (2.32). The value N =1 corresponds to Euler’s method, the
value N =4 to RK4. In that sense, it is not really useful to perform numerical integration instead
of directly evaluating matrix sums.

We have argued that using the sum Sy (6tQ) may raise numerical instabilities. The uniformiza-
tion technique may also be used in this context. If one performs the change of function q, = e "!m;
in (2.35), one gets the differential system:

% = q;, (1I1+Q).
Then numerical integration such as in (2.36) or (2.37) can be used, with Q replaced by vI+ Q, a
positive matrix. Matrix/vector products become more stable, but the drawback is that the vector
function q, is not bounded, and grows without limit. This problem does not happen with m; which
remains bounded.

Asymptotic approximations. Depending on the range of interest for the time variable t, ap-
proximate formulas can be useful.
If ¢ is small, the definition of the exponential of matrices provides the expansion:

Q 5 £ 3

This is actually the principle of numerical integration methods: as we have seen, they implicitly use
this expansion as an approximation.

Problem A) can be addressed by first computing and storing in memory the matrices Q™,
m < myg, or the first vectors m,, = mpQ™. The value of mg is chosen to be large enough so that
errors are bounded by some specified €. For each s and each ¢;, the value of 7, (s) is obtained using
O(myg) operations.

If ¢ is large, then the spectral expansion predicts that:

N 0
e — E :e)‘it A ~ E it A;
i=1 i=1

where iy is chosen large enough so that the magnitude of the remaining terms is less than some e.
Here, the eigenvalues of Q have been sorted in increasing order of absolute value.

Combination of methods. One method uses the fact that, for all integer M and all matrix A,

A _ <6A/M)M ‘

e

If M is large enough, one may use an asymptotic approximation Sy(A/M) to approximate the
inner term. Then raise the result to the appropriate power. The choice of M = 2¢ is good, because
of the doubling formula (2.31). The accuracy of such an approximation is quantified in the following
bound [9, Theorem 10.1]: for every matrix norm, every matrix A, and every integer N and M:

A
-~ MN(N+1)!

The case M =1 corresponds to the bound on Ry (A) we have used above.

lle = (Sn(A/M)M || AL
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