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Abstract The ECINADS projet aims at the efficient solution of state and adjoint
systems for mesh adaptation and control. In fine, the adjoint is obtained by reverse
differentiation. We first consider and shortly synthetise here the application of Au-
tomatic Differentiation in direct mode to the CFD code AIRONUM.

1 INTRODUCTION

For a long time, industrial CFD numerical studies have been addressing simula-
tion quasi-exclusively. Now more and more studies address the next step, i.e. Op-
timal Control problems, starting from some existing simulation code. This can be
done with any kind of simulation code, although nowadays this is still limited in
most cases to steady models. Optimal Control on genuine unsteady simulations still
proves very expensive in an industrial context. Furthermore, Optimal Control meth-
ods can also address other questions, such as the control of numerical errors that
will be describe in a forthcoming report.

Development of an Optimal Control application starts from an existing Simula-
tion application, and reuses key parts of it. Let us identify these parts. Given a set
of parameters, a simulation software gives a prediction of a physical process. For
instance a “numerical wind tunnel” predicts the flow of air around a plane shape,
using only computation. The predicted flow is the unique solution of a (set of) math-
ematical equation which we call the state equation, according to Optimal Control
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terminology. Numerical resolution of the discretized state equation involves in fact
two important parts.

• One is the assembling part: for given arbitrary values of the state variables W , and
using values of external parameters γ (e.g. the geometry), it computes a residual
array, which reflects how the state variables satisfy the state equation. It is there-
fore

state-assembler: (γ,W ) 7→Ψ(γ,W )

where Ψ is in fact the left-hand side of the discretized state equation

Ψ(γ,W ) = 0 .

• The other is the resolution algorithm: for the given fixed external parameters γ ,
it uses the residual returned by the state-assembler to produce the state solution
W (γ) that nullifies the residual (or at least makes it sufficiently small).

state-resolution: γ 7→W (γ)
such thatΨ(γ,W (γ)) = 0.

This is most often done iteratively, by incremental modifications of an arbitrary
initial state, each modification driven by the residual for the current state.

To turn a simulation application into an Optimal Control application requires an
additional ingredient, the objective functional that will evaluate a scalar cost for any
possible parameters and state. Given a set of parameters γ , which we now view as
control parameters, and given the corresponding solution state W (γ), it computes
one (or several) optimization criterion, i.e. the value of the objective functional for
these control parameters and state. This objective functional takes into account all
industrial targets and constraints for a given process or product.

objective-assembler:(γ,W ) 7→ J(γ,W )

The goal of Optimal Control is to find control parameters γ which will make the
objective functional smaller.

When the size of the parameter array is small, many methods can find the mini-
mum easily enough. However for large numbers of control parameters, approaches
that use analytic gradients become necessary. We advocate the following strategy to
obtain these gradients:

• from the state-assembler, develop a gradient-assembler that computes the resid-
ual corresponding to derivatives of the state equation. This part of the strategy
relies on Automatic Differentiation (AD).

• develop an adequate resolution algorithm for the gradient, that uses the gradient-
assembler to iteratively find the requested gradient.

In this deliverable, we analyze this strategy to compute gradients, which ulti-
mately yields a mesh adaptation and control loop. One objective is to maximize
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the re-use of code from simulation codes into the optimization code. This strat-
egy strongly relies on Automatic Differentiation. The direct differentiation mode of
TAPENADE has been applied to a whole software written in F90 and mpi. This
section addresses two issues in this differentiation. First we describe one among
the important difficulties we encountered, the problem of managing dynamic allo-
cations. Second we give in short the accuracy validation of the code obtained.

2 The TAPENADE program differentiator

TAPENADE is an Automatic Differentiation Engine developed at INRIA Sophia-
Antipolis by the TROPICS team. TAPENADE can be utilized as a server (JAVA
servlet), which runs at INRIA Sophia-Antipolis. The current address of this TAPE-
NADE server is

http://www-tapenade.inria.fr:8080/tapenade/index.jsp,

The Tapenade server. TAPENADE can also be downloaded and installed locally as
a set of JAVA classes (JAR archive). In that case it is run by a simple command line,
which can be included into a Makefile. It also provides you with a user-interface to
visualize the results in a XHTML browser.

In the work presented here, we shall use the direct mode of differentiation. Given
a source program P that evaluates a function F that goes from input x to result
y = F(x), AD is able to create a new source program that computes analytical
derivatives of F . In particular the reverse mode of AD creates a source program
P that computes F ′∗(x) · y for any given vector y. In the special case where y is
scalar, if we just take y to be one, P returns the row vector F ′(x), i.e. the gradient.

To explain the principle of the direct mode, let’s suppose for the sake of simplicity
that P is a simple list of elementary statements Ik,k ∈ [1..p]. Calling fk the function
implemented by Ik, the F computed by P is

F = fp ◦ fp−1 ◦ . . .◦ f1 .

Using the chain rule, the direct mode gives the Jacobian F ′ of F as:

F ′(x) = ( f ′p ◦ fp−1 ◦ fp−2 ◦ . . .◦ f1(x))
. ( f ′p−1 ◦ fp−2 ◦ . . .◦ f1(x))
. . . .
. ( f ′1(x)) .

(1)

In direct AD in general and in particular in TAPENADE, each instruction of the
form:

y 7→ fp(y)

is replaced by the coucle ogf instructions:

y 7→ fp(y)
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(y,dy) 7→ f ′p(y)dy

3 Differentiation of a complex F90 software

3.1 The code AIRONUM

AIRONUM is CFD experimental software written in FORTRAN 95 and using the
mpi communication library. It computes turbulent compressible flows with a Large
Eddy Simulation model based on a Variational Multiscale formulation and a statis-
tical model based on the k-epsilon Reynolds Average Navier-Stokes model. Both
modelisation are combined in a hybrid RANS-LES formulation. The state equation
is written:

Ψh(Wh) = 0

where Ψh holds for the equation residual, driven to zero after resolution, and Wh for
the state variable, solution of the state equation after the residual is driven to zero.
Then we compute a scalar output functional :

jh = (g,Wh)

where g is a prescribed observation vector.
For differentating AIRONUM, we have introduced a source term κ in the state

equation residual
Ψh(Wh)−κ = 0

therefore the state variable is an implicit function of κ:

Wh = Wh(κ)⇔Ψh(Wh)−κ = 0

We differentiate the scalar product jh of the state variable by vector g:

jh(κ) = (g,Wh(κ)).

The differentiation of AIRONUM has permitted to identify a particular problem
related to allocation, which is addressed now.

3.2 A F90 difficulty: calling context and allocations

Tapenade differentiates the call tree that is under the root procedure that you have
specified. The result is a set of differentiated modules and/or differentiated stan-
dalone procedures, that do not execute alone but must be used/called from a certain
context. It is up to you to write this calling context, and Tapenade can help you only



Ecinads-D5.1:Direct differentiation of first version 5

to a certain point. The following discussion focuses on the tangent mode. Be aware
that things can be slightly harder in the adjoint mode.

You may use as a basis a calling context designed for the original, non-differentiated
root procedure. Notice that even if you provided Tapenade with the complete calling
context code as well, it will differentiate only the call graph below the root proce-
dure. The calling context will not be modified nor adapted to the differentiated root.
So even if there is a calling context available for the root, you will have to mod-
ify it by hand so that it can call the differentiated root.

There are many possible cases, so we’d rather use an example. We’ll try to extract
general rules later. Here’s a small example source program. The differentiation root
procedure is ROOT. The first column contains the code that is not in the call graph
below ROOT.

PROGRAM MAIN
USE MMA
USE MMB
REAL, DIMENSION(:), ALLOCATABLE :: x
INTEGER :: i
REAL :: cva(2)
COMMON /cc1/ cva
EXTERNAL GETFLAG
CALL GETFLAG(flag)
ALLOCATE(x(30))
CALL INITA()
DO i=1,20

aa(i) = 100.0/i
x(i) = 3.3*i

END DO
cva(1) = 1.8
cva(2) = 8.1
CALL ROOT(x)
PRINT*, ’zz=’, zz
DEALLOCATE(aa)
DEALLOCATE(x)

END PROGRAM MAIN

MODULE MMA
REAL, DIMENSION(20), ALLOCATABLE :: aa

CONTAINS
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SUBROUTINE INITA()
ALLOCATE(aa)

END SUBROUTINE INITA
END MODULE MMA

MODULE MMB
INTEGER :: flag
REAL :: zz

END MODULE MMB

SUBROUTINE ROOT(x)
USE MMA
USE MMB
REAL, DIMENSION(*) :: x
REAL :: v
REAL :: cv1, cv2
COMMON /cc1/ cv1, cv2
zz = cv1*cv2
v = SUM(aa)
IF (flag .GT. 2) zz = zz*v
zz = zz + SUM(x)

END SUBROUTINE ROOT

We will differentiate in tangent mode, with head ROOT. We will not specify the
name of the output file, so that every module or isolated procedure of the differenti-
ated code will be put into a separate file. The differentiated call graph is returned in
files

root_d.f90

,

mma_d.f90

, and

mmb_d.f90

.

root_d.f90 defines procedure ROOT_D



Ecinads-D5.1:Direct differentiation of first version 7

! Diff. of root in tangent mode:
! variations of useful results: zz
! with respect to varying inputs:
! *aa cv1 cv2 x
! RW status of diff variables:
! zz:out *aa:in cv1:in cv2:in x:in
SUBROUTINE ROOT_D(x, xd)

USE MMB_D
USE MMA_D
IMPLICIT NONE
REAL, DIMENSION(*) :: x
REAL, DIMENSION(*) :: xd
REAL :: v
REAL :: vd
REAL :: cv1, cv2
REAL :: cv1d, cv2d
COMMON /cc1/ cv1, cv2
INTRINSIC SUM
COMMON /cc1_d/ cv1d, cv2d
zzd = cv1d*cv2 + cv1*cv2d
zz = cv1*cv2
vd = SUM(aad)
v = SUM(aa)
IF (flag .GT. 2) THEN

zzd = zzd*v + zz*vd
zz = zz*v

END IF
zzd = zzd + SUM(xd)
zz = zz + SUM(x)

END SUBROUTINE ROOT_D

mma_d.f90, mmb_d.f90 define modules MMA_D, MMB_D

MODULE MMA_D
IMPLICIT NONE
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REAL, DIMENSION(:), ALLOCATABLE :: aa
REAL, DIMENSION(:), ALLOCATABLE :: aad

CONTAINS
SUBROUTINE INITA()

IMPLICIT NONE
ALLOCATE(aad(20))
ALLOCATE(aa(20))

END SUBROUTINE INITA
END MODULE MMA_D

MODULE MMB_D
IMPLICIT NONE
INTEGER :: flag
REAL :: zz
REAL :: zzd

END MODULE MMB_D

The calling context of the original ROOT is not sufficient to call

ROOT_D

and must be adapted. Here this context consists of program MAIN, but there can be
more modules and procedures in it. The new program

MAIN_CD

produced by Tapenade in file

main_cd.f90

is a possible starting point, but it must be modified by hand. Or you can write it from
scratch. For instance:

PROGRAM MAIN_CD
USE MMB_D
USE MMA_D
REAL, DIMENSION(:), ALLOCATABLE :: x
REAL, DIMENSION(:), ALLOCATABLE :: xd
INTEGER :: i
REAL :: cvad(2)
COMMON /cc1_d/ cvad
REAL :: cva(2)
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COMMON /cc1/ cva
EXTERNAL GETFLAG
CALL GETFLAG(flag)
ALLOCATE(xd(30))
ALLOCATE(x(30))
CALL INITA()
initialize aad,xd,cvad,zzd
DO i=1,20

aa(i) = 100.0/i
x(i) = 3.3*i

END DO
cva(1) = 1.8
cva(2) = 8.1
CALL ROOT_D(x, xd)
PRINT*, ’zz=’, zz, ’and zzd=’, zzd
DEALLOCATE(aad)
DEALLOCATE(aa)
DEALLOCATE(xd)
DEALLOCATE(x)

END PROGRAM MAIN_CD

Some comments:
* the context must call the differentiated root, hence the call to

ROOT_D

. * the context must provide

ROOT_D

with all the derivatives of its arguments, whether formal parameters or globals.
Hence

xd

, but also

aad, /cc1_d/, zzd

. * These new

xd, aad, /cc1_d/, zzd

must be declared, allocated if their original variable is, and initialized with the
derivatives you want. * After return from

ROOT_D
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, the derivatives in these variables can be used, and the variables must be deallocated
if their original variable is. * One must make sure that these variables are effectively
the same in the context and in

ROOT_D

, which means that when they are globals from modules, the same modules must be
used on both sides. Hence the

USE MMA_D

and

USE MMB_D

. This also ensures that the ”good”

INIT_A()

is called. * All these operations need not be done only in

MAIN_CD

. If

MAIN_CD

calls utility procedures, you may choose to modify these procedures instead. Make
sure to keep all these modified procedures separated from their original definition,
and link with the original code only when it was not modified. This also applies to

MAIN_CD

itself. * To make sure you don’t mix the original context procedures and the new
context procedures adapted to

ROOT_D

, why not give them the same procedure name? This way, the compiler should com-
plain if you mix them. Here

MAIN_CD

could just remain MAIN. The same could be said for module names

MMA_D

and

MMB_D

but that’s another story as currently Tapenade systematically appends a

_D

to them.
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3.3 Differentiated code validation

The software AIRONUM evaluating jh(κ) implements an unsteady, turbulent Navier-
Stokes simulation. The code is more that 100,000 lines long, and SPMD paralleliza-
tion is necessary for most of its appli- cations. Message-passing is done with MPI
calls.

In the software AIRONUM, communications does not use only point-to-point
non- blocking communication MPI ISEND, MPI IRECV, and MPI WAIT, but also
many collective communication MPI BCAST, MPI GATHER, and MPI ALLRE-
DUCE. Given the current stage of development in Tapenade about message-passing
communication, we first apply tangent differentiation on the code. The re- sulting
derivatives were validated by comparison of the parallel tangent code with divided
differences between two runs of the original code, each of them parallel. At the
source level, 10 of the 32 calls to MPI were detected active, causing 10 differenti-
ated message-passing calls.

The propose validation is performed by computing the derivative with respect to
κ on a particular context, the turbulent flow around a cylinder, ECINADS Test Case
1.

On this relatively small test case, average run time per time step and per processor
of the tangent code was 0.49 second, compared to an original run time per processor
of 0.38 second. This increase of 30% is in line with what we observe on sequential
codes.

The accuracy assessment is performed as follows: From one side, we apply the
differentiated code and obtain a unique derivative j′h(κ) of jh with respect to κ

which we suppose to be a vector with a constant value, so that we can consider κ

as a scalar. From the other side we can use the orignal code for an evaluation of
this derivative by finite differences, i.e. by the application of small perturbations of
κ of different sizes, and making the difference with the computation of jh without
perturbation.

We display in Fig.1 the variation of the difference:

δ (ε) = | jh(κ + ε)− jh(κ)
ε

− j′h(κ)|.

We observe the classical V-curve, expressing that for decreasing ε , the finite differ-
ence deviation to exact derivative approaches zero, for a not too small ε . When the
ε is too small, the finite difference is polluted by roundoff errors and its accuracy
degrades again.

Here, we admit that the best finite difference is less accurate than the symbolic
calculation, which is extremely probable, according to the curve.
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Fig. 1 The V-curve for validation of diferentiation for AIRONUM

4 Conclusion

After the allocation problems have been solved as explained here, TAPENADE
could be applied to differentiate on direct mode a complete parallel CFD code. The
next step is the application of reverse mode.
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