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Abstract

A strategy which blends a Variational Multiscale Large Eddy Simulation
model (VMS-LES) and a RANS model in a hybrid approach is investigated.
A smooth blending function, which is based on the value of a blending pa-
rameter, is used for switching from VMS-LES to RANS. Different definitions
of the blending parameter are investigated. The capabilities of the novel hy-
brid approach are appraised in the simulation of the flow around a circular
cylinder at a Reynolds number 1.4 ·105, based on the freestream velocity and
on the cylinder diameter, in presence of turbulent boundary-layer due to tur-
bulent inflow conditions. A second study at Reynolds numbers from 6.7 · 105
to 1.25 · 106 is also presented. The effect of using the VMS-LES approach
in the hybrid model is evaluated. Results are compared to those of other
RANS, LES and hybrid simulations in the literature and with experimental
data
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1. Introduction

The widely used RANS models usually have difficulties in providing ac-
curate predictions for flows with massive separation, as for instance the
flow around bluff bodies. An alternative approach is Large-Eddy Simula-
tion (LES), which, for massively separated flows, is generally more accurate,
but also computationally more expensive, than RANS. Indeed the LES grid
needs to be sufficiently fine to resolve a significant part of the turbulent scales,
and this becomes particularly critical in the near-wall regions. Moreover, the
cost of LES increases with increasing Reynolds number. In this context, hy-
brid strategies have been proposed in the literature, which combine RANS
and LES approaches together (see [28],[9] for a review).

A major difficulty in combining a classical RANS model with a LES one is
due to the fact that they deal with different unknowns. The RANS equations
govern an ensemble-averaged flow field. The LES equations describe the
evolution of a spatially filtered flow field. RANS solutions are often steady or
contain only the unsteadiness of the largest scales, if large-scale unsteadiness
is present in the flow (which is true for bluff-body flows). On the other hand,
LES needs a significant level of fluctuations in order to model the flow in
a sufficiently accurate manner. Attempts to interface RANS and LES are
faced to this problem (see e.g. [33, 28]). Recently, temporal filtering has
been proposed as a possible way to make these two models more compatible
[7]. However, even in their standard version, hybrid models have acquired a
remarkable standing in the simulation of detached turbulent flows, since they
often produce much better predictions than pure RANS, with a much more
affordable computational effort than for pure LES, cf. [36]. In the present
work, we do address this issue.

A central issue in hybrid modeling is also the selection of RANS and LES
regions. It is commonly accepted that, for affordable levels of discretization,
RANS is advisable in a turbulent boundary layer and LES for detached
eddies in the wake of a bluff body. We are interested in appraising hybrid
approaches which could eventually be applied in an engineering context to
the simulation of massively separated flows in complex geometries. In this
perspective, hybridization strategies in which the LES and RANS zones may
be selected during the simulation following a given criterion, and not a-priori
fixed, may be attractive. Clearly, for such hybrid methods, it must be a-
posteriori checked that the automatic selection of the RANS and LES zones
is indeed effective. Moreover, depending on the local mesh resolution and
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on the geometry complexity, it remains important to investigate methods for
selecting the less inexact model in tricky regions of the flow, as for instance
the detaching shear layers in bluff-body flows.

This is in relation with a third issue, which concerns the choice of the
main ingredients in the hybrid modeling, viz. the RANS model, and the
LES one. Again in the perspective of the use of a hybridization strategy
in an engineering context, a desirable feature would be versatility, i.e. the
possibility of straightforwardly introducing different RANS and LES models.
In particular it can also be of interest to introduce LES formulations different
from the classical one. For example, the Variational Multiscale (VMS) LES
showed in [39, 25] good predictive qualities for subcritical flows around bluff
bodies also with rather coarse meshes.

In the present work, a hybrid model blending RANS and Variational Mul-
tiscale (VMS) LES [18] is investigated. In this model, VMS-LES and RANS
approaches are combined in such a manner that complexity in use and in
parameter tuning is minimized. The closure terms provided by a RANS and
a SGS eddy-viscosity model are blended together through the introduction
of a blending function, θ, obtaining the RANS approach when θ = 1 and
recovering the LES approach for θ vanishing. Thus, the adopted model can
be thought to fall in the class of the blending methods [16, 8, 3], following
the definition in [28]. We investigate different blending parameters aimed at
identifying whether the grid used is adequate for LES, i.e. if it is adequate
to resolve additional fluctuations with respect to RANS. In particular, three
different definitions are examined in this paper, based on the ratios between
(i) two eddy viscosities, (ii) two characteristic length scales and (iii) two char-
acteristic time scales given by the RANS and the LES models, respectively.
One of the aim of the present work is indeed to check whether this criterion,
more focused on grid quality than directly to the wall distance, actually gives
the desired situation of the RANS model working near solid walls. Note that
the criterion (i) is used also in [3], but only as an additional constraint to
the main criterion based on the distance from the wall, and is actually the
parameter of the “Limited Numerical Scale” (LNS) approach [2], in which,
however, a different hybridization strategy is used.

An additional attractive feature of the investigated blending strategy is
that it permits a natural integration of the VMS concept, which allows the
eddy-viscosity introduced by the LES closure to be restricted to the smallest
resolved scales. This is aimed at reducing the excessive damping introduced
by non-dynamic eddy-viscosity models also on large scales.

3



Our motivation in combining RANS with the VMS formulation is to
be able to perform turbulent flow simulations on coarser meshes than with
RANS/LES hybrid model with a comparable accuracy. This is a paramount
advantage if complex geometries of several obstacles are to be analysed, such
as tube arrays (see e.g. [21]) or offshore platforms, see [31]. Lastly, in our
opinion, the VMS-LES approach well fits in a multidimensional turbulence
modeling concept as in [28].

The above described hybrid method is herein applied to the simulation
of the flow around a circular cylinder of infinite span in different conditions.
First, the case proposed in [36] is considered, which is characterized by a
Reynolds number – based on the freestream velocity and the cylinder di-
ameter – equal to 1.4 105 and by highly turbulent inflow conditions. These
inflow conditions, together with the use of a RANS model in the boundary
layer, allow a turbulent boundary-layer separation to be obtained even if
the Reynolds number is not in the supercritical regime. This test case has
been chosen in order to make a direct comparison with the results of DES
simulations [20, 36], DES being the most popular of hybrid approaches.

In a second series of computations, the flow around a cylinder has been
carried out at Reynolds numbers close to 106, in order to investigate the
behavior of the considered hybrid methods in the actual supercritical regime.
In the litterature, RANS or VLES methods are used for this case. We pay a
particular attention to the comparison of these two options with our hybrid
approach.

2. Methodology

The governing equations are discretized in space using a mixed finite-
volume/finite-element method applied to unstructured tetrahedrizations. This
scheme is a variational one relying on a finite-volume formulation for the con-
vective terms, with a basis and test function χl, associated with the finite-
volume cell centered on vertex l. A finite-element formulation is used for the
diffusive term, with a basis and test function φl continuous, linear by element,
equal to 1 at vertex l and vanishing at other vertexes. The Roe scheme [26]
represents the basic upwind component for the numerical evaluation of the
convective fluxes. A Turkel-type preconditioning term is introduced to avoid
accuracy problems at low Mach numbers [12]. To obtain second-order accu-
racy in space, the Monotone Upwind Scheme for Conservation Laws recon-
struction method (MUSCL) is used, in which the Roe flux is expressed as a
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function of reconstructed values of W at each side of the interface between
two cells. The introduced numerical dissipation is made of sixth-order space
derivatives [4] and, thus, concentrates on a narrow-band of the highest re-
solved frequencies. Finally, an implicit linearized time-marching algorithm
is used, based on a backward-difference scheme for the discretization of the
time derivative. The numerical method is second-order accurate in space and
time. More details can be found in [4].

The hybridization strategy is based on the NLDE idea, in which the flow
variables are decomposed as follows [19]:

W = < W >︸ ︷︷ ︸
RANS

+ W c
︸︷︷︸

correction

+W SGS

where < W > are the RANS flow variables, obtained by applying an averag-
ing operator to the Navier-Stokes equations, W c are the remaining resolved
fluctuations (i.e. < W > +W c are the resolved flow variables for LES or
VMS-LES in our case) and W SGS are the unresolved or SGS fluctuations.

As far as the closure of the RANS equations is concerned, we use the
Low Reynolds k − ε model proposed in [11], which was designed to improve
the predictions of the standard k− ε one for adverse pressure gradient flows,
including separated flows. The semi-discretization of the mean flow equations
can be written down as:

(
∂〈W 〉
∂t

, χl

)
+ (∇ · Fc(〈W 〉), χl) + (∇ · Fv(〈W 〉), φl) =

−
(
τR(〈W 〉), φl

)
l = 1, N .

(1)

in which (·, ·) denotes the L2 scalar product and Fc and Fv are the convective
and viscous fluxes. In this model, the Reynolds stress tensor τR has the
same form as in the standard k − ε model but the turbulent eddy viscosity

is defined by µt = Cµfµ
k2

ε
where Cµ = 0.09 and the damping function

fµ is given by fµ =
1− e−0.01Rt

1− e−
√
Rt

max

[
1,

√
2√
Rt

]
with Rt = k2

νε
; k and ε are

determined by ad-hoc modeled transport equations. In order to master mesh
requirements, a wall law is applied in the close vicinity of the wall. For
accuracy purpose, we choose the Reichardt analytical law [14] which gives
a smooth matching between linear, buffer and logarithmic regions. Because
the y+ normalized distance is generally subject to large variations in complex
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geometries, we have found mandatory to combine together wall law and low
Reynolds modeling which locally damps the fully-turbulent model in regions
in which the wall law does not cover the buffer zone.

For the LES part, we consider the VMS approach, in which the resolved
flow variables are decomposed as W̃ =< W > +W c = W + W ′, where
W are the large resolved scales (LRS) and W ′ are the small resolved scales
(SRS). We follow here the VMS approach proposed in [18] for the simulation
of compressible turbulent flows through a finite volume/finite element dis-
cretization on unstructured tetrahedral grids. In order to obtain the VMS
flow decomposition, basis and test functions can be expressed as: χl = χl+χ′

l

and φl = φl + φ′
l, in which the overbar denotes the basis functions spanning

the finite dimensional spaces of the large resolved scales and the prime those
spanning the SRS spaces. As in [18], the basis functions of the LRS space
are defined through a projector operator in the LRS space, based on spa-
tial average on macro cells, which are obtained by an agglomeration process.
Eddy-viscosity models are used here for the SGS terms, and more precisely
those proposed by Smagorinsky [32], Vreman [37] and the so-called WALE
model [23]. The eddy-viscosity introduced by these models, within the VMS
approach, is computed as a function of the SRS flow variables (small-small
approach). Moreover, the key feature of the VMS approach is that the SGS
model is added only to the smallest resolved scales. Finally, the SGS terms
are discretized analogously to the viscous fluxes. Thus, the Galerkin projec-
tion of the LES closure term is: −

(
τL(W ′), φ′

l

)
, and the VMS-LES equations

can then be written as follows:
(
∂W̃

∂t
, χl

)
+
(
∇ · Fc(W̃ ), χl

)
+
(
∇ · Fv(W̃ ), φl

)
=

−
(
τL(W ′), φ′

l

)
l = 1, N .

(2)

The filter width ∆ involved in the definition of the eddy-viscosity has
been set equal to the cubic root of the volume of each tetrahedron. The SGS
model constant has been set equal to 0.1 for the Smagorinsky model, to 0.5
for WALE and to 0.025 for the Vreman one.

An equation for the resolved fluctuations W c can then be derived by
substracting Eq. (1) to Eq. (2):
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(
∂W c

∂t
, χl

)
+
(
∇ · Fc(W̃ ), χl

)
− (∇ · Fc(< W >), χl) + (∇ · Fv(W

c), φl) =
(
τR(〈W 〉), φl

)
−
(
τL(W ′), φ′

l

)
l = 1, N .

(3)
The basic idea of the proposed hybrid model is to solve Eq. (1) in the

whole domain and to correct the obtained averaged flow by adding the re-
maining resolved fluctuations computed through Eq. (3), wherever the grid
resolution is adequate for VMS-LES. To identify the regions where the addi-
tional fluctuations need to be computed, a blending function θ is introduced,
which smoothly varies between 0 and 1. For θ = 1, no correction to < W >
is added, and the RANS approach is recovered. Conversely, wherever θ < 1,
additional resolved fluctuations are computed, and we want to recover the
VMS-LES approach as θ → 0. Thus, the equation for the resolved fluctua-
tions W c becomes:

(
∂W c

∂t
, χl

)
+
(
∇ · Fc(W̃ ), χl

)
− (∇ · Fc(< W >), χl) + (∇ · Fv(W

c), φl) =

(1− θ)
[(
τR(〈W 〉), φl

)
−
(
τL(W ′), φ′

l

)]
l = 1, N .

(4)
Although it could seem rather arbitrary from a physical point of view, in

Eq.(4) the damping of the RHS through multiplication by (1 − θ) is aimed
to obtain a progressive addition of fluctuations and, therefore, a progressive
switch of the model from the RANS to the VMS-LES mode where the grid
resolution is adequate.
Up to this point, following the NLDE approach, the hybrid method would
imply the solution of two systems of equations (Eqs. (1) and (4)) to compute
two different sets of variables, < W > and W c. Clearly, although possible,
this would lead to large computational costs. Therefore, we propose a further
simplified version of the hybridization. To this aim, Eqs. (1) and (4) are
recast together as follows:

(
∂W̃

∂t
, χl

)
+
(
∇ · Fc(W̃ ), χl

)
+
(
∇ · Fv(W̃ ), φl

)
=

−θ
(
τR(〈W 〉), φl

)
− (1− θ)

(
τL(W ′), φ′

l

)
l = 1, N .

(5)

In Eq. (5), 〈W 〉 should be the RANS mean, which is not available from

the solution of Eq. (5). In this study, we simply use τR(W̃ ), relying on the
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previously discussed tendency of RANS to naturally damp the fluctuations.
More sophisticated options are possible but they are not considered in the
present paper, again with the aim of obtaining a hybrid method suitable for
complex engineering simulations.

As blending function θ, we use θ = tanh(ξ), where ξ is the blending pa-
rameter, which should indicate whether the grid resolution is fine enough
to resolve a significant part of the turbulence fluctuations, i.e. to obtain a
LES-like simulation. The choice of the blending parameter is clearly a key
point for the definition of the present hybrid model. In the present study,
different options are proposed and investigated, namely: the ratio between
the eddy viscosities given by the LES and the RANS closures, ξV R = µs/µt,
the ratio between the LES filter width and a typical length in the RANS ap-
proach, ξLR = ∆/lRANS with lRANS = k3/2ǫ−1, and, finally, the ratio between
characteristic times of the LES and RANS approaches, ξTR = tLES/tRANS

with tLES = (SijSij)
−1/2 and tRANS = kǫ−1. The blending parameter clearly

depends on the grid resolution, since, as previously stated, the aim ideally is
to obtain a progressive switch from URANS to LES where the grid resolu-
tion becomes fine enough to resolve a significant part of the local turbulence
scales or fluctuations. The effects of grid resolution will be addressed in the
following Section.

3. Supercritical flow around a circular cylinder at Re = 140000

The proposed approach has been applied to the simulation of the flow
around a circular cylinder at Re = 140000 (based on the far-field velocity
and the cylinder diameter, D). This is a case proposed in [36]. While at this
Reynolds number the flow should be subcritical, the peculiarity of this test
case is that the flow is forced to be supercritical, by using a RANS model in
the boundary layer and increasing the turbulence intensity inflow condition.
In our computation, the domain dimensions are Li/D = 5, Lo/D = 15,
Ly/D = 14 where Lz/D = 2, Li and Lo are the distances of the cylinder
center from the domain inflow and the outflow, and Ly and Lz the domain
sizes in the lateral and spanwise directions. On the side surfaces free-slip is
imposed and the flow is assumed to be periodic in the spanwise direction. The
inflow Mach number is set to 0.1 so that the compressibility effects can be
considered as negligible. The inflow value of eddy-viscosity is set to about 5
times the molecular viscosity. The Reichardt analytical wall function is used
on the cylinder surface. We refer e.g. to [6] for details on the computation
of the turbulence variables from a wall law.
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Two different grids are considered; the first one (GR1) has 4.6×105 nodes,
while the second one has (GR2) 1.4×106 nodes. Both grids are composed
of a structured part in a circular crown around the cylinder surface and a
unstructured part in the rest of the domain. Inside the structured zone, the
nodes are uniformly distributed in the azimuthal and spanwise directions,
with 180 and 40 nodes for GR1 and 360 and 80 for GR2. On the other hand,
the radial distribution of nodes inside the structured zone obey a geometric
progression and the resolution is the same for both grids, with a distance
between the the cylinder boundary and the nearest layer of 0.004D. From
a rough estimation carried out by using an average shear velocity, this cor-
responds to y+ ≈ 28. However, as previously mentioned, the y+ is actually
significantly varying since a strong adverse pressure gradient is present. Note
that, to limit the total number of nodes, for GR2 the radial thickness, rt,
of the structured crown is half of that for GR1: rt/D = 0.1 for GR1 and
rt/D = 0.05 for GR2.

The main bulk flow parameters obtained in the hybrid simulations are
summarized in Table 1, together with the results of DES simulations in the
literature and some experimental data. The names of the hybrid simulations
indicate: first the grid (GR1 or GR2), then the blending parameter (VR and
LR for viscosity ratio and length ratio) and finally the SGS model (S, V
and W for Smagorinsky, Vreman and Wale). The results obtained in a 3D
URANS simulation carried out with the Low-Reynolds k − ε model [11] on
the GR1 grid are also reported.

As a general consideration, the agreement with the DES simulations, with
which our results can be directly compared, is good for all the simulations
carried out with the present hybrid approach. As for the comparison with
the experiments, since our simulations are characterized by turbulent sep-
aration, it makes sense to compare the results with experiments at higher
Reynolds number, as also done in [36], in which the transition to turbulence
of the boundary layer also occurs upstream separation. The agreement with
these high Re experiments is indeed satisfactory, as shown in Table 1 and
in Figure 1, showing the distribution of the mean pressure coefficient over
the cylinder surface. Conversely, the results of the URANS simulation show
significant discrepancies with respect to the DES and the experimental data
and, namely, a noticeably higher absolute value of the Cp in the wake, which
results in an overestimated mean drag coefficient. Moreover, the mean re-
circulation bubble is significantly shorter than in the reference experiments
and in the hybrid simulations, and this is connected with an overestimation

9



Table 1: Main bulk flow quantities. Cd is the mean drag coefficient, C ′

l is the r.m.s. of
the lift coefficient, St the vortex shedding frequency made nondimensional by the cylinder
diameter and the freestream velocity, lr is the length of the mean recirculation bubble and
Cpb the value of the mean base pressure coefficient. Blending parameter: VR and LR for
viscosity ratio and length ratio. SGS model: S, V and W for Smagorinsky, Vreman and
Wale.

Present Re Cd C ′
l −Cpb St lr

Simulations

GR1-URANS 1.4 105 0.756 0.433 0.85 0.275 0.67
GR1-LRV 1.4 105 0.65 0.077 0.70 0.28 1.14
GR1-LRW 1.4 105 0.66 0.094 0.72 0.28 1.24
GR1-VRS 1.4 105 0.62 0.083 0.72 0.30 1.20
GR1-LRS 1.4 105 0.62 0.083 0.68 0.30 1.19
GR2-LRS 1.4 105 0.54 0.065 0.63 0.33 1.13

Simulations

DES [36] 1.4 105 0.57-0.65 0.06-0.1 0.65-0.7 0.28-0.31 1.1-1.4
DES [20] 1.4 105 0.6-0.81 – 0.85-0.91 0.29-0.3 0.6-0.81

Measurements

Exp. [15] 3.8 106 0.58 – 0.58 0.25 –
Exp. [1] 5 106 0.7 – – – –
Exp. [27] 8.4 106 0.7 – 0.8 0.27 –
Exp. [29] 8 106 0.52 0.06 – 0.28 –
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of the amplitude of lift oscillations (see the values of C ′
l in Table 1). An

example of the time behavior of the lift coefficient for a hybrid simulation
(GR1-LRS) is given in Figure 2a and can be compared with the one obtained
in the URANS simulation shown in Figure 2b. Besides the larger amplitude
of the Cl oscillations, it is evident that in the URANS simulation the modu-
lations of the amplitude of these oscillations are significantly less important
than in the hybrid simulations. The lift behavior obtained in the URANS
simulation is close to those typically obtained in 2D simulations (e.g. [22]);
indeed in the present URANS simulation the 3D phenomena in the flow have
been observed to be almost totally damped because of a too large introduced
turbulent viscosity. This is confirmed also by the instantaneous field values
of the spanwise velocity and of the vorticity components ωx and ωy, which
are much lower in the RANS simulation than in the hybrid ones (not shown
here for sake of brevity).

As for the behavior of the hybridization strategy in the field, for all the
definitions of the blending parameter, the model actually works in RANS
mode in the boundary layer and in the shear-layers detaching from the cylin-
der, while in the wake a full LES correction is recovered. This is shown,
for instance, in Figure 3, in which the instantaneous isocontours of spanwise
vorticity obtained in the simulation GR1-LRS are reported, to which the
isolines of the blending function θ = 0.1 and θ = 0.9 are superimposed. This
a-posteriori confirms that the introduced blending function is actually able
to give, at least qualitatively, the desired behavior in hybrid simulations of
bluff-body flows. From Figure 4, it appears that a smooth passage from a
RANS modeling in the boundary layer and in the detaching shear-layers to
a LES one in the wake is obtained, consistently with one of the aims of the
investigated hybridization strategy.

Let us analyze now the sensitivity of the results obtained in the hybrid
simulations to different parameters and, first, the sensitivity to the definition
of the blending parameter, by comparing the results of the simulations GR1-
VRS and GR1-LRS. From Table 1, it appears that the results are practically
insensitive to the definition of the blending parameter. This is also confirmed,
for instance, by the distribution over the cylinder of the mean pressure coef-
ficient, Cp, reported in Fig.1a. As for the behavior of hybridization strategy,
it is also similar for the two definitions of the blending parameter. Analogous
results were also found with the definition based on the ratio of character-
istic times and they are not shown here for sake of brevity. Moreover, the
sensitivity to the VMS-LES closure model is very low (compare GR1-LRS,
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GR1-LRV and GR1-LRW in Table 1 and Figure 1b).
As for the effect of grid refinement, from Table 1 it can be seen that

it leads to an increase of the Strouhal number of about 10% with respect
to the simulations on the coarser grid. The obtained value is significantly
larger than the experimental ones reported in Table 1. These experimental
data are however only some examples of those available in the supercritical
regime, and the Strouhal values obtained in our simulations are inside the
experimental range in this regime (see e.g. [40]). Grid refinement also leads
to a decrease of C̄d (compare GR1-LRS and GR2-LRS). This is due to a
decrease of the absolute value of the pressure coefficient in the separated
wake (see Table 1 and Fig ure 1b). However, note that, as it is quite a
usual situation for unstructured grids, the refinement carried out to obtain
grid GR2 has significantly changed the local quality of the grid (in terms
of homogeneity and regularity of the elements) and this may enhance the
sensitivity of the results. As for the behavior of the hybridization strategy
with grid refinement, it is qualitatively correct. Indeed, the extension of the
zone in the detaching shear-layers in which the model works in RANS mode
decreases with grid refinement, as shown for instance in Figure 4 reporting
a zoom near the cylinder of the instantaneous isocontours of the blending
function θ, obtained in the simulations GR1-LRS and GR2-LRS. This is
consistent with the spirit of the blending method; indeed, for a finer grid
resolution a larger part of the grid is detected as adequate for LES and thus
the RANS zone is reduced.

4. Supercritical flow around a circular cylinder at Re = 1M

Only a few numerical investigations have been performed for Reynolds
numbers higher than 5 · 105. This interval is inside the supercritical regime
which appears at Reynolds number higher than 2 · 105 and for which the
separation becomes turbulent, see [34]. It is generally accepted that periodic
vortex shedding is very weak (if any) in the lowest parts of the interval
[5 · 105, 1.5 · 106]. With increasing Reynolds numbers, the final separation
point moves forward, which corresponds to a slight increase of the drag.
We carried out simulations at three different Reynolds number, viz. 6.7 ·
105,106 and 1.25 · 106.
For these simulations, the computational domain is a cylinder of diameter
20 times larger than the obstacle, and with a span of π times the obstacle
diameter. The boundary conditions are the same as for the case at Re =
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1.4 · 105, except for the inflow, at which the turbulent viscosity is set to 30
times the molecular viscosity. The wall law approach is used with a distance
to the wall δ set to .002, which corresponds for the most part to y+ ≃ 100.
Two meshes are used for the computations presented hereafter. The first
one of 2.74 · 105 vertices is a radial mesh with a first layer of vertices of
thickness δ/5, and with a uniform meshing along the azimuthal and spanwise
directions. The second one involves 1.2 ·106 vertices. It is also a radial mesh,
but with a mesh clustering in the azimuthal direction which results in a mesh
4 times finer near the separation and the wake. The WALE SGS model is
used for all the computations.

Let us analyze the case at Re = 106. The main outputs are summed
up in Table 2. Among the few measurements, we have reported the ones
of Shih et al. [30], Schewe [29], Guven [13], [35], more recently Gölling
[10], and the synthetic book of Zdravkovich [40]. We have found only three
computations with LES models, by Kim and Mohan [17] and Catalano et
al. [5], Ono and Tamura [24], and a RANS result in [5]. Rather surprisingly,
our RANS calculation give results which differ importantly with the RANS
results produced in [5] with a similar model. Our RANS prediction of drag
is rather good, but the Strouhal predicted is a little high with respect to
experiments, and the C ′

l is 2-3 times too low. The LES simulations of the
above references are carried out on grids having 2.3 · 106 [5], 4.5 · 106 nodes
[24], and 6.8 ·106 nodes [17]. We check that LES computations need a rather
high number of nodes, since with less than 4M nodes, mean drag is over
estimated. The fine mesh calculations give a rather coherent prediction of the
C ′

l , at 0.12−0.13. With our very coarse mesh the VMS/LES calculation gives
values of drag and C ′

l too high. The hybrid RANS/VMS-LES simulations
give rather accurate predictions in terms of mean drag, base pressure and
Strouhal number already on the coarser grid, while the VMS/LES one on the
same grid gives a significant overestimation of the mean drag coefficient. The
effect of grid refinement on the predictions of the bulk parameters obtained
in the hybrid RANS/VMS-LES simulations are moderate, except for the
time fluctuations of lift. The appraisal of the results for this parameter is
not evident, we adopt the range of [0.1− 0.15] indicated by Zdravkovich . A
reasonably high level of fluctuation appears in instantaneous views of velocity
and vorticity (Figures 6 and 7).

For comparison purpose with available Cp measurements [27, 38], we have
recomputed the same flow through the hybrid RANS/VMS-LES approach at
Reynolds numbers 6.7 ·105 and 1.25 ·106, see Figure 5. The overall agreement
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is good. Note again how grid refinement has a limited effect on the mean
pressure output. For the case at Re = 6.7 · 105 in Figure 5a, there is a slight
under-estimation of the base pressure. Moreover, in the experimental curve
there is a kink at θ = 110o, which indicates the presence of a small secondary
recirculation bubble. This bubble is not captured in our calculations. It is
not either captured in [5], but a separation is found in [24]. At Re = 106

the base pressure is very well predicted, while it seems that the separation
occurs upstream than in the experiments. However, the prediction of the
separation angle obtained at Re = 106, θ = 127o, is not so different from the
rather recent measurement θ = 130o obtained by Goelling [10].

Table 2: Bulk flow parameters prediction for simulations at Rey = 106: C̄d is the mean
drag, C

′

l is the root mean square (r.m.s) of the lift coefficient, θ is the separation angle,St
the vortex shedding frequency made nondimensional by the cylinder diameter and the
freestream velocity.

Present simulations Mesh Cd C ′

l Cpbase St θ

size

URANS 1.2M 0.24 0.06 0.25 0.46 129
LES-VMS 1.2M 0.36 0.22 0.22
Hybrid RANS 1.2M 0.24 0.17 0.28 0.38/0.17 118

Simulations

RANS of Catalano et al. [5] 2.3M 0.39 0.33
LES of Catalano et al. [5] 2.3M 0.31 0.32 0.35
LES of Ono and Tamura [24] 4.5M 0.27 0.13 0.4
LES of Kim and Mohan [17] 6.8M 0.27 0.12 0.28 - 108

Experiments

Shih et al. [30] 0.24 0.33
Schewe [29] 0.22 0.44
Szechenyi [35] 0.25 0.32 0.35
Guven et al. [13] 0.22
Goelling [10] 0.35/0.10 130
Zdravkovich [40] 0.2-0.4 .1-.15 .2-.34 0.50/0.18
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5. Concluding remarks

A strategy for blending RANS and VMS-LES has been investigated in
the simulation of the flow around a circular cylinder. A blending function
is introduced, in order to automatically switch from RANS to LES and vice
versa. For complex geometries and complex grid topologies, as e.g. for un-
structured grids, this automatic switch may be advantageous with respect
to methods in which RANS and LES regions are a priori specified. The
blending function is based on the values of a blending parameter. Differ-
ent definitions of this parameter are proposed and investigated herein; all of
them are aimed to identify whether the used grid is adequate to LES, i.e. if
it is adequate to resolve additional fluctuations with respect to RANS, while
the distance from the wall is not explicitly used. This again is interesting for
complex geometries and complex grid topologies, as for unstructured grids
(used herein), for which the computation of the distance from the wall yields
practical difficulties. Another positive feature is that the investigated strat-
egy does not require any specific RANS or LES closure. In particular, in the
present paper, the VMS approach has been integrated in the hybridization
strategy for the closure of the LES part, with different eddy-viscosity subgrid
scale models.

This hybrid method has been applied to the simulation of the flow around
a circular cylinder at Reynolds number 1.4 · 105, characterized by turbulent
boundary-layer separation due to ad-hoc inflow conditions. The sensitivity
to different parameters, viz. the grid resolution, the SGS model for the LES
closure and the definition of the blending parameter, has been investigated.
The results are practically insensitive to the definition of the blending pa-
rameter. For all the considered definitions, the model works in RANS mode
in the boundary layer and in the shear layers detaching from the cylinder
while LES mode is used in the wake, passing through a layer in which the
model works in hybrid way. This gives an a posteriori support to our choice
of not explicitly enforcing the distance from the wall in the definition of the
blending parameter. The predictions of the main flow parameters are in
good agreement with the results of DES simulations in the literature. For
much higher Reynolds numbers, from 6.7 · 105 to 1.25 · 106, bulk quantities
and the mean Cp distribution over the cylinder can be reasonably predicted
even with the use of a very coarse mesh in the case of the RANS/VMS-LES
hybridization. Grid refinement has only a moderate impact on the hybrid
RANS/VMS-LES predictions. These results are encouraging in the perspec-
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tive of the application of the same methodology to the simulation of complex
engineering problems, such as flows over tube arrays or components of off-
shore platforms.
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Figure 1: Flow past a cylinder at 1.4 · 105: Distribution over the cylinder surface of the
mean pressure coefficient obtained in the different simulations compared to experimental
data and to DES results. See Table 1 for detailed legend.
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Figure 2: Flow past a cylinder at 1.4 · 105 : Time variation of the lift coefficient. (a)
GR1-LRS (coarse grid, blending on length ratio, VMS with Smagorinsky SGS); (b) GR1-
URANS.

Figure 3: Flow past a cylinder at 1.4 · 105:Instantaneous isocontours of spanwise vorticity
(simulation GR1-LRS). The lines are the isolines of the blending function: θ = 0.1 (black)
and θ = 0.9 (white).
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Figure 4: Flow past a cylinder at 1.4 · 105: Instantaneous isocontours of the blending
function θ based on characteristic length ratio. The isocontours range from 0 (white), cor-
responding to a full LES correction, to 1 (black), corresponding to pure RANS. Simulations
GR1-LRS (left) and GR2-LRS (right).

(a) (b)

Figure 5: Mean Cp as a function of polar angle. Comparison between experimental data
and numerical results obtained on two meshes, of resp. 2.74 · 105 cells and 1.21 · 106 cells.
(a) Reynolds 6.7 ·105, present results compared with measurements of Flachsbart [27]. (b)
Reynolds 1.25 · 106 comparison with measurements of Warschauer and Leene [38].

22



Figure 6: Flow around a cylinder at Reynolds number 1M : instantaneous views of velocity.

Figure 7: Flow around a cylinder at Reynolds number 1M : instantaneous views of vorticity.
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