Chapter 1

Basic theory

Markov chains are the principal tool for modeling random dynamic phenomena and computing
related probabilities.
In this chapter, the principal basic results about discrete-space Markov chains are reviewed.
The power and effectiveness of Markov chain modeling is due in a large part to the fact that many
probability computations can be reduced to linear algebra computations. Appendix A provides the
necessary notions.

1.1 Discrete-time Markov chains

1.1.1 Definitions

Throughout this document, £ will denote a set at most countable, that is, either finite or countably
infinite.

Definition 1.1 (Discrete-time Markov chain). Let € be a set at most countable. A process {X(n),n €

N} is a discrete-time Markov chain (DTMC for short) over £ if and only if: X(n) € € for all n,
and:

i/ (Markov property) for all t € N, and all t + 2— uple (jo,J1,---,jt, Je+1) of elements in E:
PX(t+1) = jea|X(E) = i, ..., X(0) = jo) = P(X(t+1) =jena|X(E) =72) 5 (L1)
This chain is homogeneous if in addition:
i/ (homogeneity) for all pair (i,7) in €, there exists a number P; j such that:
P(X(t+1) =jIX(t) =i) = Py, (1.2)
for any value of t.

We shall often use “DTMC” for Discrete-time Markov chain.
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1.1.2 Finite-state Markov chains

In this section and in the following, the state space £ will be assumed to be finite. In that case, the
Markov chain can be “represented” by a matrix, and many probabilistic properties can be deduced
from the properties of this matrix.

1.1.2.1 Markov chains and matrices

The numbers P, ;, (i,7) € £x & are the transition probabilities, and the matrix P, which components
are the P; ;, is the transition matriz. This matrix is stochastic:

Definition 1.2 (Stochastic Matrix). A stochastic matriz is a square matriz which entries are all
real and positive, and such that, the sum over each row is equal to 1.

This property can be expressed in the notation of linear algebra. Let 1 be the column vector
made of “1”: 1 = (1,...,1)7. Then
P1=1. (1.3)

Conversely, given a stochastic matrix P, it is easy to define a process {X(n),n € N} which is
an homogeneous Markov chain with P as transition matrix. See Section 3.1 for the illustration of
this principle in simulation.

A Markov chain is therefore characterized by its transition probability matrix.

Since it is possible to associate a weighted graph to every matrix (see Section A.2), we associate
a graph G to every Markov chain: this graph is called the transition diagram. An example is
shown in Section 1.2.5.

1.1.2.2 Transient Probabilities

The first problem which arises is to compute the probability that the Markov chain is in some given
state after some given number of jumps. Those are called the “transient probabilities”.
Actually, two types of probabilities are interesting. The n-step transition probabilities:

p(i,jin) = P(X(n) =7 | X(0) =), (1.4)
and the n-th step state probabilities:
m™(j) = P(X(n) =) . (1.5)

The first one is the probability of going from state i to state j in n steps. The second one is the
probability of being in state i after n steps.

Denote as P(n) the matrix constructed with the numbers p(i, j;n), (i,5) € € x £.

These probabilities p(i, j;n) are given by the theorem:

Theorem 1.1 (Transient probabilities). For all n € N:
P(n) = P".

Given Theorem A.1 which relates powers of matrices and sequences of transitions, we also have
the following expression. The definition of I (4, j) is in the theorem.
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Corollary 1.2. Foralln €N, (i,j) € € x &, we have:

p(i,jsn) = > Piyin Diryio -+ Din_1,j - (1.6)
(i7i17 s ainflaj) € Fn(za])

The interpretation of this formula is the following: consider a path of length n (measured as
the number of arcs) in graph G: @ = ig,i1,...,9, = j. To this path is associated the weight:
Dioiy - - - Pin_1,in- Lhe probability p(i, j;n) is the sum of the weights of all paths of length n going
from 7 to j.

This probability is therefore strictly positive if and only if there exists a path of length n going
from ¢ to j in the transition diagram.

Consider now the probabilities m,(j), n € N and j € £, defined in (1.5). In order to be able to
compute this probability, it is necessary to introduce the initial distribution of the process, that
is:

mo(j) = P(X(0)=17), Jje€

We then have, conditioning on the initial state:

m(j) = ZWO(i) p(i, jin) . (1.7)

1e€

This can be expressed in matrix form. To this end, we denote with 7, the (row) vector with
components m,(j). Then, Equation (1.7) is equivalent to:

Theorem 1.3. The transient state probabilities are given by:

T, = mo P". (1.8)

1.1.2.3 The number of visits

A random variable of interest in Markov chains is the number of visits made to one specific state.
Given a Markov chain {X(n),n € N}, given an integer n and some state i € £, define:

n—1
Vi = x =iy - (1.9)
m=0

Recall that the indicator function 174y is 1 if the event A is true, 0 if not. Accordingly, the value
Vrfz) counts the number of times the chain X has visited state ¢ between steps 0 (initial state) and
step n — 1.

Taking the mathematical expectation in (1.9), we have:

n—1 n—1
BV = Y P(Xpm=i) = > mP e, (1.10)
m=0 m=0
where e; is the column vector (0,...,1,...,0)T, where the “1” is in row 4. According to this formula,

the average number of visits can be expressed using the initial distribution and the transition matrix.
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1.1.3 Asymptotic behavior and the classification of states

In this section, the set &£ is still finite.

The next important question is to know how the sequences of numbers p(i,j;n) and m,(5)
behave when n tends to infinity. Given Theorem 1.1 and Theorem 1.3, the question is equivalent
to determining the behavior of P and moP™ when n — oo. The principal general results about
powers of matrices are recalled in Section A.3. We shall apply them here to the stochastic matrix
P.

Two types of information are useful in practice: a) results which tell under which condition the
probabilities converge, and what is their limit, and b) what is the speed of convergence.

1.1.3.1 Classification of states

Let G be the transition graph of the transition matrix P. It is possible to perform a decomposition
of G into strongly connected components (see Appendix A.2). In the language of Markov chain
theory, these components are called the communication classes of the chain.

Next, consider the graph C of communication classes: this graph is constructed with one vertex
for each communication class, and with edges between classes C; and Cj if there exist one pair (i, j),
it € C1, j € Cy with P;; > 0. In other words: if it is possible to go from C to Cy with positive
probability.

By construction, the graph C has no cycle: it is called a DAG: directed acyclic graph. In
such graphs, there are always vertices with no outgoing edge. These vertices of C correspond to
communication classes that are called the terminal communication class.

We can now introduce the terminology for states:

Definition 1.3 (Classes of states). The states in terminal communication classes are called recur-
rent. The other states are called transient.

When a terminal communication class consists in a single state, this state is called absorbing.
It is necessarily recurrent.

Recall from Definition A.2 that a matrix P is irreducible if all states are in a single communication
class. In other words: if P is irreducible, all states are recurrent.

The decomposition of the state space in communication classes has the following algebraic inter-
pretation, in the case of finite matrices. If P is reducible, then it is equivalent, up to a renumbering
of the states, to a block triangular matrix:

Piy1 Pio
0 P (1.11)
: 0 .
0 ... 0 P,

Each of these blocks correspond to a communication class, and one vertex in the graph C. If the
communication class ¢ is terminal, there is only one non-zero block in the matrix: the diagonal
block P... This sub-matrix is a stochastic matrix: it is the matrix of a Markov chain evolving in the
communication class C.. This Markov chain is irreducible. For recurrent communication classes,
there is more than one block on the corresponding line.
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1.1.3.2 Convergence of probabilities

We give below several results concerning the convergence of probabilities. These results use increas-
ingly stronger assumptions on the matrix P.

The first result is an application of Theorem A.5 (Perron-Frobenius). The other results can be
proved using the spectral decomposition of matrices (Theorem A.2) and the results of Section A.3.
The details are omitted here.

Theorem 1.4 (Existence of a stationary distribution). Assume P is a stochastic, irreducible matriz.
Then there exists a unique probability vector ™ such that mP = m and w1l = 1. The vector m is
strictly positive.

This vector is called the vector of stationary probabilities of the Markov chain.

The distribution on the state space £ corresponding to this vector 7 is called the stationary
distribution. The name “stationary” comes from the probability that if the initial distribution of
a Markov chain is , then the state distribution does not change over time: the chain is stationary.
This can be checked algebraically: if my = 7, then for all n.

7w, = mP" = aP" = (aP)P"! = P! = 7.

Theorem 1.5. Let P be a stochastic, irreducible matriz and 7 its vector of stationary probabilities.
Then:

n—1
ZPm =nlmx+0(1),
m=0

and in particular:

1
lim — Y P™ = 1. (1.12)

As a consequence, for any probability vector my, we have:

1 n—1
lim — >, = . (1.13)
m=0

n—oo N

This result provides the interpretation of the stationary probability: we have seen in (1.10) that
the expected number of visits to state 4 is:

n—1
EVY = > m(i) .
m=0

Then, using (1.13), we have:
1 .
m = lim ~EV® .

n
n—oo N

In words: the stationary distribution of state ¢ is the average number of passages of the DTMC in
state 7 per step.

If the matrix P is assumed to be aperiodic in addition (see Definition A.2 on p. 75), the conver-
gence result is stronger.
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Theorem 1.6. Let P be a stochastic, irreducible and aperiodic matriz. Let 7 be its unique stationary
probability vector. Then,
lim P" = 1.7 . (1.14)

n—oo

As a consequence for any probability vector mg, we have:
lim =, = = . (1.15)
The convergence is geometric: for any vector norm,
|70 —=f| = O(p") (1.16)
for all p such that |A2| < p < 1, where |Aa| is the second largest eigenvalue of P.

Given the importance of Theorem 1.6 and the related conditions on P, the following terminology
is used:

Definition 1.4 (Ergodic matrix). A stochastic matriz which is irreducible and aperiodic is called
ergodic.

When the matrix is not irreducible, the classification of states introduced in Definition 1.3
becomes relevant.

Introduce the series of matrices V.= )" ( P". It is called the potential matrix and it has values
in RU {+o0}. It can be deduced from Equation (1.10) that this matrix is related with the number
of visits. Indeed, the element V;; is the average total number of visits in state j of the chain when
it starts in state i:

Vi; = lim E VY| X(0) =14 . (1.17)

n—oo

Theorem 1.7. Let {X(n),n € N} be a DTMC over the finite state space €. Let i € £. Then:
i/ If i is transient, then (my,); = O(p™) for some p < 1, and Vj; is finite;
ii/ If i is recurrent, then Vi; = +o00.

This result explains the terminology for the classification of states. Transient states are called
this way because the Markov chain goes through such states only a finite number of times with
probability one. On the other hand, the chain goes through a recurrent state: either an infinite
number of times (if the chain reaches the terminal class containing this state) or never (if the chain
reaches another terminal class).

Finally, we state the following result, which is implicit in Theorem 1.7 but deserves a separate
statement:

Corollary 1.8. Let {X(n),n € N} be a DTMC over a finite state space £, with transition matriz
P. If P is irreducible, then the Markov chain goes an infinite number of times through each state
1 € € with probability 1, whatever its initial distribution.
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1.1.4 Markov chains with infinite state spaces

When the state space € is countably infinite, definitions (1.1) and (1.2) are still valid. The ma-
trix/vector notations are also valid although the product of infinite matrices is not well defined
in general. This is because infinite sums may not converge. However, in the case of probability
matrices and probability vectors, the series which appear in products do converge, and the result is
well-defined.

The transition graph is defined as in the case of a finite state space. Although this is an infinite
graphs, the notions of irreducibility and (a)periodicity can be defined the same way.

The classification of states introduced in Definition 1.3 must be refined in the infinite case: the set
of transient states is divided into two subsets. Recall the definition of the values V;;: Equation (1.17)
in Section 1.1.3.2.

Definition 1.5 (Refined classification of states). A state of £ is called:
e transient if Vi; < oo,
o null recurrent if Vi; = oo and (P™); — 0
e positive recurrent (or simply: recurrent) if Vi; = oo and (P™);; # 0.

When the state space is finite, the case “null recurrent” is not possible. Theorem 1.7 and
Definition 1.3 give the same result as Definition 1.5.

The complication for infinite Markov chains is also that now the analysis of the graphs in
communication classes is not enough to classify the states (with Definition 1.3 and Theorem 1.7).
When there exist infinite terminal classes, the states of this class may be of any of the three types.

On the other hand, there is a “solidarity theorem” for states.

Theorem 1.9 (Solidarity). If P is irreducible, then all states have the same type (transient or null
recurrent or positive recurrent) and they all have the same period.

Therefore, in the case of irreducible chains (or for every terminal class of a reducible chain),
if one of the states is, say, positive recurrent, all states have this property. The qualifier “positive
recurrent” is then given to the Markov chain. Likewise for null recurrent and transient.

Finally, we have the following classification theorem.

Theorem 1.10 (Classification of irreducible infinite chains). Let P be an infinite, irreducible and
aperiodic stochastic matriz. Two possibilities only occur:

o cither the system of equations xP = x has at least one strictly positive solution x such that
Y ice Ti < 00.
Then there exists a vector of stationary probabilities 7 and m, — 7 for all initial distribution
wo. The chain is positive recurrent.

e or there exist no solution of xXP = x such that ), ¢ |x;| < oc.
In that case, ®, — 0 for all initial distribution wg. The chain is either null recurrent, or

transient.

The classical proof of these properties uses arguments of renewal theory: see for instance |5, 22|.
Methods from linear algebra that are used in the finite case do not work in general.
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Figure 1.1: Transition diagram of a discrete-time Markov chain

1.1.5 An example

Consider the stochastic matrix:

0.2 0.2 0.6
P = 0 05 05
1 0 O

The corresponding transition diagram is represented in Figure 1.1.5.
Assuming an initial distribution g = (1,0, 0) and applying Theorem 1.3, we obtain the following
sequence of transient probability vectors:

o = (17070)

™ (0.2, 0.2, 0.6)

T = (0.64, 0.14, 0.22)

w5 = (0.348, 0.198, 0.454)

Ty = (0.5236, 0.1686, 0.3078)

w00 =~ (0.45454545,0.18181818,0.36363636)
w01 =~ (0.45454545,0.18181818,0.36363636)
T = (5/11,2/11,4/11) .

The limit is obtained with Theorem 1.6. Indeed, the matrix is irreducible and aperiodic, so that
the limit exists, and is the unique solution of the system of equations: 7P = 7 and w1 = 1.

1.2 Continuous-time Markov chains

The concepts introduced for discrete-time Markov chains have correspondences for continuous-time
Markov chains.

Version 2.3, February 6, 2013
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1.2.1 Definitions

Continuous-time Markov chains are closely related to Ezponential distributions and Poisson pro-
cesses, which we introduce first.

The Exponential distribution

Definition 1.6 (Exponential distribution). X has an exponential distribution of parameter A > 0
(denoted as: X ~ Ezp(\)) if for x > 0:

Fx(z) = P(X<z2) = 1 — e,

and Fx(z) = 0 for x < 0. Equivalently, X has the density fx(z) = Xe™* for x > 0 and fx(x) =0
for x < 0.

The distribution function Fx(z) and the density fx(z) of the Exponential distribution are
illustrated in Figure 1.2.1.

1 T T T T 2 T

T T T
' 2.0%exp(-2.0%x)
09 - 1 1.8 1\ 1

0.8 - | 1.6 ~ |

0.7 - T 14 - 3
0.6 - b 12 - b
0.5~ | 1 |
04 b 0.8 - b
0.3 | 0.6 - |

02 | 04 |

0.1 { B 02 F i

0 L L L 0 L I L L
0 0.5 1 L5 2 2.5 3 0 0.5 1 15 2 25 3

Figure 1.2: Cumulative distribution function and density of the exponential random variable

The exponential distribution enjoys several important properties:

e the moments of X ~ Exp(\), are given by:
EX = A' EXF = gIaF
and in particular, var(X) = A7
e The exponential distribution is memoryless: Vs,t > 0,
PX>s+t]|X>s) = P(X >1).
e the failure rate of the exponential distribution is constant: for all ¢ > 0,

1
lim & P(X € [t,t+h[| X >1) = X. (1.18)
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e The family of exponential distributions is stable under minimization: if X; ~ Exp(\;), Xa ~
Exp(A2) and X; and Xo are independent: then

min{Xl,Xg} ~ EXp(Al + )\2) . (119)
Moreover: \
P(min{X1, Xo} = X;) = L 1.20
(mln{ 1, 2} Z) )\1 +)\2 ( )
These properties can be generalized to any number of variables.
The Poisson process Given a sequence of time instants Tp < T71 < ... < T, <Th41 < ..., one

defines the counting process of this sequence as:
oo
N(a,b) = #{na<T, <b} = > li<r,<p)
n=0

Definition 1.7 (Poisson process). A sequence of time instants (T,,;;n € N) is a Poisson process of
parameter X if the sequence of time increments (T 41 — Tyn;n € N) is a i.i.d. sequence of variables

Exzp()).
The Poisson process enjoys several important properties, among which:

e For all u:

A k
P(N(z,z+u) = k) = ( :') e M,
In words: the distribution of the number of time instants in any interval of length « is a

random variable with a Poisson distribution of parameter \.'

In particular, EN(x,z + u) = Au: A is called the arrival rate of the process.
o Forall ty <t3 <ty <t
P(X(t) = X(t2) =k | X(t3) = X(ta) =j) = P(X(h)—X(t2) =k) .
In words: the number of events of the Poisson process in two disjoint intervals are independent
random variables.
Continuous-time Markov chains

Definition 1.8 (Continuous-time Markov chain). Let £ be a set at most countable. A process
{X(t),t € R} is a homogeneous continuous time Markov chain (or: Markov process) if and only

if:

i/ (Markov property) For all n € N, every n + 2-uple of reals tyg < t1,< ... < t,, < typy1 and
every n + 2-uple (Jo, J1, - - -5 Jns Jn+1) of elements of E:

IPD(Xv(tn+1) = jn+1’X(tn) = Jny--- 7X(t0) = ]0) = P(X(tn—i-l) = jn—&-l‘X(tn) = ]n) ;

'One should not confuse the Poisson distribution and the Poisson process.
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it/ (homogeneity) For all reals s,t and u, and every pair (i,j) of €, independently of u we have:

P(X(t+u) = jIX(s +u) =) = BX(1) = jIX(s) =1) = Prs(i,5) .

We shall often use “CTMC” for Continuous-time Markov chain.

1.2.2 Transient probabilities and the Chapman-Kolmogorov equations
As in the discrete-time case, we are interested in the transition probabilities: for t € Ry, 4,5 € £,
pi(i,j) = P(X(t) =7 | X(0) =1), (1.21)
and in the state probabilities:
pii) = P(X() =) . (1.22)

As in the discrete-time case, one forms the matrices P; with the values p;(4, §), (4,7) € £2, and the
vectors 7r; with the numbers p:(7).

From the Markov property and the homogeneity property, one deduces that for all pair of states
i and j, the following result.

Theorem 1.11 (Chapman-Kolmogorov equations). For all i,j € £ and t,s € Ry, the transition
probabilities satisfy the following equations:

pt+s(i7j) = Z pt(iak) ps(kvj) ’ (1'23)
ke&

or, in algebraic form:
P, — PP, (1.24)
These are known as the Chapman-Kolmogorov equations.

These equations are not very useful to compute the numbers p;(7, 7). We look for more explicit
formulas, similar to that of Theorem 1.1 in the discrete-time case.
If the process {X(t)} is “regular” enough, then there exists a matrix Q defined as:
P,—1

Q - Pt (125)

Definition 1.9 (Infinitesimal generator). The matriz Q is called the infinitesimal generator, or
more commonly, the generator, of the Markov chain.

This essential matrix has several important properties:
Theorem 1.12. Any infinitesimal generator Q has the following properties:
i) for alli # j, Qij >0, and for all i, Qi < 0;

Version 2.3, February 6, 2013



Advanced Markov Modeling — Chapter 1 13

i) for alli € E:
Qi = Qi+ Qy =0. (1.26)
J€E i#j
In matriz form, this is written as: Q1 = 0.

iii) for all t,
dPy
t
The definition above of the infinitesimal generator does not give intuitive interpretations. Those
will be the topic of Chapter 3 (Section 3.2 in particular).
The transient probabilities can be expressed using the infinitesimal generator. Recall the defi-
nition of the matrix exponential in Appendix A.4.

Theorem 1.13. Let {X(t);t € R} be a homogeneous, continuous-time Markov chain over a finite
state space &£, and with generator Q. Then:

P, = (1.28)
and
m = woP; = me!Q (1.29)
where T is the initial distribution.

This result is the analogous of Theorem 1.3 in the discrete-time case, and it makes it possible,
in principle, to compute numerically the transient probabilities. This is the topic of Chapter 2.

According to this theorem, the matrix knowledge of the matrix Q is enough to determine the
complete family of matrices {Py;t € R}. This is the reason for the name “generator” attached to it.
A continuous-time Markov chain is characterized by its generator.

As in the discrete-time case, we associate a graph G to every infinitesimal generator Q: this
graph is called the transition diagram. The convention is not to represent the “loop” arcs going
from state i to state i. An example is shown in Section 1.1.5.

Note that when the state space £ is countably infinite, it is not straight forward to generalize
these matrix formulas. In the discrete-time case, this is possible because matrices and vectors
have only positive and bounded entries. Here, the generator matrix QQ has negative entries in the
diagonal, and possibly unbounded ones off the diagonal. Nevertheless, the formula €' is often used
as the “formal” solution to the differential equation (1.27). This does not provide a practical way
to compute probabilities.

1.2.3 Asymptotic behavior

Let us turn to the study of the behavior of the matrix function Py or the vector function 7; when
t — 0.
In the case where & is finite, there are results similar to Theorems 1.4 and 1.6.
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Theorem 1.14 (Existence of a stationary distribution). Assume Q is an irreducible infinitesimal
generator. Then there exists a unique probability vector w such that mQ = 0 and w1l = 1. The
vector 7 s strictly positive.

This vector is called the vector of stationary probabilities of the Markov chain.

This theorem states implicitly the property that Q has 0 as an eigenvalue, with 7 as a left-
eigenvector. We knew already from Theorem 1.12 i7) that 0 is an eigenvalue, with 1 as a right-
eigenvector.

Theorem 1.15. Let Q be an irreducible infinitesimal generator. Let 7w be its unique stationary
probability vector. Then:
lim eQ = 1.7 . (1.30)

t—o0

As a consequence, for any probability vector wg, we have:
limm = = . (1.31)
t—o0

The convergence is geometric: for any vector norm,
ey —wll = O(e) (1.32)

for all real number ¢ such that R(A2) < ¢ < 0, where Ao is the eigenvalue of Q with the largest real
part after 0.

In the case where £ is countably infinite, there is a result similar to Theorem 1.10:

Theorem 1.16. Let Q be an infinite, irreducible infinitesimal generator. Two possibilities exactly
occur:

o cither the linear system of equations xQ = 0 admits a positive solution x such that ), o x; <
00.
Then it admits a unique stationary probability vector m, and 7, — 7 for all initial distribution
0.

e or there does not exist solutions of xQ = 0 which are such that ), ¢ |x;] < 00.
In that case, w¢ — 0 for all initial distribution .

In summary, there are many similarities between DTMC and CTMC, with the matrices P and Q

playing a central role. There are differences too: the convergence results for CTMC do not involve
any aperiodicity condition.

1.2.4 Uniformization and other embeddings

This section is devoted to the links that can be established between a CTMC and some DTMC.
The general idea is to “observe” the CTMC at particular time instants. This results in a discrete-
time process, defined on the same state space. When these intants are chosen properly, the resulting
process is a DTMC. The transition probabilities of this Markov chain depend on the way observation
points have been chosen: to one CTMC correspond possibly many embedded DTMCs. There are
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relationships between the transient and stationary distributions of the original CTMC and the
embedded DTMCs, which is useful for proofs, computations and simulations.

The converse transformation of a DTMC into continuous-time processes is also possible: this
gives rise to semi-Markov processes. Their study is outside the scope of the present document.

1.2.4.1 TUniformization

One useful connection between Markov chains in continuous time and in discrete time is through
the process of uniformization. Roughly speaking, uniformizing a CTMC is constructing a coupling
between this chain and the combination of a DTMC and a Poisson process.

As a preparation, consider the following Lemma. The state space £ is at most countable.

Lemma 1.17. Let {X (t),t € R} be a CTMC of generator Q, and let v be a number such that

V> g = sup{|Qil} - (1.33)
1
Then, consider the matriz P:
1
P=1+-Q.
v

This matriz P:
i) s stochastic;
i1) s irreducible, if and only if Q is irreducible;
iii) s irreducible and aperiodic (that is: ergodic), if Q is irreducible and in addition v > q,.

Proof. The off-diagonal elements of P are: Pj; = @Q;;/v. They are therefore nonnegative. The
diagonal elements are P;; = 1 + Q;;/v, and by definition of ¢,,, these numbers are nonnegative as
well. Finally, we have: P1 =11 + %Ql =1 because Q1 = 0. This proves 1).
To see point i), simply observe that the transition diagrams associated to Q and P have the
same arcs, except for the possible “loops” (i,4) which do not affect the irreducibility property.
Finally, if v > g, then there exists some state ¢ such that P; > 0, and this implies aperiodicity.
O

Since every stochastic matrix is the transition matrix of a DTMC, we can state the definition.

Definition 1.10 (Uniformized Markov Chain). Consider a CTMC with generator Q and v > ¢,
as in Lemma 1.17. Any DTMC with transition matriz P =1+ %Q 1s called a uniformized chain
of the CTMC.

We should actually indicate the dependence of the matrix P on the value of v, but as we see
below, the properties of P turn out to be independent from this value.

The stochastic relationship between the two processes is made explicit in the following coupling
theorem.
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Theorem 1.18. Let {T,,,n € N} be a Poisson process with parameter v, and {Y (n),n € N} be a
DTMC with transition matriz P. Consider the process {X (t),t € R} defined as:

X(t) = Y(n) T, <t<Tht1 .
Then this process is a CTMC with generator Q.

Proof. Let us compute P(t);; for the process X (t). Conditioning on the number of events of the
Poisson process {7}, } in the interval [0, t[, we get:

e "' P(X(t) =7 | X(0) =4,k jumps of Y in [0,1))

POX(H) = jIX(0)=i) = 3.

k=0
- )k, . )
= Y e RY(R) =4 | X(0) =)
k=0 ’
N Y L
= > k'> e (PR .
k=0 ’
Therefore:
o0 (]jt)k _ oo (I/tP)k . , » b
P(t)zzk!eth:Z o eVt — Pt vl p(P-It
k=0 k=0
So we indeed have P(t) = @t -

In other words: the CTMC {X(¢)} can be seen as changing of state at each instant T'(n) of a
Poisson process with intensity v, the transition matrix being P. Since in general P;; # 0, it may be
actually that the process does not change of state.

The construction of Definition 1.10 is always possible when £ is finite, and actually, many
constructions are possible since many values of v are possible. If £ is infinite, the construction is
possible only if g, < +00. Such CTMC are called uniformizable.

We conclude this paragraph with the important property. Recall Theorems 1.4 and 1.14 about
stationary distributions.

Theorem 1.19. Consider the infinitesimal generator Q of some CTMC over a finite state space
E. Let P be the If Q is irreducible, then its unique stationary probability vector 7 is also the unique
stationary probability vector of P.

1.2.4.2 Embedding of a DTMC into a CTMC

Uniformization is a particular case of an embedded Markov chain.?
Consider a continuous-time process {X (¢);t € R}, and assume that {T'(n);n € N} is an increas-
ing sequence of time instants. It is always possible to define the embedded process:

Y(n) = X(T(n)).

2This topic is not part of the “basic” theory, but is mentioned here for completeness.
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\

Figure 1.3: Transition diagram of a continuous-time Markov chain

This is a discrete-time process.

Under specific assumptions on the sequence {T'(n);n € N}, it turns out that {Y(n);n € N} is a
CTMC. This chain is then called embedded into the chain X ().

Classical examples of this construction are:

e uniformized chains, as in the previous paragraph;
e the chain embedded at periodic instants T'(n) = n x Tp: its transition matrix is: P = e70Q;

e the chain embedded at the events of some independent Poisson process of rate A: its transition
matrix is P = (I — $Q)~;

e the chain embedded at jump times of X (¢);
e the chain embedded at times when X (¢) enters some sub-space £ C €.

In general, the embedded discrete-time Markov chains do not have the same properties (irre-
ducibility, stationary distributions) as the CTMC in which they are embedded. The properties of
uniformized chains (Theorem 1.19) is very particular in that respect.

1.2.5 An example
Consider the infinitesimal generator:

—03 03 0
Q = 0.6 —12 06
03 06 —0.9

The corresponding transition diagram is represented in Figure 1.3, together with a possible evolution
of the chain over time. It will be explained in Section 3.2.1 that the diagonal elements of Q are, up
to the sign, the inverse of the average sojourn time in the respective states. Accordingly, the chain
tends to stay longer periods in state 1 than it does in states 2 or 3.

If one chooses the value v = 1.2, the uniformized DTMC has the following transition matrix:

0.7 025 0
P = 0.5 0 0.5
0.25 0.5 0.25
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If one chooses the value v = 10, the uniformized DTMC has the following transition matrix:

097 003 O
P = 0.06 0.88 0.06
0.03 0.06 0.91

In accordance with Theorem 1.19, both these matrices have the unique stationary probability vector

. (332
- \13713713) °

It can be checked that this is also the unique stationary probability vector of the matrix Q.
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