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OVERVIEW (1)

1. MIXED ELEMENT VOLUME

2. MESH ADAPTION

3. MULTILEVEL PRECONDITIONING
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MIXED ELEMENT-VOLUME:

- upwind-element MUSCL scheme

- LED/TVD formulation with upwind element

- 6th derivative stabilisation

- Low-Mach preconditioned stabilisation

- Moving grids : three conservations

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (0) : M.E.V.

The Roe Flux Difference Splitting is installed in a vertex, edge-based, Mixed
Element-Volume formulation of first-order spatial accuracy:

Wij = Wi ; Wji = Wj

Φij = 0.5(Φ(Wij + Φ(Wji) + 0.5 γv |A|(Wji − (Wij)

area(Ci)(Wn+1
i −Wn

i ) + Σ Φij = 0

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (1) : MUSCL

According to the MUSCL idea of van Leer, it is possible to transform a first-order
spatially accurate Godunov scheme into a second-order one thanks to a linear
reconstruction of dependant variables.

Wij = Wi +
1
2
(~∇W )ij.~ij ; Wji = Wj −

1
2
(~∇W )ji.~ij

Φij = 0.5(Φ(Wij + Φ(Wji) + 0.5 γv |A|(Wji − (Wij)

Our option is to use different edge-based reconstructions using the so-called called
upwind elements of each edge.

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (2) : TVD/LED

(~∇W )ij.~ij = L(∆−Wij ,∆0Wij ,∇ijW.~ij)

(~∇W )ji.~ji = L(∆−Wji ,∆0Wji ,∇jiW.~ji). (1)

Second-order accurate density-positive scheme, satisfying the
Maximum Principle for convected species
(Cournede-Debiez-Dervieux, INRIA report 3465,1998)

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (3) : V6

The fourth-order derivative viscosity involved in the -unlimited-

MUSCL scheme is still too viscous for many applications.

Much better accuracy is obtained by tuning its coefficient and still

even better by using instead a sixth order derivative numerical

viscosity.

This is realised in the MUSCL context by replacing a “linear”

interpolation a cell boundary by a smarter interpolation:

Wij = Wi + (~∇W )V6
ij .~ij (2)

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (3) : V6 (end’d)

(~∇W )V6
ij .~ij = (1− β) (~∇W )C

ij.~ij + β (~∇W )D
ij.~ij

+ ξa ( (~∇W )Tij
− 2(Wj −Wi) + (~∇W )Tji

)

+ ξb ( (~∇W )D∗
ij .~ij − 2 (~∇W )i.~ij + (~∇W )j.~ij ) (3)

(~∇W )D∗
ij : linear interpolation of nodal gradients in nodes m and n.

- Accurate enough for acoustics(Abalakin-Dervieux-Kozubskaya)

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (3) : V6 ; an example

Dervieux-Courty-Koobus, Prague, april 2003
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Back to the fluid numerics (4) : Low Mach

Godunov methods suffer larger truncation errors for smaller Mach

number.

The Turkel preconditioner is then introduced in order to allow

Mach-independant approximation errors.

Φ(Wj,Wk,~ηjk) = 0.5(Fj+Fk).~ηjk + 0.5P (M∗)
−1|P (M∗)A|(Wj−Wk).

Example from Schall-Viozat-Koobus-Dervieux, J. Heat and Mass
Transfer, 2003

Dervieux-Courty-Koobus, Prague, april 2003
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Low Mach ; Lid driven cavity, Re=1000

Dervieux-Courty-Koobus, Prague, april 2003
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THE THREE CONSERVATIONS

- Conservation of extensive quantities.

- Geometric Conservation law.

- Energy budget.

Dervieux-Courty-Koobus, Prague, april 2003
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Conservation of quantities

Local conservation of mass, moments energy is directly enforced in

the gas field by ALE finite volumes .

It is an important consistency condition (Lax-Wendroff theorem).

It is a crucial condition for practical accuracy on non uniform
meshes.

Dervieux-Courty-Koobus, Prague, april 2003
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Geometric Conservation law

“A ALE-GCL scheme computes exactly a uniform flow field”

|Ωn+1
i |Un+1

i = |Ωn
i |Un

i −

∆t
∑

j∈V (i)

| ¯∂Ωij| Φ

(
Un+1

i ,Un+1
j ,ν̄ij,

xn+1
ij − xn

ij

∆t

)
ν̄ij = 0.5 (νij(x(t1 + α1(t2 − t1))) + νij(x(t1 + α2(t2 − t1))))

⇒ |Ωn+1
i | − |Ωn

i | =
∫

∂Ωh(t)

ẋi ni dΓ

- sufficient condition for 1st-order accuracy (Guillard-Farhat).
- Maximum Principle (Farhat-Geuzaine-Grandmont).
- Practical stability and accuracy improvements.

Dervieux-Courty-Koobus, Prague, april 2003
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Energy budget

Structure models are generally made of a finite element variational

principle and satisfy a discrete energy conservation.

- Work transfer between non-conforming fluid and structure:

- spatially non-conforming: energy conserving integrations of forces

and motion (Farhat-Lesoinne-Le Tallec).

- time staggering: energy conservation enforced up to 4th order

(Piperno-Farhat).

Dervieux-Courty-Koobus, Prague, april 2003
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Energy budget of fluid (1)

The energy equation must satisfy the Geometric Conservation Law

and this is obtained by an adhoc time integration:

|Ωn+1
i | En+1

i =

|Ωn
i |En

i −∆t
∑

j∈V (i)

| ¯∂Ωij| ΦE

(
Un+1

i ,Un+1
j ,ν̄ij,

xn+1
ij − xn

ij

∆t

)
ν̄ij specified by GCL.

Dervieux-Courty-Koobus, Prague, april 2003
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Energy budget of fluid (2)

Work transfers:

∆M
∣∣∣t2
t1

. (xn+1
ij − xn

ij) =

∆t
∑

i∈∂Ωh

| ¯∂Ωh,i| ΦM
∂Ω

(
Wn+1

i ,ν̄ij,
xn+1

ij − xn
ij

∆t

)
. (xn+1

ij − xn
ij)

∆Work
∣∣∣t2
t1

= ∆t
∑

i∈∂Ωh

| ¯∂Ωh,i| pi ν̄i . ẋi
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Energy budget of fluid (3)

Total energy variation:

∆E
∣∣∣t2
t1

= ∆t
∑

i∈∂Ωh

| ¯∂Ωh,i| ΦE
∂Ω

(
Wn+1

i ,ν̄ij,
xn+1

ij − xn
ij

∆t

)

∆E
∣∣∣t2
t1

= ∆t
∑

i∈∂Ωh

| ¯∂Ωh,i|

(∫
∂Ωh,i

pi ui . ν̄i dΓ

)
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Energy budget of fluid (4)

∆E
∣∣∣t2
t1

= ∆t
∑

i∈∂Ωh

| ¯∂Ωh,i| pi ν̄i . ẋi

Lemma: By replacing the energy flux by a product of boundary
pressure times the GCL integration of mesh motion, we can
derive a scheme that is conservative, satisfies GCL and have an
exact energy budget (work of pressure = loss of total energy).

Dervieux-Courty-Koobus, Prague, april 2003
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The band of the three conservations: synthesis

The recent works have proved that is is possible to build a scheme

that satisfies the following properties:

- Conservation,

- Geometric Conservation Law, and maximum principle (applying to

K, ε, species,..),

- Accurate energy complete budget.

Dervieux-Courty-Koobus, Prague, april 2003
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COMPLEXITY OF COMPUTATIONAL MECHANICS (1)

Complexity in Computational Continuum Mechanics:

How many arithmetic operations for obtaining an approximation
of the PDE solution with a given accuracy?

- approximation: what accuracy when N unknown are used?

- algorithmics: how many operations for finding these N unknowns?

Dervieux-Courty-Koobus, Prague, april 2003
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COMPLEXITY OF COMPUTATIONAL MECHANICS (1)

I. Continuous models for adaptation.

II. Multilevel preconditioning

Dervieux-Courty-Koobus, Prague, april 2003
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II. CONTINUOUS MODELS FOR ADAPTATION

Afterbody flow ; supersonic ; turbulent.

Dervieux-Courty-Koobus, Prague, april 2003
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Convergence issue

Let us try to converge to the continuous limit by uniform refinement.

Test case conditions: NACA0012, Reynolds 73., Mach 1.2

Numerical scheme : vertex centered, upwind-MUSCL

- Should be second-order accurate:
‖u− uh‖L2 ≤ Kh2

Dervieux-Courty-Koobus, Prague, april 2003
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Uniform refinement:

Uniform refinement : mesh 1, 800 vertices, mesh 2, 3114 vertices

Dervieux-Courty-Koobus, Prague, april 2003
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Uniform refinement : mesh 3, 12284 vertices, mesh 4, 48792 vertices

Dervieux-Courty-Koobus, Prague, april 2003
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Convergence issue, concl’d

Let us measure the numerical order of convergence α :

‖U1 − U2‖L2

‖U2 − U3‖L2
=

1− (1/2)α

(1/2)α − (1/4)α
?

Meshes with 800, 3114, 12284 vertices: convergence order for the

density field ρ : 0.94 ,

Meshes with 3114, 12284, 48792 vertices: convergence order for ρ :
1.14 .

The scheme is bad or the meshes are bad...

Dervieux-Courty-Koobus, Prague, april 2003
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MESH ADAPTIVE INTERPOLATION : THE PROBLEM

- Let be u a given function (e.g. analytically defined).

- Find the mesh MN with N vertices that interpolates with a continuous
piecewise P1 interpolent at best function f for the norm L2 :

MN? such that ‖u−ΠMN
u‖L2 = min .

- Compare:
. uniform refinement: ∆x = 1

N
. adaptative mesh series: MN , N →∞.

- Measure the order α of convergence:

‖u−ΠMN
u‖L2 ≤ N−α

d

Dervieux-Courty-Koobus, Prague, april 2003
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Best mesh: The “continuous metrics” approach, 1D

Instead of looking for a mesh of [0,1], we look for a continuous local mesh size :

m gives the size of ∆x at point x, m−1 is the density of nodes, i.e. the number of
nodes per length unit.

Let us work at a fixed number N of nodes.

Find m : x → m(x), with a given complexity:

C(m) =
∫ 1

0

m−1(x)dx = N , (4)

That minimizes the interpolation error.

Dervieux-Courty-Koobus, Prague, april 2003
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Best mesh: The “continuous metrics” approach, 1D, smooth

In the case of P1 interpolation, we modelize the interpolation error as :

∫ 1

0

|eM(x)|2ds =
∫ 1

0

(m2|∂
2u

∂x2
|)2ds. (5)

Then (u smooth and never linear):

mopt(x) = K N−2(|u′′(x)|)
−2
5 . (6)

Dervieux-Courty-Koobus, Prague, april 2003
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High order adaptation for a discontinuity

u: bounded, piecewise smooth, with a few discontinuities.

Prototype : the Heavyside function + a smooth function, on [0,1].

Lemma: For a uniform refinement, the order of accuracy in L2 of the P1
interpolation is only 1/2. Conversely, there exist adaptative refinements for
which the order of accuracy of P1 interpolation is 2.

Idea of the proof : Divide the interval around discontinuity into eight intervals of
same size and divide other intervals into two. Total mesh size is only increased by
a factor 2 + 8/N and error is 4 times smaller.

N.B.: For a third-order P2 interpolation, third-order accuracy is obtained by
dividing the singular interval into 16.

Dervieux-Courty-Koobus, Prague, april 2003
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The “continuous metrics” approach, 1D, non smooth

In the case of P1 interpolation, we modelize the error as :

∫ 1

0

|eM(x)|αds =
∫ 1

0

(m2|δ−2(u(x + δ)− 2u(x) + u(x− δ))|)αds.

where δ is smaller than m.

δ−2(u(x + δ)− 2u(x) + u(x− δ)) :

- is close to ∂2u
∂x2 ,

- or to δ−2,

- bounded in L1/2 independantly of δ.

Dervieux-Courty-Koobus, Prague, april 2003
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Continuous metrics adaption for a discontinuity

mopt(x) = Cte.|(|δ−2(u(x + δ)− 2u(x) + u(x− δ))|(x))|
−2
5 .

Further the resulting error in L2 writes:

error = 2
N2

(∫
|δ−2(u(x + δ)− 2u(x) + u(x− δ))|25

)5
2

< K
N2

which gives second-order accuracy.

Dervieux-Courty-Koobus, Prague, april 2003
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Dicontinuity capturing: Numerical illustration:

Two examples : smooth arctangent, discontinuous Heavyside.

Dervieux-Courty-Koobus, Prague, april 2003
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Adaptation on an interval :

Choose a number of nodes N .

Derive the optimal metrics m.

Define x from:

x0 = 0,

∫ xi+1

xi

m−1dx = 1 ,

N.B.: Can also be done by mesh deformation.

Dervieux-Courty-Koobus, Prague, april 2003
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Convergence to the continuous: Heavyside

Convergence towards y = −sign(x− 1
2)

Abscissae : number of nodes; ordinates : interpolation error

Dashes : uniform refinement, line : adaptive refinement.

Dervieux-Courty-Koobus, Prague, april 2003
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Convergence to the continuous: Arctangent

Uniform refinement: late capturing
Adaptative refinement : early capturing

Dervieux-Courty-Koobus, Prague, april 2003
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Early capturing/late capturing

Uniform refinement needs NS nodes, where Ns is the inverse of the size of the
smallest detail (1D).

A good adaptative refinement needs Nd nodes, where Nd is (1D) the number of
details (for example: the function is monotone on Nd intervals).

Nd << NS.

Dervieux-Courty-Koobus, Prague, april 2003
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The “continuous metrics” approach, 2D

In short we look for metrics

Mx,y = R−1
M

(
(mξ)−2 0

0 (mη)−2

)
RM (7)

When a mesh satisfies the metrics, this operator tranforms any edge in an edge
with unit length.

This essentially specifies one mesh.

(George, Hecht,..., Fortin, Habashi,...)

Dervieux-Courty-Koobus, Prague, april 2003
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First option : the metrics is aligned with the Hessian of u:

RM = Ru , (8)

Ru diagonalises the Hessian Hu of u:

Hu =

(
∂2u
∂x2

∂2u
∂x.∂y

∂2u
∂x.∂y

∂2u
∂y2

)
= Ru ∗

(
∂2u
∂ξ2 0

0 ∂2u
∂η2

)
∗ Ru

−1 (9)

Dervieux-Courty-Koobus, Prague, april 2003
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The “continuous metrics” approach, 2D, cont’d

minM
∫ (

|∂
2u

∂ξ2
|.m2

ξ + |∂
2u

∂η2
|.m2

η

)2

dxdy (10)

under the constraint

∫
mξ

−1mη
−1 dxdy = N.

according to a recent interpolation error estimate derived by George.
(Dervieux-George-Leservoisier INRIA Report, 2001).

Dervieux-Courty-Koobus, Prague, april 2003
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The “continuous metrics” approach, 2D, cont’d

Mopt = C−1 R−1

 |∂
2u

∂η2 |
−5/6

|∂
2u

∂ξ2 |
1/6

0

0 |∂
2u

∂ξ2 |
−5/6

|∂
2u

∂η2 |
1/6

 R .

with:

Cα =

(∫ (
|∂

2u

∂ξ2
|.|∂

2u

∂η2
|
) α

2α+2

dxdy

)−1

N .

Dervieux-Courty-Koobus, Prague, april 2003
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Isotropic simplified optimum :

The above calculation can be done with a scalar metrics. It turns like the 1D case.

eM(x,y) = m2(x,y)M(x,y)

where M(x,y), is Max(Sp(H)), the maximum absolute value of eigenvalues of
the local Hessian of u. We obtain the optimum:

mopt(x) =

(
(
∫
Ω

M
−2
3 ds)

N

)1
2

M(x,y)
−1
3 .

Dervieux-Courty-Koobus, Prague, april 2003
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Numerical illustration : 1. Isotropic adaptive refinement

Test case : interpolate a couple of S-shaped arctangent functions
Sensor : scalar field equal to Max(sp(H)).
Controlled Voronoi remeshing.George, Hecht, Saltel, Mohammadi,...

Dervieux-Courty-Koobus, Prague, april 2003
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2. Anisotropic adaptive refinement

. Sensor : 2× 2 metrics field derived from the Hessian

.Controlled Voronoi remeshing George, Hecht, Saltel, Mohammadi,..

Dervieux-Courty-Koobus, Prague, april 2003
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Lemma (barriers in L2):

The convergence order of uniform refinement is at most 1/2,

The convergence order of 2D isotropic adaptative refinement is at
most 1.

The convergence order of 3D isotropic adaptative uniform
refinement is at most 3/4

Coudière-Dervieux-Leservoisier-Palmerio, 2001

N.B.: This was announced by the continuous metrics model, which produces “the
best mesh”. Analysis of the resulting error lead to the same barriers.

Dervieux-Courty-Koobus, Prague, april 2003
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Illustration of the barrier lemma on a couple of two Heavyside functions

A vertical one and an horizontal one.

Dervieux-Courty-Koobus, Prague, april 2003
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Isotropic : 1st order, anisotropic : 2nd order accuracy

Dervieux-Courty-Koobus, Prague, april 2003
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BACK TO CONTINUOUS METRICS: EDP CASE

We return to the 1D continuous metrics method. m(x) is local size of h = ∆x.

Au = f discretized by Ahuh = fh.

Error estimates:

uh − u = A−1
h (Ahu− f) = A−1(Auh − f)

The dependancy of uh with respect to mesh size is not explicit and we shall prefer
the first expression (a priori estimate).

Dervieux-Courty-Koobus, Prague, april 2003
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CONTINUOUS METRICS FOR PDE : MODELLING

Ahu = Au + m2uxxx = Au + m2D3u

fh = f + m2fxx

uh − u = (A + m2D3)−1m2(|uxxx|+ |fxx|)

For the sake of simplicity we prefer the main part of it:

uh − u = A−1m2(|uxxx| + |fxx|)

Dervieux-Courty-Koobus, Prague, april 2003
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MINIMIZATION PROBLEM

In terms of d = 1/m :
min ||(Y (d)2||2L2

with constraint:
∫

d(x)dx = N .

State equation:
AY (d) = d−2(h(u))

where h(u) = |uxxx − fxx|.

Dervieux-Courty-Koobus, Prague, april 2003
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The (KKT) system to solve is :



A Y (d) = d−2 h(u) (State Equation)∫
d = N

A∗Π = Y (Adjoint equation)

< j′(d) , δd > = − 2 < Π(d) , d−3 h(u) δd > = 0 ∀d,

∫
δd = 0

(11)

We deduce from

∫
δd = 0 that

(Π(d))d−3 h(u) = constant

and thus (h(u),Y,Π > 0),

d = Constant.((Π(d))T h(u))1/3

Dervieux-Courty-Koobus, Prague, april 2003
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But

∫
d = N , then:

d =
N∫

((Π(d)) h(u))1/3
.((Π(d)) h(u))1/3

Then we can rewrite the (KKT) system as
A Ȳ (d) = d̄−2 h(u) (State Equation)
A∗Π̄ = Ȳ (Adjoint equation)
d̄ = 1∫

((Π̄(d)) h(u))1/3
.((Π̄(d)) h(u))1/3 (12)

with d̄ = d
N , Ȳ = N2Y , Π̄ = N2Π.

Dervieux-Courty-Koobus, Prague, april 2003
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Second order accuracy

jopt = N−2

∫
|Ȳopt|2

(13)

For “regular” discontinuities, h(u) ∈ L
1
2, we seek d in L3/2.

Π is L∞ and y is Lq, ∀q < ∞, then∫
|Ȳopt|2 < ∞

(14)

which expresses second order accuracy.

Dervieux-Courty-Koobus, Prague, april 2003
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CONVERGENCE CERTIFICATION

We return to the introductive airfoil example, a laminar flow with Mach=.85, and
Reynolds= 73.
The sensor is the Mach number.

Second order convergence could not be obtained with a uniformly refined
sequence of meshes with 3114, 12284, 48792 nodes.

The same convergence order measure is now applied to a sequence of anisotropic
adaptive meshes with again 800, 3114, 12284, 48792 nodes.

Dervieux-Courty-Koobus, Prague, april 2003
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CONVERGENCE CERTIFICATION : coarser meshes

Dervieux-Courty-Koobus, Prague, april 2003
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CONVERGENCE CERTIFICATION : finer meshes

Dervieux-Courty-Koobus, Prague, april 2003
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CONVERGENCE CERTIFICATION : convergence order

Certification of the convergence order in L2:

Meshes 800, 3114, 12284 : convergence order for ρ,ρu,ρv : 1.75 (vs uniform
refinement case : 0.94).

Meshes 3114, 12284, 48792 : convergence order for ρ,ρu,ρv : 1.92 (vs uniform
refinement case : 1.14).

Dervieux-Courty-Koobus, Prague, april 2003
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CONVERGENCE CERTIFICATION : Estimation of the global
L2 error

Meshes 800 (U1), 3114 (U2), 12284 (U3) :

||U3 − u||L2 ≤ 1
3
||U2 − U3||L2 = 6.00 10−5 .

Comparison with the 48792 mesh (U4):

||U3 − U4||L2 = 5.637 10−5 .

Dervieux-Courty-Koobus, Prague, april 2003
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I. MULTILEVEL PRECONDITIONING

1. Functional preconditioning:

Min 1
2a(u,u)− (f,u), or, equivalently

A u = Σ (aijuxj
)xi

= f on Ω + Boundary Conditions

Ah uh = fh on Ω

un+1
h = un

h − ρ(Ah un
h − fh)

un+1 = un − ρ B (A un − f)

Dervieux-Courty-Koobus, Prague, april 2003
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Functional preconditioning, end’d

un+1
h = un

h − ρn Bh (Ah un
h − fh)

- In case where B = Id, BA is unbounded, the first eigenmodes

correspond to a large number of high frequencies. Convergence is

mesh dependent and slowly improving with iterations.

- In case where BA is continuous, conditioning is best.

- In case where BA is compact, the first eigenmodes correspond to

the not so many low frequencies.

In both latter cases mesh dependant convergence is possible.

Dervieux-Courty-Koobus, Prague, april 2003
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2. Additive multilevel preconditioners (Bramble-Pasciak-Xu)

(Au,v) = (f,v) ∀u,v ∈ Vk , f given in V ′.

Let (Vk)1≤k≤n be a hierarchy of subspaces of V :

V1 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ Vn ⊂ V

For all u ∈ V, v ∈ Vk

(Qku,v) = (u,v) “projector”

(Aku,v) = A(u,v)∀u,v ∈ Vk ; λk spec. radius of Ak

BBPX = A−1
1 Q1 +

∑n
k=2 λ−1

k (Qk −Qk−1)

Bwavelets =
∑n

k=1 µ−1
k (Qk −Qk−1)

Dervieux-Courty-Koobus, Prague, april 2003
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3. Functional Standpoint:

k = 1,∞.

the functional preconditioner :

Bfunc =
∑∞

k=1 2−(a+α)(Qk −Qk−1),

where Qk is the projector on Vk and α > 0,

is a compact injection :

Hs(Ω) → Hs+a(Ω)

Kunoth 97, Courty 03

Dervieux-Courty-Koobus, Prague, april 2003
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4. Extension to unstructured meshes : agglomeration

A. Agglomeration Coarsening

Φunsmooth
I (i) = 1 if i ∈ S(I), 0 otherwise.

B. Smoothness

Φsmooth
I = L Φunsmooth

I ; Vk = Span[Φsmooth
1 ,Φsmooth

2 ,...]

Marco-Dervieux, 95’, Marco-Koobus-Dervieux 95’

Dervieux-Courty-Koobus, Prague, april 2003
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APPLICATION TO SONIC BOOM REDUCTION

γ : control variable, the shape of the aircraft,

“CAD-free” parameterised by slipping of any skin vertex (along the

fixed normal to initial shape (20,000 unknowns).

State(γ,W ) : Steady 3D Euler eqs (5× 170,000 variables).

accounting for the shape through transpiration conditions.

j(γ) = J(γ,W (γ)) cost functional, a linear combination between :

- square deviation to target lift,

- square deviation to target drag,

- sonic boom emission model.

Dervieux-Courty-Koobus, Prague, april 2003
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APPLICATION TO SONIC BOOM REDUCTION

Functional analysis:

A Hadamard derivative can be formally computed:

(see Bardos-Pironneau 2002 for rigorous derivations for hyperbolics)

It is an unbounded operator from Cl+α(Γ) to Cl−1+α(Γ)

where Γ is the boundary to modify.

Then, the loss of derivative is (at least) 1.

Dervieux-Courty-Koobus, Prague, april 2003
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Effect of preconditioning

Dervieux-Courty-Koobus, Prague, april 2003
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Optimisation of a wing with fixed drag and lift

Dervieux-Courty-Koobus, Prague, april 2003
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Optimisation of a wing with fixed drag and lift

Pressure on a plan under the aircraft (10 itérations)

Two cut parallel to aircraft axis

Dervieux-Courty-Koobus, Prague, april 2003
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CONCLUDING REMARKS

- Steady case Euler numerical prediction is rather well mastered

and the global complexity for a prescribed error can be estimated:

O( 1
errorlog( 1

error )).

- Solution of Shape Design optimality systems for steady models is

also close to mastering.

- The unsteady computations on moving and/or adapted meshes set

many open problems before an equivalent statement can be stated.

- This situation is even more severe with mixed numerical-physical

models: LES, DES,...

Dervieux-Courty-Koobus, Prague, april 2003
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NOTHING ON THIS PAGE
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PDE’s: THE ADAPTATION LOOP

Purpose : find mesh and steady solution with N nodes.

1.- build first mesh

2.- solve the PDE on the current mesh

3.- compute metrics from the PDE solution

4.- regenerate a mesh adapted to the metrics

5.- go to step 2 until iterative convergence

Dervieux-Courty-Koobus, Prague, april 2003
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Iterative convergence : mesh and PDE solution do not change

Dervieux-Courty-Koobus, Prague, april 2003
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CONVERGENCE TO THE CONTINUOUS LIMIT:

We recommand this be a different loop from the adaptation loop.

Therefore “convergence to the limit” is an external loop to the

adaptation loop.

- Vary N from small to large:

Standard choice : N, 4N, 16N .

Dervieux-Courty-Koobus, Prague, april 2003
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PDE’s : MAIN OPTIONS

- Steady Reynolds-Average Navier-Stokes equations for compressible

flow, k − ε model with wall laws. Wall law thickness is specified by

user, not by the mesh.

- Same vertex centered upwind (Roe) second-order (Van Leer)

approximation with P1-FEM for viscous terms.Implicit

pseudo-unsteady solution algorithm.

- A priori sensor (**):

|u−uh| ≤ K (δx,δy)t|H|(δx,δy) with H Hessian of Mach number.

- Experiment protocol: compare several medium-mesh calculations

Dervieux-Courty-Koobus, Prague, april 2003
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with a very accurate “reference” one.

(*) George-Hecht-Mohammadi, Fortin and coworkers

Dervieux-Courty-Koobus, Prague, april 2003
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EXAMPLES : 1. Flat plate test case (supersonic)

Reference fine mesh, 40,000 nodes and solution (Mach contours)

Dervieux-Courty-Koobus, Prague, april 2003
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Flat plate test case : convergence

Dervieux-Courty-Koobus, Prague, april 2003
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EXAMPLES : 2. Back step flow (slightly compressible)

Dervieux-Courty-Koobus, Prague, april 2003
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EXAMPLES : 2. Back step flow (slightly compressible)

Reference mesh, 25 Knodes (large Y +, reattachment abscissa:

Dervieux-Courty-Koobus, Prague, april 2003
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6.6H)..
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EXAMPLES : 2. Back step flow (slightly compressible)

Convergence of reattachment abscissa.

Dervieux-Courty-Koobus, Prague, april 2003


