
Ecinads-D5.2: Adjoint differentiation of first
version

H. Alcin,V. Pascual, L. Hascoet

Abstract This ECINADS deliverable is devoted in a first phase of the Reverse Au-
tomatic Differentiation of the paralle software AIRONUM. We recall the main fea-
tures of reverse AD and propose a novel method delivering and adjoint state as the
output of AD and not as an intermediate to intrusively find into the differentiated
code.

1 INTRODUCTION

2 REVERSE-MODE AUTOMATIC DIFFERENTIATION

In this section we describe Automatic Differentiation (AD), focusing on the so-
called reverse mode, which will be used intensively. Optimal Control problems
make an intensive use of derivatives of the form transposed-Jacobian-times-vector,
or, equivalently when the function has a scalar result, the whole Jacobian row vec-
tor. We will show why the reverse mode of AD is the most efficient way to get these
derivatives.

Then we shall discuss the time-memory tradeoffs that must be made to use
reverse-mode AD on large industrial-size applications. We shall show how specific
data-flow analyses on the program to be differentiated can help create an efficient
differentiated program.

H. Alcin
INRIA, B.P. 93, 06902 Sophia-Antipolis, France, e-mail: Hubert.Alcin@inria.fr

V. Pascual
INRIA, B.P. 93, 06902 Sophia-Antipolis, France,

L. Hascoet
INRIA, B.P. 93, 06902 Sophia-Antipolis, France.

1

2 H. Alcin,V. Pascual, L. Hascoet

In general, it requires an AD tool to perform AD. Several AD tools propose
the reverse mode. For the applications presented in this paper, we used the tool
TAPENADE [2], which is developed and distributed by our research team. The data-
flow analyses that we describe are implemented and tested inside TAPENADE.

2.1 Principles of reverse AD

Given a source program P that evaluates a function F that goes from input x to
result y = F(x), AD is able to create a new source program that computes analytical
derivatives of F . In particular the reverse mode of AD creates a source program P
that computes F ′∗(x) · y for any given vector y. In the special case where y is scalar,
if we just take y to be one, P returns the row vector F ′(x), i.e. the gradient.

To explain the principle of the reverse mode, let’s suppose for the sake of sim-
plicity that P is a simple list of elementary statements Ik,k ∈ [1..p]. Calling fk the
function implemented by Ik, the F computed by P is

F = fp ◦ fp−1 ◦ . . .◦ f1 .

Using the chain rule, the Jacobian F ′ of F is:

F ′(x) = (f ′p ◦ fp−1 ◦ fp−2 ◦ . . .◦ f1(x))
. (f ′p−1 ◦ fp−2 ◦ . . .◦ f1(x))
. . . .
. (f ′1(x)) .

(1)

Let us call for short x0 = x and xk = fk(xk−1). The transposed-Jacobian-times-vector
product that we need writes:

F ′∗(x).y = f ′∗1 (x0). f ′∗2 (x1). f ′∗p (xp−1).y (2)

The reverse differentiated program P will evaluate eq.(2), for any given x and y, from
right to left, because matrix×vector products are much cheaper than matrix×matrix
products. In theory, the computation cost of P is only a very small constant multiple
of the cost of P.

In contrast, evaluating the expression in eq.(2) from left to right would result in
computing F ′∗(x) explicitly, and this has a cost which is proportional to the dimen-
sion of x. In our examples, this can be a large number. This explains why reverse
AD is definitely the most efficient way to compute the derivatives needed for our
Optimal Control problems.

Evaluating eq.(2) from right to left results in the following structure of the reverse
differentiated program:

Ecinads-D5.2: Adjoint differentiation of first version 3

yp−1 := f ′∗p (xp−1).y
. . .
yk−1 := f ′∗k (xk−1).yk
. . .
y0 := f ′∗1 (x0).y1
return y0

On this structure the main drawback of reverse AD becomes apparent: the interme-
diate values xk are used in the reverse of their computation order in P. A typical
way to handle this is to run P first, this time storing the intermediate values xk. This
defines the forward sweep −→P , which must be run first. Then comes the backward
sweep ←−P , which consists of the differentiated instructions above, with additional
instructions inserted to progressively restore the intermediate values xk.

The forward and backward sweeps interact using a stack, and we shall call
restoration of a variable the couple of statements that push this variable to the stack
in −→P and pop it from the stack in←−P . Before each instruction Ik in −→P , we consider
the few variables that Ik may overwrite. For each such variable, if its present value
is required in the derivatives of I1; . . . ; Ik, then it must be restored. Detection of the
variables required by the derivatives of instructions from I1 to any Ik is called the
TBR (To Be Restored) analysis, and is a standard data-flow analysis for AD.

This way, the stack grows reasonably slowly with the size, i.e. execution time,
of P. Yet the growth is linear, and for a very large P, radical time-memory tradeoffs
must come into play, which we discuss in the next section.

2.2 Data-flow analyses for time-memory tradeoffs

The general time-memory tradeoff is called checkpointing, illustrated on Fig. 1. The

forward sweep

backward sweep

CHECKPOINTING

U C D
Snp

PUSH

POP

Fig. 1 The Checkpointing time-memory tradeoff

forward sweep goes from left to right, the backward sweep goes from right to left.
Each Ik is vertically aligned with its derivative I′k. Suppose P is split in three suc-
cessive fragments U, C, and D. Checkpointing C amounts to running C without any
restoration push. When the backward sweep reaches back fragment C, the interme-
diate values are missing. To keep things going, C is run a second time, now like

4 H. Alcin,V. Pascual, L. Hascoet

a real forward sweep with the push statements, and then the backward sweep can
resume execution till the end.

Duplicated execution of C obliges us to save a sufficient number of variables,
called a Snapshot (Snp). Snapshots are usually smaller than the total number of
push performed by C. All in all a good choice of checkpoints, most probably nested,
results in a stack size that grows only like the logarithm of the size of P, at the cost
of repeated executions that make the execution time increase, by a factor which is
also of the order of the logarithm of the size of P [1].

Because it is essential to keep the stack size low, we studied the checkpoint mech-
anism, looking for minimal snapshots. Let’s go back to Fig. 1 and find what must be
in the snapshot Snp. The goal is that the second execution of C runs exactly like the
first. Using standard data-flow analysis terminology, a sufficient condition is that the
use set of C is not overwritten between its two executions. In other words, execution
of push(Snp);C;−→D ;←−D ;pop(Snp), must modify no variables in use(C). Introduc-
ing the out set of variables possibly modified by a piece of code, the constraint
writes:

out
(
push(Snp);C;−→D ;←−D ;pop(Snp)

)
∩use(C) = /0 (3)

Classically, the out sets of successive code fragments accumulate. However, the
push and pop pairs remove variables from the out sets. Therefore eq.(3) rewrites as:(

out(C)∪out(−→D ;←−D)
)
\Snp∩use(C) = /0 (4)

And the smallest Snp that obeys this constraint is:

Snp = (out(C)∪out(−→D ;←−D))∩use(C) (5)

Now, we observe that the out set of a forward-backward pair such as −→D ;←−D de-
pends on the set req of required variables imposed on it by the TBR analysis. Indeed,
if variable v is added into req, then if Dmodifies v,−→D ;←−D must restore it. In any case,
v is removed from out(−→D ;←−D). Therefore we have two options:

• eager snapshot: we keep the req set before D to the req before C, i.e. the vari-
ables required by←−U derivatives of U.

• lazy snapshot: we add to the req set before D all the variables in use(C), and
then we know that

out(−→D ;←−D)∩use(C) = /0 (6)

and Snp is reduced to out(C)∩use(C), at the expense of more restorations inside
−→D ;←−D .

Experimental measurements show that the lazy snapshot option generally performs
better, although this depends on the code. Table 1 shows the effect of the two op-
tions on the computation of the gradient of a classical 2D Navier-Stokes solver. We
observe an interesting 25% gain in memory for the lazy snapshot option. CPU time
is also improved marginally, probably because less memory traffic also means less
CPU time.

Ecinads-D5.2: Adjoint differentiation of first version 5

Snapshot: eager lazy
Memory (Mbytes) 248.1 184.7

CPU (seconds) 25.2 22.3

Table 1 Comparison of eager and lazy snapshot strategies on the gradient of a 2D Navier-Stokes
solver

Whatever the option chosen, this definition of the snapshot correctly handles suc-
cessive checkpoints. Suppose that the D program fragment is split again, to feature
a second checkpoint C2. Suppose that C uses a variable v but doesn’t modify it,
whereas C2 uses and modifies v. v is not modified elsewhere. In other words:

v ∈ use(C); v /∈ out(C); v ∈ use(C2); v ∈ out(C2)

Equation (5) tells us that v ∈ Snp(C2). If we use eager snapshots, then with the help
of a good “out” analysis, we find that v /∈ out(−→D ;←−D) because v∈ Snp(C2), and thus
v /∈ Snp(C). On the other hand if we use lazy snapshots, v /∈ Snp(C) simply because
Snp(C) is now only out(C)∩use(C), even without the need for a good “out” analysis
on −→D ;←−D .

This is particularly important for the derivatives of the assembly phases, in which
the current state variables are in general used at several places to compute the resid-
uals, and are only modified once, at the end of the (pseudo-)time step, to hold the
next state.

3 Why and how shall we get the adjoit?

3.1 Problème continu

We consider a system governed by the Navier-Stokes equations of a compressible
gas, with a state variable W :

W =


ρ

ρu
ρv
ρw
E

 .

The state equation writes:
Ψ(W) = 0

with
Ψ(W) = Wt +div(FE(W)+FV (W)) sur Ω×]0,T [

+ initial and boundary conditions.

6 H. Alcin,V. Pascual, L. Hascoet

We also introduce a functional

j = (g,W) , g = g(x, t).

3.2 Discrete problem

Let us denote by Wh the discrete state solution.
The discretised Navier-Stokes system is written:

Ψh(Wh) = 0

3.3 The mesh adaptation problem

We want to finde a fixed optimal mesh Mopt

• Minimising the error on functional: δ j(M) = | j(W)− j(WM)|.

The optimal metric method
We define a continuous mesh on a computational domain Ω ⊂ R3

M = (M (x))x∈Ω

from a positive symetric matrix M (x) defining a Riemannian metric.

Ther the initial problem reduces to the research of a continuous optimal metric.
Optimal metric Lemma : The optimal metric is expressed in terms of state and

adjoint state:
Mopt = Funct(W,W ∗)

where W ∗ is the adjoint state, solution of:

(
∂Ψ

∂W
|W)∗W ∗ = (

∂J
∂W
|W)∗

In practise, W and W ∗ are approximated by their discretised counterpart Wh and
W ∗h

Optimal metric for the Euler model Let us introduce

H(x) =
m

∑
n=1

5

∑
j=1

([∆ t] j(x))+ [∆x] j(x)+ [∆y] j(x)+ [∆z] j(x)) ,

Ecinads-D5.2: Adjoint differentiation of first version 7

[∆ t] j(x)) =
∫ T

0

∣∣∣W ∗j (x, t)
∣∣∣ · ∣∣H((Wj,t))(x, t)

∣∣ dt,

[∆x] j(x) =
∫ T

0

∣∣∣ ∂W ∗j
∂x (x, t)

∣∣∣ · ∣∣H(F1(Wj))(x, t)
∣∣ dt,

[∆y] j(x) =
∫ T

0

∣∣∣ ∂W ∗j
∂y (x, t)

∣∣∣ · ∣∣H(F2(Wj))(x, t)
∣∣ dt,

[∆z] j(x) =
∫ T

0

∣∣∣ ∂W ∗j
∂ z (x, t)

∣∣∣ · ∣∣H(F3(Wj))(x, t)
∣∣ dt .

where W ∗j is the j-th component of the adjoint array W ∗ and H(Fi(Wj)) the
Hessian of the j-th component of the array Fi(W).

The optimal metric writes:

Mopt(x) = C det(|H(x)|)−
1
5 |H(x)|

where the constant C depends on the prescribed number N of nodes:

C = N
2
3

(∫
Ω

det(|H(x)|)
1
5 dx
) 2

3
.

3.4 Evaluation of adjoint through AD

We describe now how the adjoint will be obtained from particular diffferentiated
code. The adjoint state W ∗h is the solution of the linear system:

(
∂Ψh

∂Wh
|(κ,Wh))

∗W ∗h = (
∂J

∂Wh
|(κ,Wh))

∗.

Computation of the adjoint We introduce ab artificial parameter κ:

jh(κ) = (g,Wh(κ))

Ψ̄h = Ψh(κ,Wh(κ))+κ

• ∂ j
∂κ

= (g, ∂W (κ)
∂κ

)
• By the implicit function theorem:

dW (κ)
dκ

=−Ψ(κ,W (κ))
∂W

−1
Ψ(κ,W (κ))

∂κ

8 H. Alcin,V. Pascual, L. Hascoet

thus
∂ j
∂κ

= (g,−Ψ(κ,W (κ))
∂W

−1 Ψ(κ,W (κ))
∂κ

)
• Then putting Ψ̄ = Ψ +κ on a

∂ j
∂κ

.δ = (g, ∂W
∂κ

δ) =−(∂Ψ̄

∂W
−∗

g, ∂Ψ̄

∂κ
δ)

now W ∗ = ∂Ψ

∂W
−∗

g = ∂Ψ̄

∂W
−∗

g d ’où
∂ j
∂κ

.δ =−(W ∗,δ)

Lemma : with :
jh(κ) = (g,Wh(κ))

Ψh(κ,Wh(κ)) = κ

we have: w∗h =− d jh
dκ
|κ=0.

Structure of the initial code
We need to define (if not already available) a routine, the “top routine” having:

• g as an input parameter, but not to be differentiated,
• κ as an“independent input variable” for the differentiation,
• jh =(g,Wh) as ”dependent output variable”, i.e. the output the derivative of which

with respect to the independent input variable is to be computed.

Size of arrays
Assuming that the state W is made of ktmax instantaneous fields, each of them

being of dimension ns×5, where ns is the number of nodes,

• the parameter g is of dimension ktmax×ns×5.
• κ is of dimension ktmax×ns×5.
• the adjoint state W ∗h is of dimension ktmax×ns×5.
• the state Wh will need to be stored, with a dimension ktmax×ns×5.

Choice of inverse mode It is justified by the following remarks:

• jh maps Rp into R and therefore so does its differential applied to a given value.
• The computation of the adjoint- differential of jh is efficient since it maps Rp into

R.

4 PRELIMINARY CONCLUSIONS

Several important milestones in the obtention of an adjoint by reverse differentiation
have been identified. New difficulties arose in the application of the novel F90 ver-
sion of TAPENADE to a new but complex CFD software. The next step will address
the efficient adjoint differentiation of the main routines of mpi library.

Ecinads-D5.2: Adjoint differentiation of first version 9

5 Acknowledgements

This work has been supported by French National Research Agency (ANR) through
COSINUS program (project ECINADS no ANR-09-COSI-003). HPC resources
from GENCI-[CINES] (Grant 2010-x2010026386 and 2010-c2009025067) are also
gratefully acknowledged.

References

1. A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse
automatic differentiation. Optimization Methods and Software, 1:35–54, 1992.

2. L. Hascoet and V. Pascual. Tapenade 2.1 user’s guide. Technical Report 0300, INRIA, 2004.

