
Appendix B

Algorithms

This appendix is about algorithms.

B.1 Matrix Algorithms

When describing algorithms for manipulating matrices, we will use the notation x[i] for the i-th
element of a vector (row or column), and A[i, j] for the entry at the i-th row and the j-th column
of matrix A.

It is important to understand that, depending on the programming language and the sit-
uation, obtaining the value A[i, j] may just correspond to getting a value in the memory, or
executing a more or less complex function of A, i and j. In particular, the �eld of �values�
contained in the matrices is not speci�ed. In most cases, values are real or complex numbers.
But in some cases, they may be polynomials, functions or even... matrices.

When evaluating the algorithmic complexity, we will always consider that obtaining a �value�,
multiplying or adding two values are �elementary� operations.

The indices of elements of vectors, matrices or tables will be assumed to start from 1, even
though most programming languages of today have indices start from 0.

Final preliminary observation: we shall not make exagerate attempts at saving bits of mem-
ory or eliminating instructions here and there. We prefer that algorithms be clear, at the
possible (negligible) cost of memory or time. Modern compilers perform automatically many
optimizations on memory reuse anyway.

B.1.1 Matrix/Matrix multiplication

The �rst generic algorithm is for computing the matrix product: C = A×B. The matrices may
be of any compatible dimensions: if A ∈Mn×m and B ∈Mm×p, then C ∈Mn×p.

The algorithmic complexity of this algorithm is nmp multiplications and additions. In short:
O(nmp). In particular, if all matrices are square n× n, the complexity is O(n3).

B.1.2 Vector/Matrix multiplication

Algorithms performing vector/matrix multiplications may of course be adapted to matrix/vector
multiplication by transposition.

73

Advanced Markov Modeling � Chapter B 74

Algorithm 13: Matrix multiplication

Data: Two matrices A ∈Mn×m and B ∈Mm×p
Result: A matrix C ∈Mn×p such that C = AB
begin

for i from 1 to n do
for j from 1 to p do

val← 0
for k from 1 to m do

val← val +A[i, k]×B[k, j]

C[i, j]← val

We present two algorithms. The �rst one is the special case of Algorithm 13, where the �rst
matrix has only one row and the second one is square.

Algorithm 14: Vector/Full Matrix multiplication

Data: One row vector x ∈M1×n and one square matrix A ∈Mn×n
Result: A vector y ∈M1×n such that y = xA
begin

for i from 1 to n do
val← 0
for k from 1 to n do

val← val + x[k]×A[k, i]

y[i]← val

The complexity of this algorithm is O(n2).

The second algorithm takes advantage of the fact that, in practice, matrices may contain a
large number of zeroes. Such matrices are called sparse.

In that case, it is possibly advantageous to store matrices in a special data structure. We
describe this structure as adapted to vector/matrix multiplications. Remember that things must
be transposed for matrix/vector multiplications.

For every column i of matrix A, de�ne:

• nb[i] as the number of non-zero elements in the column;

• idx[i, j] as the index of the j-th non-zero element in the column; this is a list/array of
nb[i] integer numbers;

• val[i, j] as the value of the j-th non-zero element in the column.

The amount of memory needed to store a matrix this way is of order m integer numbers and
values, where m is the number of non-zero entries in the matrix. This is potentially a large
improvement with respect to the storage of full matrices which requires O(n2) values.

Multiplication is performed with Algorithm 15. The complexity of this algorithm is O(m).
Again, this is possibly a large improvement with respect to the complexity of Algorithm 14.

Version 2.1, February 2, 2011

Advanced Markov Modeling � Chapter B 75

Algorithm 15: Vector/Sparse Matrix multiplication

Data: One row vector x ∈M1×n and one square matrix A ∈Mn×n, stored in sparse
form

Result: A vector y ∈M1×n such that y = xA
begin

for i from 1 to n do
val← 0
for j from 1 to nb[i] do

k ← idx[i, j]
val← val + x[k]×A[k, i]

y[i]← val

B.2 Random Numbers

When simulating Markov chains and other random processes with a computer, it is necessary
to have the computer produce random numbers.

Programming Languages such as C, C++, Java or Maple all have basic functions to generate
random numbers. Since these are produced by a deterministic procedure, they are called pseudo-
random.

There exist several methods to produce a sequence of pseudo-random numbers. Their de-
tailed description is beyond the scope of this document. Standard references for this are [14, 3].

The starting point is always a procedure which provides pseudo-random numbers uniformly
distributed in the intervall [0, 1]. C'est assez facile dans la plupart des langages de programma-
tion. In the C and C++ languages, the function random(). In the Java language, one uses the
function Math.random() which returns a double value with a positive sign, greater than or equal
to 0.0 and less than 1.0.

B.2.1 Exponentially distributed random numbers

The simulation of CTMC involves random variables with an exponential distribution. These
can be generated using Algorithm 16.

Algorithm 16: Generation of exponentially distributed random numbers

Data: A parameter λ > 0
Result: A pseudo-random number with distribution ∼ Exp(λ)

return −Unif([0, 1])

λ

B.2.2 The naive algorithm for General Discrete Distributions

A general �nite discrete distribution is described by a sequence of nonnegative numbers p1, . . . , pn
such that p1 + . . . + pn = 1 (the probabilities), together with a sequence of values v1, . . . , vn.

Version 2.1, February 2, 2011

Advanced Markov Modeling � Chapter B 76

They represent the distribution of a random variable X such that for all i = 1..n,

P(X = vi) = pi . (B.1)

The values vi need not be distinct, although in this case it is more e�cient to �group� the
probabilities and remove duplicates in the list of values.

The following algorithm generates samples of this distribution. It is quite intuitive and
straightforward to program: we call it the �naive� algorithm. Indeed, its performance can be
quite bad, and Walker's method, to be described in Section B.2.3, is much better.

Algorithm 17: The naive algorithm for sampling from a discrete distribution

Data: An array of n probabilities pi and values vi
Result: A random number equal to v[k] with probability pk
begin

U ← Unif([0, 1])
j ← 1
while U > p[j] do

U ← U − p[j]
j ← j + 1

return v[j]

The principal trouble with this algorithm is that the number of loops needed to get the result
is itself a random value. In the worst case, it is n. In average, it is:

∑
i ipi.

B.2.3 Walker's Algorithm for General Discrete Distributions

Walker's method, or the method of aliases, is a technique for generating random numbers ac-
cording to a discrete distribution, in constant time. This requires a special data structure, and
a pre-processing of the distribution, which we describe next. A good reference for this algorithm
is [14, �3.4.1].

The starting point is a �nite discrete distribution, as described in Section B.2.2:

P(X = vi) = pi . (B.2)

The purpose of the method is to construct a sequence of numbers P [j] ∈ [0, 1], j = 1, . . . , n
and of aliases Y [j], j = 1, . . . , n such that Algorithm 19 below returns a random value with the
distribution in (B.2).

The algorithm which constructs the arrays P and Y is Algorithm 18. The algorithm uses
a function SortList, which acts on lists of the form [(p1, a1), . . . , (pk, ak)], and sorts them in
increasing order of their �rst element. The algorithmic complexity of this algorithm is of order
O(k2). Indeed, sorting initially the list of k elements can be performed in O(k log(k)) operations
and sorting the subsequent lists can be done in O(k) because the lists are already partially
sorted. Since there are k loops, the result is O(k2).

As an illustration, this algorithm is executed on the Binomial distribution characterized by
the k = 5 pairs of probabilities and values:

(
1

16
, A), (

4

16
, B), (

6

16
, C), (

4

16
, D), (

1

16
, E).

Version 2.1, February 2, 2011

Advanced Markov Modeling � Chapter B 77

Algorithm 18: Construction of the alias tables for Walker's method

Data: An array of n probabilities pi and values vi
Result: Two arrays: the levels P and the aliases Y
begin

set q ← the list of couples (pi, i), i = 1..n
for k from n to 1 do

q ← SortList(q)
// The result is a sequence (q1, a1), . . . , (qk, ak)
P[a1]← kq1

Y[a1]← vak
qk ← qk − (1/k − q1)
remove the �rst element of the list q

For each of the 5 loops, the table below displays the value of the list q just after the sorting
instruction, and at the end of the loop. There, the �rst element is removed but shown as a �−�,
and the last element is modi�ed. When showing the pairs (qj , aj), we have preferred to show the
value v[aj] instead of the index aj . The values of the tables P and Y are shown as well. Observe
that the last element in Y at the end of the algorithm is irrelevant. The graphical interpretation
of the values P and the aliases is given in FigureB.2.3. Algorithm 19 consists in picking a point
at random, uniformly in the larger rectangle, and returning the label corresponding to the area.

Step Value of q Table P Table Y

1
[
(1

16 , A), (1
16 , E), (4

16 , B), (4
16 , D), (6

16 , C)
][

− , (1
16 , E), (4

16 , B), (4
16 , D), (19

80 , C)
]

[5
16 ,−,−,−,−] [C,−,−,−,−]

2
[
(1

16 , E), (19
80 , C), (4

16 , B), (4
16 , D)

][
− , (19

80 , C), (4
16 , B), (9

80 , D),
]

[5
16 ,

5
16 ,−,−,−] [C,D,−,−,−]

3
[
(9

80 , D), (19
80 , C), (4

16 , B),
][

− , (19
80 , D), (13

80 , C)
]

[5
16 ,

5
16 ,

9
16 ,−,−] [C,D,B,−,−]

4
[
(13

80 , C), (19
80 , D)

][
− , (19

80 , D)
]

[5
16 ,

5
16 ,

9
16 ,

13
16 ,−] [C,D,B,C,−]

5
[
(1

5 , C)
]

[−] [5
16 ,

5
16 ,

9
16 ,

13
16 , 1] [C,D,B,C,−]

B.2.4 The rejection method

The rejection method is used to sample uniformly an object in a set A, if there exists a method
to sample uniformly in a larger set B.

If Unif(B) is a given procedure, then Unif(A) is obtained as Algorithm 20. In order for this
algorithm to work, it is necessary to have a method for sampling uniformly in B (function rep-
resented as Unif(B)) and a method for deciding if the object sampled belongs to A. Depending
on the situation, the second method may be more costly than the �rst one.

The algorithmic complexity of this method is interesting to study. Each time it is called,
this algorithm will perform a number of loops which is a random variable L. The probability
that L = ` is the probability that the test fails ` − 1 times and succeeds at the last attempt.

Version 2.1, February 2, 2011

Advanced Markov Modeling � Chapter B 78

A

B

C

D

E

D

B

C

C

Figure B.1: Illustration of the alias table on the binomial example

Algorithm 19: Sampling of a discrete distribution using Walker's method

Data: One array of n values v[i], i = 1..n
Data: Two arrays of n numbers P[i] and aliases Y[i], obtained from v and some list of

probabilities pk using Algorithm 18
Result: A random number equal to v[k] with probability pk
begin

V ← Unif([0, 1])
J ← Unif({1, . . . , n})
if V < P [J] then

res← vJ
else

res← Y [j]

return res

Algorithm 20: Function Unif(A)
Result: A sample of the uniform distribution on A
begin

repeat
x← Unif(B)

until x 6∈ A;
return x

Version 2.1, February 2, 2011

Advanced Markov Modeling � Chapter B 79

The probability that the test succeeds is

σ =
#A
#B

,

and the probability that it fails is 1− σ. Consequently, and since the di�erent samplings using
Unif(B) are supposed to be independent, the probability of exactly ` loops is: (1−σ)`−1σ. This
is a geometric distribution on {1, 2, . . .}. The average number of loops is then 1/σ = #B/#A.
If this ratio is large, the algorithm may look for a long time for a needle in a haystack.

Version 2.1, February 2, 2011

