Appendix A

Complements on Matrix Algebra

The set of n x m matrices with entries in the field F is denoted as M, x,(F). A square matrix
A € Myxn(C) is called non-singular if A~! exists, or equivalently, if det(A) # 0. The identity
matrix of M, will be denoted as I. Its dimension will normally be clear from the context.

The transposition operation consists in inverting rows and columns of a matrix. It is denoted
with the superscript “7”. If A € My xm, then AT € Mo, xn.

We shall use two sort of “vectors™ the standard column vectors in M,,«1 and the row vectors
in Myxn. The transpose of a row vector is a column vector, and vice versa. The default for a vector
is to be column, but the good practice is to specify each time which sort of vector we are considering.

A row vector which is formed of positive numbers which add up to 1 is called a probability vec-
tor. In algebraic notation, the equation w1l = 1 expresses the fact that the sum of the components
of vector = is 1.

A.1 Eigenvalues, spectrum and Jordan decomposition

Let A € Myxn(C) be a square matrix with complex entries. The complex number A is an eigen-
value of A if there exists a vector  # 0 such that Az = Az. Such a vector is called a right-
eigenvector associated to eigenvalue . For each eigenvalue, there are also left-eigenvectors.

The set of all eigenvalues is finite and called the spectrum of the matrix. We shall denote it
as sp(A). The spectral radius of A is defined as:

p(A) = max{[Al | A€ sp(4) }.
For several results, it is useful do define the value:
p2(A) = max{|A[ | A € sp(A) and [A| # p(A) } .

With some abuse of terminology, this is called the second largest eigenvalue (although py(A) is
not an eigenvalue of A in general).
The eigenvalues of A are the roots of the characteristic polynomial:

p

xa(@) = det(A—al) = [ —2)™ . (A1)

=1
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Accordingly, the different eigenvalues are denoted as: A1, ..., A,, with algebraic multiplicities a1, ..., ap.
Since the characteristic polynomial if of degree n, we have: >  a; = n.
If a; = 1, the eigenvalue ); is called simple.

Every square matrix A € My x,(C) admits a Jordan decomposition: there exists a non-
singular matrix S such that:

A=S8J8! (A.2)

where

Ju, (,ul)
Jl/2 (:LLZ)

JVk (sz)

Here, the square matrices Jy, (1), are called Jordan blocks and are of the form:

and the p,,, are eigenvalues of A (they are one of the ;). The Jordan matrix J in the decomposition
is unique up to permutation of the Jordan blocks. The transformation matrix S is not unique.
There may be several Jordan blocks for one particular eigenvalue A;: this is the case for the
identity matrix for instance.
When all Jordan blocks are of size m = 1, the matrix is called diagonalizable. In that case,
the i-th row of matrix S is a left-eigenvector for the i-th eigenvalue, whereas the i-th column of
matrix S™! is a right-eigenvector for that eigenvalue.

A.2 Matrices and graphs

Any matrix can be associated to a directed graph, and properties of this graph are useful to under-
stand that of the matrix.

A valued directed graph is a triple G = (V,€, W) such that £ CVxVand W: € — C\ {0}.

The set V is any discrete set, and the elements are called vertices. £ is the set of edges connecting
the vertices. W is a function from the set of edges to C\ {0}: to each edge is associated a value,
called “weight” in the following.

To each valued graph, it is possible to associate a square matrix with entries in C and dimension
N = |V|. Given an ordering of the vertices in V: V = {v(1),...,v(N)}, let A;; = W(v(i),v(j)) if
(1,7) € € and A; ; = 0 otherwise.

Conversely, to any matrix A € Myxn(C), one associates naturally a valued directed graph

glAJ:
e The vertices in V are {1,2,..., N},
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e The edge (i,7) is in € if and only if A; ; # 0.
e This edge has then the weight W(i,j) = A; ;.

A path in a graph G is a nonempty sequence of vertices v = (i1,...,14,) such that (i;,i;41) € £
for j € {1,...,p—1}. The first edge 7; is the origin of the path, the last one is the end of the path.
The convention here is that the length of the path, noted ||, is the number of edges that it contains
(not the number of vertices), that is, p — 1. A path with 0 length contains only one vertex.

For a valued graph, we associate to each path v a (multiplicative) weight w(~y) as follows:

n—1
v=(i1,....in) = wly) = [] W(;.ij). (A.3)
j=1

By convention, w(y) = 1 if |y] = 0. By definition of the weighted graph, the weight of a path is
never 0. The definition and the convention are consistent with the operation of appending paths:
if 1 = (41,...,4p) and v2 = (J1,...,Jq) are two paths such that i, = ji, then one defines the path
v =1,y ipy J2, -5 Jg)- Then |y = [ 4 [r2] and w(v) = w(y)w(72).

Some important structural properties of the matrix can be defined from properties of this graph.
We recall or define first the graph properties. These graphs do not depend on the weight of the
edges.

Definition A.1. A (strongly) connected component of a graph G is a set C of vertices such that
there exists a path in the graph between any two pairs of vertices.

A graph with a single connected component is called strongly connected.

The periodicity of a vertex i is the number p(i) equal to the l.c.d. (least common divisor) of
the lengths of all cycles in G[A] which go through i. All vertices in a connected component have the
same periodicity.

When a graph is strongly connected, and the periodicity of any of its vertices is p, the graph is
called periodic with period p.

We can now state structural properties of matrices. Again, these properties do not depend on
the values of the weights, just on the edges that are present.

Definition A.2. Let A € M, x, be a square matriz, and G[A] be its associated weighted graph.
The matriz is said to be:

irreducible if the graph G is strongly connected;
reducible if it is not irreducible
periodic with period d if the graph is periodic with period d.

aperiodic if the graph is periodic with period d = 1.

A.3 Powers of matrices

This section reviews results and methods for computing powers of matrices. An important theoret-
ical result is that when the powers are large, they depend essentially on the spectral radius of the
matrix.
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A.3.1 Powers and paths
The first important observation is that powers of matrices and paths in graphs are closely related.

Theorem A.1. Let A be a square matriz, G the associated weighted graph, and I'™(i,j) be the set
of paths of length n in G which go from i to j. The following identity holds:

(A = Y w(y) = > Wiy, ig)W(iz, i3) ... Win_1,in) - (A.4)
’yEFn(i,j) (ilv"'vi’n)ern(iaj)

Proof. Expanding the formula for the power of matrices, one obtains:

(Aij = Y. AnisAiig - Aiy i -
il,i27'~~7in
But the only terms that are not 0 in this sum correspond precisely to sequences (i1, ...,4,) which
are paths of G. The result follows from the definition of the weight of paths (A.3). O

Observe again the consistency of the conventions made on the length of paths and their weights.
If n = 0 for instance, the I'(i, j) of paths with length 0 going from i to j is: a/ empty if i # j, s0
that A?J = 0; b/ reduced to (4,%) if i = j, so that A?,i = 1. We find the expected identity: A® = L.
The operation of appending paths works well with the matrix identity: APT? = APAY.

A.3.2 Powers and Jordan decomposition

From the Jordan decomposition (A.2), one has:
A" = (8JS™hHr = sjrsTt. (A.5)

Given the form of J, this is:

St (A.6)
.

Computing the power of a matrix is reduced to computing the power of a Jordan block. The latter
are of the form:

k (i
(s = (5 ) 09 1155
that is: i
Hk’ kuk_l (n—l)”k_n-H
k ..
Int = | O . (A7)
.. k,lukfl
0 uk

The next results provides the exact value of A" in function of n and the eigenvalues of A. For
this reason, this type of result is called a spectral expansion.
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Theorem A.2 (Spectral Expansion). i/ Let A be a matriz with distinct eigenvalues A\, ..., Ay,
with respective multiplicities aq, ..., 0p. Then there exist p matrices Bi(n, \;), 1 < i < p,
such that each entry in B; is a polynomial in \; with degree at most n, which coefficients are
monomials in n of degree at most a; — 1, and such that:

p
A" = Y Bi(n, i) - (A8)
i=1
i/ In the case where \; is a simple eigenvalue, then B;(n,\;) = A!'B;, where B; is constant

and of rank 1: there exist a row vector v; and a column vector w; such that v;.w; = 1 and
Bi = W;.V;.

Proof. Consider the Jordan decomposition (A.2) and the representation of powers (A.6). The result
is obtained defining:

Bi(n,\) = Y S Jur (pan)" st

Pm=\;
0

The matrices B; have the required properties since S and S~! are constant, and given the expression
(A.7) for the powers of a Jordan block. This proves i/.

When J; is simple, the corresponding Jordan block is of size 1. Then ii/ follows by defining for
v; the corresponding column of S, and w; the corresponding row of S~!. The scalar product of
these two vectors is 1 because of the identity S!S = I. This proves ii/. 0

A.3.3 Asymptotic behavior

This section contains results about the growth of the coefficients of the matrix A™ when n — co.
To express quantitatively the “size” of a matrix, we use the norm: for A € Muy«n,

p(A) = max{|A4;], 1 <4,j <N}.

Accordingly, if we write that u(A"™) = O(f(n)), we express the fact that all coefficients of the matrix
A" are bounded by some constant times f(n) as n — co.

Lemma A.3. Let A € Myxn(C). For alln € N and € > 0, we have:
u(A") = O((p(A) +e)") , (A.9)
where p(A) is the spectral radius of A.
Introducing more properties of the matrix A, we have the stronger result.

Theorem A.4. Let A € Myxn(Ry) be a real, positive and irreducible matriz. Then:
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i/ n(A") = O(p(A)").
it/ There exist a row vector v and a column vector w which are strictly positive, such that v.w = 1
and: AR
1 —wv | =O(p"
<p(A)” ) )
for all ¢ such that p2(A)/p(A) < ¢ < 1.

A.4 The exponential of matrices

Let A € M5, (C) be a square matrix with complex coefficients. The exponential of A is defined

as:
00

1 n
eA = ZOn!A . (A.10)

This series converges for any matrix: this is a consequence of Lemma A.3.
The following properties are used in the course:

e If D = diag(dy,...,dy,) is a diagonal matrix, then D = diag(e®,. .. em).

In particular, for any x € C,

eII = ¢e"1.

0_1.

In particular again: e

A

e The matrices A and e commute: Ae = ¢AA. So do p(A) and A for every polynomial

p(-).

If A and B are square matrices such that AB = BA (commuting matrices), then:

A+B A B

e =

_6B€A.

A.5 Positive matrices and the Perron-Frobenius theorem

Positive matrices enjoy a very particular property: their spectral radius is in fact one of the eigen-
values. This result and related ones are grouped in the following theorem.

Theorem A.5 (Perron-Frobenius). Let A € Mpyxn(Ry) be a square matriz, positive and irre-
ducible. Then there exists one eigenvalue of A, say r, with the following properties:

a/ r>0;
b/ there are a left-eigenvector and a right-eigenvector for r which are strictly positive;
¢/ for all eigenvalue X of A, |\ < r;

d/ The eigenspace associated with r is of dimension 1;
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e/ for all matriz B such that 0 < B < A, and all eigenvalue B of B, || < r, and the equality
|B| = r implies that B = A;

[/ T is a simple root of x A, the characteristic polynomial of A.

g/ if A is periodic of period d, then the eigenvalues of A with modulus r are ezactly the w’,
0<j<d withw=e*m/d,

Another way of presenting d/ and f/ is to say that the eigenvalue r is simple, and its Jordan
block is of dimension 1.
The eigenvalue r is called the Perron-Frobenius eigenvalue of A, or the principal eigenvalue.

A.6 Vector norms and Matrix norms

Let V' be a vector space. A wvector norm is a function || - || : V' — R4 such that: a) [|z|| = 0 if
and only if x = 0; b) |lcx|| = |¢|. ||z|| for every scalar ¢; ¢) ||z + y|| < ||z|| + ||y|| (the triangular
inequality).

Norms and distances are closely related: if || - || is a norm, then d(x,y) = ||z — y|| is a distance

for elements of V.
Some distances on V = R" are more often used in practice:

lzlly, = >, |l the “sum norm” or “¢; norm”;
lz|l, = (Zi(a?i)2)1/2 the Euclidian norm;
|zl = max; |z the “sup norm” or “max norm” or “/,, norm”.
A matriz norm? is a function ||-||: Mpxm — Ry such that a) ||A|| = 0 if and only if A = 0;

b) |[cAl| = |¢|. ||A]| for every scalar ¢; ¢) ||[A+B| < ||A|| + ||B]| (the triangular inequality); d)
|AB| < [|A|||B]|. This last requirement makes it different than a norm on M, ,, considered
as a vector space. In addition, a matrix norm is said to be compatible with a vector norm if:
|Az| < ||A]|lz||. Note that compatibility with row products yA and compatibility with column
products Ax is not the same.

Usual examples of matrix norms are:

1Al = 225144l the “sum norm” or “¢; norm”,
llAlli = max; ), |A;] the “maximum column sum” norm, compatible with the vector norm
||-l; for row product, and the vector norm |||, for column products
[[Alllc = max; >, [A;;]  the “maximum row sum” norm, compatible with the vector norm

|||, for row product, and the vector norm ||-||; for column products

'The terminology “matrix norm” is taken from[10]. In the book [9], the term “consistent matrix norm” is used.
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