Advanced Markov Modeling 2015

Lecture 6: Illustrations and Examples / 1

Monte Carlo simulation of lasers
(A work with J. Arnaud and L. Chusseau, IES)

F. Philippe A. Jean-Marie

LIRMM

11 Feb. 2015
Outline

Lasers

Some theoretic points
 Einstein’s prescription
 Boltzmann’s distribution

Modelization
 Quick introduction
 Lasers as Markov chains

Simulation

Goals
Basics
 Algorithm
 Implementation

Practical issues
Some solutions
Outline

Lasers

Some theoretic points
 Einstein’s prescription
 Boltzmann’s distribution

Modelization
 Quick introduction
 Lasers as Markov chains

Simulation
 Goals
 Basics
 Algorithm
 Implementation
 Practical issues
 Some solutions
A birth-death process

Planck
Energy exchanges between matter (particles) and light (wave, frequency ω): only by integer multiples of energy quantum $\delta = \hbar \omega$

Emission (absorption) of a photon corresponds to a particle going down (up) between two energy levels $\varepsilon, \varepsilon + \delta$.
A birth-death process

Planck Energy exchanges between matter (particles) and light (wave, frequency ω): only by integer multiples of energy quantum $\delta = \hbar \omega$

Emission (absorption) of a photon corresponds to a particle going down (up) between two energy levels ε, $\varepsilon + \delta$.

Einstein Time evolution of the photon number $m(t)$ is a birth-death process, jump probabilities in interval $[t, t + dt]$:

$$\pi(m \to m - 1) \propto n_{\delta \uparrow} m,$$
$$\pi(m \to m + 1) \propto n_{\delta \downarrow} (m + 1).$$

At time t: $n_{\delta \uparrow}(t)$ is the number of particles that may jump from a level ε to level $\varepsilon + \delta$.
Thermal bath

Canonical ensemble: System in contact with a (large) heat bath, temperature T, define $q = e^{-k_B/T} \in (0, 1)$. Energy exchanges only (not particles).

Boltzmann The probability for the system to have energy U at equilibrium is $\propto q^U$.
Thermal bath

Canonical ensemble: System in contact with a (large) heat bath, temperature T, define $q = e^{-k_B/T} \in (0, 1)$. Energy exchanges only (not particles).

Boltzmann The probability for the system to have energy U at equilibrium is $\propto q^U$.

Which simple Markov chains have this kind of stationary distributions? Example: one particle, equidistant energy levels $\varepsilon_n = n\varepsilon$. (geometric distribution, constant-rate birth-death)

$$
\pi(\varepsilon_n \rightarrow \varepsilon_{n-1}) \propto p,
$$

$$
\pi(\varepsilon_n \rightarrow \varepsilon_{n+1}) \propto pq^\varepsilon.
$$
Outline

Lasers
- Some theoretic points
 - Einstein’s prescription
 - Boltzmann’s distribution

Modelization
- Quick introduction
 - Lasers as Markov chains

Simulation
- Goals
- Basics
 - Algorithm
 - Implementation
- Practical issues
- Some solutions
How it works

Atomic laser: 4-level atoms, mirrors

- Pumping: population inversion
- Disexcitation
- Lasing levels (1,2):
 - Stimulated absorption / emission

\[
P_{\pi}(m \rightarrow m-1) \propto n_1 m \\
P_{\pi}(m \rightarrow m+1) \propto n_2 (m+1)
\]
How it works

Atomic laser: 4-level atoms, mirrors

Pumping: population inversion
How it works

Atomic laser: 4-level atoms, mirrors

Pumping:
- population inversion

Disexcitation

\[\pi (m \rightarrow m-1) \propto n_1 m \]
\[\pi (m \rightarrow m+1) \propto n_2 (m+1) \]
How it works

Atomic laser: 4-level atoms, mirrors

Pumping:
- population inversion

Disexcitation
How it works

Atomic laser: 4-level atoms, mirrors

Pumping: population inversion
Disexcitation
How it works

Atomic laser: 4-level atoms, mirrors

Pumping:
population inversion
Disexcitation
Lasing levels (1,2):
How it works

Atomic laser: 4-level atoms, mirrors

Pumping: population inversion
Disexcitation
Lasing levels (1,2):
Stimulated absorption
How it works

Atomic laser: 4-level atoms, mirrors

Pumping: population inversion
Disexcitation
Lasing levels (1, 2):
Stimulated absorption / emission
How it works

Atomic laser: 4-level atoms, mirrors

Pumping:
population inversion

Disexcitation

Lasing levels (1,2):
Stimulated absorption / emission
\[
\begin{align*}
\pi(m \to m-1) &\propto n_1 m \\
\pi(m \to m+1) &\propto n_2 (m+1)
\end{align*}
\]
How it works

Atomic laser: 4-level atoms, mirrors

Pumping:
population inversion
Disexcitation

Lasing levels (1,2):

\[
\begin{align*}
\pi(m \to m-1) & \propto n_1 m \\
\pi(m \to m+1) & \propto n_2(m + 1)
\end{align*}
\]

Stimulated absorption / emission

Coherent emission (absorption by sink)
Semi-conductor lasers

Electrons, two bands of energy levels, 0-1 electron by level

valence band

energy gap

conduction band

(lasing levels)
Semi-conductor lasers

Electrons, two bands of energy levels, 0-1 electron by level

(valence band) — energy gap — (conduction band)

stimulated absorption

stimulated emission

pumping

(lasing levels)

Other/further moves:

upward and downward thermalization

(Auger effect, coherent pumping, spontaneous emission, ...)
States and events

\(n \) electrons, \(n \) energy levels in each band

A state: a repartition of the \(n \) electrons among the \(2n \) levels, and the number \(m \) of photons in the optical cavity.
States and events

n electrons, n energy levels in each band

A state: a repartition of the n electrons among the $2n$ levels, and the number m of photons in the optical cavity.

Events: electronic pumping, thermalization (up and down) → bands
States and events

n electrons, n energy levels in each band

A state: a repartition of the n electrons among the $2n$ levels, and the number m of photons in the optical cavity.

Events: electronic pumping, thermalization (up and down) → bands

optronic stimulated emission, stimulated absorption → interaction bands / cavity
States and events

n electrons, n energy levels in each band

A state: a repartition of the n electrons among the $2n$ levels, and the number m of photons in the optical cavity.

Events:

- **Electronic** pumping,
 thermalization (up and down)
 → **bands**

- **Optronic** stimulated emission,
 stimulated absorption
 → **interaction bands / cavity**

- **Photonic** coherent emission
 → **cavity**
Processes

Homogeneous Poisson processes
pumping (quiet), thermalization
Processes

Homogeneous Poisson processes
pumping (quiet), thermalization

Cox processes
stimulated emission/absorption, laser emission
Processes

Homogeneous Poisson processes
 pumping (quiet), thermalization

Cox processes
 stimulated emission/absorption, laser emission

(+ periodic events if regular pumping)
Processes

Homogeneous Poisson processes
 pumping (quiet), thermalization

Cox processes
 stimulated emission/absorption,
 laser emission

(\textit{+ periodic events if regular pumping})

Superposition of similar processes
 upward thermalization,
 downward thermalization
Rates

<table>
<thead>
<tr>
<th>Events</th>
<th>Rates</th>
<th>Variables and parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser emission</td>
<td>m/τ</td>
<td>$m(t)$ number of photons in the cavity, τ their mean lifetime.</td>
</tr>
</tbody>
</table>
Rates

<table>
<thead>
<tr>
<th>Events</th>
<th>Rates</th>
<th>Variables and parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser emission</td>
<td>m/τ</td>
<td>$m(t)$ number of photons in the cavity, (\tau) their mean lifetime.</td>
</tr>
<tr>
<td>Emission (stimulated)</td>
<td>$m + 1$ or 0</td>
<td>0 if the lasing level is occupied in VB, or free in CB.</td>
</tr>
<tr>
<td>Absorption (stimulated)</td>
<td>m or 0</td>
<td>0 if the lasing level is free in VB, or occupied in CB.</td>
</tr>
</tbody>
</table>
Rates

<table>
<thead>
<tr>
<th>Events</th>
<th>Rates</th>
<th>Variables and parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser emission</td>
<td>m/τ</td>
<td>$m(t)$ number of photons in the cavity, (\tau) their mean lifetime.</td>
</tr>
<tr>
<td>Emission (stimulated)</td>
<td>$m + 1$ or 0</td>
<td>0 if the lasing level is occupied in VB, or free in CB.</td>
</tr>
<tr>
<td>Absorption (stimulated)</td>
<td>m or 0</td>
<td>0 if the lasing level is free in VB, or occupied in CB.</td>
</tr>
<tr>
<td>Thermalization</td>
<td>pN_\downarrow or pqN_\uparrow</td>
<td>p lattice coupling, N_\downarrow electrons may move a level down. q temperature (Boltzmann) N_\uparrow electrons may move a level up.</td>
</tr>
</tbody>
</table>
Rates

<table>
<thead>
<tr>
<th>Events</th>
<th>Rates</th>
<th>Variables and parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser emission</td>
<td>$m/τ$</td>
<td>$m(t)$ number of photons in the cavity, $τ$ their mean lifetime.</td>
</tr>
<tr>
<td>Emission (stimulated)</td>
<td>$m + 1$ or 0</td>
<td>0 if the lasing level is occupied in VB, or free in CB.</td>
</tr>
<tr>
<td>Absorption (stimulated)</td>
<td>m or 0</td>
<td>0 if the lasing level is free in VB, or occupied in CB.</td>
</tr>
<tr>
<td>Thermalization downwards</td>
<td>pN_{\downarrow}</td>
<td>N_{\downarrow} electrons may move a level down.</td>
</tr>
<tr>
<td>Thermalization upwards</td>
<td>pqN_{\uparrow}</td>
<td>q temperature (Boltzmann)</td>
</tr>
<tr>
<td>Pumping</td>
<td>J</td>
<td>(Poissonian pump)</td>
</tr>
</tbody>
</table>
Outline

Lasers
- Some theoretic points
 - Einstein’s prescription
 - Boltzmann’s distribution

Modelization
- Quick introduction
- Lasers as Markov chains

Simulation
- Goals
- Basics
 - Algorithm
 - Implementation
- Practical issues
- Some solutions
Laser Noise

Thermal light: \[\pi(m) \propto q^{m\delta} \]

Generating function: \[\phi(z) = \frac{1-q^\delta}{1-zq^\delta}. \]

Mean, variance: \[\langle m \rangle = \frac{q^\delta}{1-q^\delta}, \quad V_m = \frac{q^\delta}{(1-q^\delta)^2} = \langle m \rangle + \langle m \rangle^2. \]

Laser light: poissonian

Is it possibly sub-poissonian? Under which conditions?

Thermique

Laser

Laser ‘Quiet’
Statistics of the number of photons in the cavity (stationary)
Fano factor \mathcal{F}: variance/mean (1 for Poisson variables)
Laser noise

Intensity of the laser: stationnary process Q, let $\Delta Q = Q - \langle Q \rangle$.

Spectral density $S(\Omega) = \frac{1}{\langle Q \rangle} S_\Delta Q(\Omega)$, $\mathcal{F} = \int S(\Omega) d\Omega$.

Frequencies Ω for which $S(\Omega) < 1$?
Levels occupancies
Spectral hole burning at lasing levels
Outline

Lasers
- Some theoretic points
 - Einstein’s prescription
 - Boltzmann’s distribution

Modelization
- Quick introduction
- Lasers as Markov chains

Simulation
- Goals
- Basics
 - Algorithm
 - Implementation
- Practical issues
- Some solutions
Algorithm

Simulation of 1 trajectory of the CTMC \hspace{1cm} (MC?)
Known as dynamic MC, kinetic MC, Doob-Gillespie, etc… \hspace{1cm} (MC?)

Method
At time t_k:
- simulate the waiting time τ before next event
- choose the event according to rates
- $t_{k+1} = t_k + \tau$
Implementation

Initialization \((t = 0) \)

Any state, e.g., all electrons in VB, no photon in the cavity.

Loop \((\text{while } t < T) \)

- random number \(r = U(0, 1) \) for the waiting time:
 \[\tau = -\ln r \Lambda, \quad \Lambda = \sum_{i\geq 1} \lambda_i, \]

- random number \(r' = U(0, 1) \) for the next event:
 \[\text{index} = \min\{i : \sum_{j=1}^{i} \lambda_j \geq r' \Lambda\}, \]

- update rates and state,

- perform other statistical computations:
 occupancies, histogram, spectral density. \((t = t + \tau) \)
Typical values

800 energy levels in each band, 800 electrons
Simulation duration $T = 100–10^5$

Rates:

	J	$J = 100–500$
Pumping	J	$J = 100–500$
Absorption (sink)	m/τ	$\tau = 2$
Emission	$m + 1$ or 0	$<m> = \tau J$
Absorption	m or 0	
Thermalization	pN_\downarrow	$p = 50000$
	pqN_\uparrow	$q = 0.9$

0.5 10^{12} events for 6 10^6 useful points

\[\Lambda = \sum_{i \geq 1} \lambda_i \]

\[pN_\downarrow \quad \text{other rates...} \quad pqN_\uparrow \]
Outline

Lasers
 Some theoretic points
 Einstein’s prescription
 Boltzmann’s distribution

Modelization
 Quick introduction
 Lasers as Markov chains

Simulation
 Goals
 Basics
 Algorithm
 Implementation

Practical issues
 Some solutions
Pseudorandom generators

Rather large choice. How to choose?

- **period?** number of events to be generated?
 (e.g., 0.5×10^{12} events)
- **speed?** is it critical?
- **biases?** which randomness is desirable?

See GSL, Dieharder, ...
Stationnarity

- How do we know?
 In many cases, it must be checked *a posteriori*...
- Ergodicity assumptions (time averages / ensemble averages)
- Predictible averages?
 Population (balance) equations at equilibrium?
- Which one to choose? (most frequent? fastest to compute?)
Spectral density approximation

Direct computation? Fourier transform of autocorrelation?
Not incremental.
Estimation by periodogram (duration T, K points $\Omega_k = \frac{2k\pi}{T}$).

$$S(\Omega) \approx S_T(\Omega) = \frac{1}{T} \left| \sum_{n=1}^{N} e^{-i\Omega t_n} \right|^2$$

Correct approximation?
Spectral density approximation

Direct computation? Fourier transform of autocorrelation?
Not incremental.
Estimation by periodogram (duration T, K points $\Omega_k = \frac{2k\pi}{T}$).

$$S(\Omega) \approx S_T(\Omega) = \frac{1}{T} \left| \sum_{n=1}^{N} e^{-i\Omega t_n} \right|^2$$

Correct approximation?
In average, and for large T!
Variance is independent of T...
Spectral density approximation

Bartlett: average N parts of a unique simulation of duration NT. Here for $N = 10$:

A little better...
For one curve, more than a week...
Searching for optimal parameters

Efficient thermalization \((p = 50000)\), 800 levels in each band
Variable pumping rate:

For each point, nearly a week...
Outline

Lasers

Some theoretic points
 Einstein’s prescription
 Boltzmann’s distribution

Modelization

 Quick introduction
 Lasers as Markov chains

Simulation

Goals
Basics
 Algorithm
 Implementation
Practical issues
Some solutions
Technical track : Distributing simulations

Condor server
Computers of the UFR rooms (300-600), evening and weekend

Method

- initialisation (stationary state)
- 1 initial occupancies computation
- k small mixing runs, average duration $T/100$
- k simulation runs, duration T
- 1 final occupancies computation
Improvements

Variance of periodogram
Improvements

Fano factor vs runs

error bars: from 0.3 (10 runs) to 0.03 (1000 runs)
Theoretical track : Getting rid of thermalization?

Rare events: pumping, photon emission/absorption, photon escape.
→ their rates depend on the occupation of few levels only

Between two rare events, only thermalization occurs — so, the number of electrons in each band is left unchanged
Theoretical track: Getting rid of thermalization?

Rare events: pumping, photon emission/absorption, photon escape. → their rates depend on the occupation of few levels only

Between two rare events, only thermalization occurs — so, the number of electrons in each band is left unchanged

Consider thermalization processes in a band of B levels, with N electrons inside.

- Can we compute a random state after K steps? ($K \approx 10^5$)
- Better: Can we compute the occupancy of a given level?
Theoretical track: Getting rid of thermalization?

Rare events: pumping, photon emission/absorption, photon escape. → their rates depend on the occupation of few levels only

Between two rare events, only thermalization occurs — so, the number of electrons in each band is left unchanged

Consider thermalization processes in a band of B levels, with N electrons inside.

- Can we compute a random state after K steps? ($K \approx 10^5$)
- Better: Can we compute the occupancy of a given level?
- Even better: May we consider that $K = \infty$?
 → simple N-recursive formula for the occupancy of a given level!