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SUMMARY. Turbulent flows around bluff bodies at sub- and supercritical Reynolds numbers are
simulated through a Variational Multiscale (VMS) Large Eddy Simulation (LES) model and a hy-
brid RANS/VMS-LES model. In VMS-LES, the separation between the largest and the smallest
resolved scales is obtained through a variational projection operator and finite-volume cell agglom-
eration. Eddy-viscosity models are used to account for the effects of the unresolved scales. In
the VMS approach, they are only added to the smallest resolved ones. We use a hybrid RANS/LES
approach with a wall law for the simulation of supercritical turbulent flows. A smooth blending func-
tion allows a progressive switch from LES to RANS to be obtained, depending on the values of a
blending parameter. The assessment proposed relies on the simulation of a series of flows for which
experiments are available. They involve subcritical flows around a circular cylinder at Reynolds
numbers (Re) 3900, 10000, 20000, and around a sphere at Reynolds numbers 10000, 50000, and su-
percritical flows around a circular cylinder (Re=140000, 500000, 1 million, 2 million) and a sphere
(Re=400000).

1 INTRODUCTION
Large-Eddy Simulation (LES) is becoming an increasingly popular approach also for applica-

tions of industrial or engineering interest, characterized by complex geometries and large Reynolds
numbers. Although requiring larger computational resources, LES has the potential to give more
accurate results than the Reynolds-Averaged Navier-Stokes (RANS) approach for flows character-
ized by massive separation or significant unsteadiness. Paradigmatic examples of such flows are
bluff-body wakes.

The role and interaction of closure modeling and numerical discretization (grid resolution and
schemes) in LES is much different than in RANS and, thus, for application of LES in an industrial
context, peculiar issues arise and ad-hoc methodologies and strategies need to be developed and
validated. The strategy developed in our previous works [1, 2, 3] is based on the following key
ingredients: (i) unstructured grids, (ii) a second-order accurate numerical scheme stabilized by a
numerical viscosity proportional to high-order space derivatives, and thus acting on a narrow band
of smallest resolved scales, and tuned by an ad-hoc parameter, (iii) Variational MultiScale (VMS)
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formulation combined with eddy-viscosity subgrid scale (SGS) models. We recall that a key feature
of VMS-LES [4] is that the SGS model is only added to the smallest resolved scales. This is aimed
at reducing the excessive dissipation introduced by non-dynamic eddy-viscosity SGS models also
on the large scales and this has been shown to generally improve the behavior of such models, such
as for instance for the Smagorinsky model in boundary layers [5]. This paper concentrates on the
use of VMS-LES as LES component, either in pure LES formulation or in hybrid ones.

Indeed, a bottle-neck for LES of high-Reynolds wall-bounded flows is that practical applications
carried out now for more than two decades have highlighted that an extremely fine grid resolution,
almost comparable to the one of direct numerical simulations, is needed in boundary-layers to obtain
accurate results. Clearly, this leads to dramatic computational requirements for large Reynolds num-
bers. In this context, hybrid strategies have been proposed in the literature, which combine RANS
and LES approaches together (see [6, 7] for a review). We developed a hybrid model blending RANS
and VMS-LES [8]. In this model, VMS-LES and RANS approaches are combined in such a manner
that complexity in use and in parameter tuning is minimized. The closure terms provided by a RANS
and a SGS eddy-viscosity model are blended together through the introduction of a blending func-
tion which depends on a parameter aimed at identifying whether the used grid is adequate to LES,
i.e. if it is adequate to resolve additional fluctuations with respect to RANS. We avoid to use the wall
distance in the definition of the blending function, since this yields practical difficulties for complex
geometries and complex grid topologies, as e.g. for unstructured grids, especially when parallel
computations are carried out. The investigated blending does not require any particular RANS or
LES closure and permits a natural integration of the VMS concept.

The benchmarking of our VMS-LES and hybrid RANS/VMS-LES strategies for the flow around
a circular cylinder and a sphere is presented herein. Both the subcritical and supercritical regimes are
considered, which are respectively characterized by a laminar and a turbulent boundary layer prior
separation and correspond to increasingly large Reynolds number. The grid resolution is kept rather
coarse, in the perspective of the simulation of complex geometries in an industrial context. The
predictions of bulk quantities of engineering interest provided by VMS-LES for subcritical cases
and hybrid RANS/VMS-LES for supercritical cases are shown and compared to experimental and
numerical data available in the literature. This provides a difficult benchmark for a numerical model,
since an adequate description of the boundary layer and of the wake dynamics is needed to obtain
accurate predictions of the bulk quantities.

2 METHODOLOGY
The governing equations are discretized in space using a mixed finite-volume/finite-element

method applied to unstructured tetrahedrizations. This scheme is a variational one relying on a finite-
volume formulation for the convective terms, with a basis and test function χl, associated with the
finite-volume cell centered on vertex l. A finite-element formulation is used for the diffusive term,
with a basis and test function φl continuous, linear by element, equal to 1 at vertex l and vanishing
at other vertexes. The Roe scheme [9] represents the basic upwind component for the numerical
evaluation of the convective fluxes. A Turkel-type preconditioning term is introduced to avoid accu-
racy problems at low Mach numbers [10]. To obtain second-order accuracy in space, the Monotone
Upwind Scheme for Conservation Laws reconstruction method (MUSCL) is used, in which the Roe
flux is expressed as a function of reconstructed values ofW at each side of the interface between two
cells. The introduced numerical dissipation is made of sixth-order space derivatives [2] and, thus,
concentrates on a narrow-band of the highest resolved frequencies. Finally, an implicit linearized
time-marching algorithm is used, based on a backward-difference scheme for the discretization of
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the time derivative. The numerical method is second-order accurate in space and time. More details
can be found in [2].

As far the closure of the RANS equations is concerned, we use the Low Reynolds k − ε model
proposed in [11], which was designed to improve the predictions of the standard k − ε one for
adverse pressure gradient flows, including separated flows. In this model, the Reynolds stress
tensor τR has the same form as in the standard k − ε model but the turbulent eddy viscosity is

defined by µt = Cµfµ
k2

ε
where Cµ = 0.09 and the damping function fµ is given by fµ =

1− e−0.01Rt

1− e−
√
Rt

max

[
1,
√

2√
Rt

]
with Rt = k2

νε ; k and ε are determined by ad-hoc modeled trans-

port equations. In order to master mesh requirements, a wall law is applied in the close vicinity
of the wall. We choose the Reichardt analytical law [12] which gives a smooth matching between
linear, buffer and logarithmic regions. Because the y+ normalized distance is generally subject to
large variations in complex geometries, we have found mandatory to combine both wall law and low
Reynolds modeling which locally damps the fully-turbulent model.

For the LES mode, we consider the VMS approach, in which the resolved flow variables are
decomposed as W = W + W ′, where W are the large resolved scales (LRS) and W ′ are the small
resolved scales (SRS). We follow here the VMS approach proposed in [13] for the simulation of
compressible turbulent flows through a finite volume/finite element discretization on unstructured
tetrahedral grids. In order to obtain the VMS flow decomposition, basis and test functions can be
expressed as: χl = χl + χ′l and φl = φl + φ′l, in which the overbar denotes the basis functions
spanning the finite dimensional spaces of the large resolved scales and the prime those spanning the
SRS spaces. As in [13], the basis functions of the LRS space are defined through a projector operator
in the LRS space, based on spatial average on macro cells, which are obtained by an agglomeration
process. Eddy-viscosity models are used here for the SGS terms, and more precisely those proposed
by Smagorinsky [14] and the so-called WALE model [15]. The eddy-viscosity introduced by these
models, within the VMS approach, is computed as a function of the SRS flow variables (small-small
approach). Moreover, the key feature of the VMS approach is that the SGS model is added only
to the smallest resolved scales. Finally, the SGS terms are discretized analogously to the viscous
fluxes. Thus, the Galerkin projection of the LES closure term is: −

(
τL(W ′), φ′l

)
. The filter width

∆ involved in the definition of the eddy-viscosity has been set equal to the cubic root of the volume
of each tetrahedron. The SGS model constant has been set equal to 0.1 for the Smagorinsky model
and to 0.5 for the WALE one.

As previously mentioned, in the hybrid model the RANS and LES closures are blended together;
the discretized governing equations are thus the following:(

∂W

∂t
, χl

)
+ (∇ · Fc(W ), χl) + (∇ · Fv(W ), φl) =

−θ
(
τR(〈W 〉), φl

)
− (1− θ)

(
τL(W ′), φ′l

)
l = 1, N .

(1)

in which (·, ·) denotes the L2 scalar product and Fc and Fv are the convective and viscous fluxes.
In Eq. (1), 〈W 〉 should be the RANS mean. In this study, we simply use τR(W ), relying on the
tendency of RANS to naturally damp the fluctuations. More sophisticated options are possible and
will be discussed in forthcoming papers.

At the SRS level, switch from LES to RANS changes the turbulent viscosity model and is not
very smooth. At the LRS level, this switch passes from a zero viscosity to νRANS , a discontinuous
switch, except if a progressive blending is installed. As blending function θ, we use θ = tanh(ξ2),
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where ξ is the blending parameter, which should indicate whether the grid resolution is fine enough
to resolve a significant part of the turbulence fluctuations, i.e. to obtain a LES-like simulation.
The choice of the blending parameter is clearly a key point for the definition of the present hybrid
model. Different options can be used, namely: the ratio between the eddy viscosities given by the
LES and the RANS closures, ξV R = µs/µt, the ratio between the LES filter width and a typical
length in the RANS approach, ξLR = ∆/lRANS with lRANS = k3/2ε−1, and, finally, the ratio
between characteristic times of the LES and RANS approaches, ξTR = tLES/tRANS with tLES =
(SijSij)−1/2 and tRANS = kε−1. Previous studies [8] indicated that the sensitivity of the results to
the choice of the blending parameter is very low.

For the simulations of subcritical flows in the following, only the VMS-LES model is applied,
i.e. θ is prescribed to be zero and a no-slip wall condition is set.

3 SUBCRITICAL FLOW PAST A CYLINDER
We first investigate the Reynolds number effects for the simulation of the flow past a circular

cylinder when the VMS-LES approach is used. A particular Reynolds number interval [3900-20 000]
corresponding to the subcritical regime is considered [17] in this analysis. The Reynolds number is
based on the cylinder diameter D, and the freestream velocity. The WALE subgrid scale model
is used to account for the effect of the unresolved scales. The computational domain is such that
−10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and −π/2 ≤ z/D ≤ π/2, where x, y and z denote
the streamwise, transverse and spanwise directions respectively, the cylinder center being located
at x = y = 0. No-slip conditions are applied on the cylinder surface. In the spanwise direction,
periodic boundary conditions are imposed, while characteristic based conditions are used at the
inflow and outflow as well as on the lateral boundaries (y/D = ±20). The freestream Mach number
is set equal to 0.1 in order to make a sensible comparison with incompressible simulations in the
literature. Preconditioning is used to deal with the low Mach number regime [3]. For Re = 3900,
two different grids having 2.9 × 105 and 1.8 × 106 nodes are used. A unique mesh of 1.8 × 106

cells is used for Re = 10000 and Re = 20000. For all the simulations, statistics are computed by
averaging in time over at least 30 vortex shedding cycles, after the initial transient of the solution.

Table 1: Bulk flow parameters at Re=3900. Cd is the mean drag coefficient, CLrms is the r.m.s. of
the time variation of the lift coefficient, lr is the mean bubble recirculation length, Cpb is the value
of the mean pressure coefficient in the rear part of the cylinder, θsep the mean separation angle, and
St the Strouhal number.

Simulation Cd CLrms lr -Cpb θsep St

Present VMS-LES 0.99 0.108 1.45 0.88 89 .21

VMS-LES [3] (coarser grid) 1.03 0.377 0.94 1.01 – .22

VMS-LES [3] (finer grid) 0.94 0.092 1.56 0.83 – .22

LES [18, 19, 20] [0.99-1.38] – [1.0-1.56] [0.89-1.23] – [0.19-0.21]

Experiments [21, 22, 18, 19] [0.94-1.04] – [1.47-1.51] [0.82-0.93] – [0.20-0.22]

In Tabs.1,2,3 a comparison of our computations with available simulations and experiments is
proposed. A general good agreement with the available experimental and numerical data in the
literature is observed.
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In particular, the Strouhal number associated to vortex shedding slightly decreases as the Reynolds
number increases in the considered interval, while the r.m.s. of the lift coefficient increases, as ob-
served for example in [24]. Fig.1 shows that this feature is correctly reproduced in the present VMS-
LES simulations. Another important feature observed in the literature is that the formation length of
the Karman vortices decreases as the Reynolds number increases. This is shown in Tabs.1,2,3 by the
decrease of the mean recirculation bubble length with increasing Reynolds number. This is related
with the increase of r.m.s. of the time fluctuations of the lift coefficient. This feature is also well
captured in our VMS-LES simulations (see Fig.1b).

Furthermore, in the Achenbach drag-vs-Reynolds curve [16], the interval [3900-20000] corre-
sponds to a section of slow but continuous increment of drag. The drag is reaching a minimum
around Re=2000-3000 and increases slowly to a quasi-plateau attained around Reynolds 20000.
This feature is also observed in Tabs.1,2,3.

Table 2: Bulk flow parameters at Re=10000. The meaning of the symbols is the same as in Tab. 1.

Simulation Cd CLrms lr -Cpb θsep St

VMS-LES WALE 1.22 0.476 0.87 1.15 87 0.20

DNS [21] [1.11-1.21] [0.45-0.57] 0.82 [1.06-1.20] – [0.19-0.21]

Experiments [21, 23, 24, 25, 26] 1.19 [0.38-0.53] 0.78 1.11 – [0.19-0.20]

Table 3: Bulk flow parameters at Re=20000. The meaning of the symbols is the same as in Tab. 1.

Simulation Cd CLrms lr -Cpb θsep St

VMS-LES WALE 1.27 0.60 0.80 1.09 86 0.19

LES [27] – – 1. [1.04-1.25] – –
LES [28] [0.94-1.28] [0.17-0.65] [0.7-1.4] [0.83-1.38] – –

Experiments [24, 29, 30, 31] [1.10-1.20] [0.4-0.6] – [1.03-1.09] – 0.194

4 SUPERCRITICAL FLOW PAST A CYLINDER
As previously mentioned, the hybrid RANS/VMS-LES approach is used for the simulations of

supercritical flow around a circular cylinder. For these simulations, the computational domain is
such that −5 ≤ x/D ≤ 15, −14 ≤ y/D ≤ 14 and −1 ≤ z/D ≤ 1, where x, y and z denote
the streamwise, transverse and spanwise directions respectively, the cylinder center being located
at x = y = 0. The boundary conditions and the free-stream Mach number are the same as in the
VMS-LES in Sec. 3. The Smagorinsky model is used to close the equations for the VMS-LES part
and the hybridization criterion is based on the ratio between characteristic lengths (see Sec. 2).

This study is made of two set of calculations. First, we reproduce a case computed by Travin et al.
[32] with the DES model, which is at present the most widely used and validated hybrid RANS/LES
approach. This Re = 140000 flow is made supercritical through the use of RANS close to the wall.
Two meshes, with respectively 4.6× 105 nodes for grid GR1, and 1.4× 106 nodes for grid GR2 are
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Figure 1: Comparison of the present results with the empirical functions proposed in [24]; (a)
Strouhal number; (b) r.m.s. of the lift coefficient.

used. The main bulk quantities are reported in Table 4 and show a reasonable agreement with the
DES outputs.

Table 4: Cylinder, Rey=140 000 (forced supercritical).

Simulation Re Cd C′
l St lr −Cpb

GR1 1.4 105 0.62 0.083 0.30 1.19 0.68
GR2 1.4 105 0.54 0.065 0.33 1.13 0.63

DES [32] 1.4 105 0.57-0.65 0.06-0.1 0.28-0.31 1.1 -1.4 0.65-0.7
DES [33] 1.4 105 0.6-0.81 – 0.29-0.3 0.6-0.81 0.85-0.91

The second set of hybrid simulations is carried out at higher Reynolds numbers, viz. Re=500000,
1 million, 2 million, in the supercritical regime. The WALE model is used to close the equations for
the VMS-LES part and the hybridization criterion is based on the ratio between the characteristic
lengths of LES and RANS. The main bulk parameters obtained in these simulations are reported in
Tab. 5, and are compared with experimental and LES data in the literature. A good agreement is
observed, especially if we consider the coarse resolution of the employed grids.

5 SUB/SUPERCRITICAL FLOW PAST A SPHERE
As a contribution to the validation of the VMS-LES model alone, we computed the subcritical

flows around a sphere at Reynolds numbers 10000 and 50000. The computational domain is such
that −7.5D ≤ x ≤ 25D, −8D ≤ y ≤ 8D, and −8D ≤ z ≤ 8D where D is the sphere diameter.
For subcritical cases, a no-slip condition is applied at wall, and a wall law is used for the supercritical
case. The corresponding drag values are indicated on Fig.2. The numerical results agree very well
with the experimental curve [38]. In the case of Re=50000, vertical wake cuts of the horizontal
velocity are compared in Fig.3 with the experiments of Bakic, [39], with a very good accuracy close
to the sphere. Some discrepancies are observed more downstream, where the lack of mesh resolution
is yet a penalty.

As for the circular cylinder case, we use the hybrid formulation for computing the supercritical
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Table 5: Cylinder (Re=.5 × 106 − 2. × 106). Main bulk flow quantities. Cd is the mean drag
coefficient,Cpb the value of the mean base pressure coefficient, St the vortex-shedding Strouhal
number and lr the mean recirculation bubble length.

Case Cd −Cpb St lr

Re=500K Present,750Kcells 0.22 0.29 0.43 1.50
Re=500K LES[34] 0.33 – – –
Re=500K Exp.[35] 0.22 0.27 0.45 –

Re=1M Present,750Kcells 0.27 0.34 0.44 1.42
Re=1M LES[34] 0.31 0.32 0.35 1.04
Re=1M Exp.[37, 35] 0.3 0.4 0.45 –

Re=2M Present,750Kcells .37 .34 .30 1.87
Re=2M LES[34] .32 – – –
Re=2M Exp.[35] .37 – .4 –

Figure 2: Flow past a sphere: Study of computed drag as a function of Reynolds number. Experi-
ments from Achenbach [38]

flow at a Reynolds number of 400000 with a mesh of 500000 nodes. Fig.2 shows that the prediction
of drag is in good agreement with experimental data also for this case.

6 CONCLUSIONS
The use of VMS-LES modeling is validated for a collection of bluff body flows in the subcritical

regime. Flows around a circular cylinder and a sphere at different Reynolds numbers are considered.
Bulk quantities are rather accurately predicted on unstructured grids having resolutions from coarse
(sphere case) to moderate. The hybrid model involving VMS-LES also shows a good ability to
predict bulk quantities on coarse meshes, even at Reynolds numbers as high as 1-2 millions. We
recall that this is rather challenging for a numerical model, since an accurate prediction of bulk
quantities requires the boundary-layer and wake evolution to be reasonably well described.

The proposed VMS-LES is still dependent on a coefficient involved in the SGS closure model,
which controls the SGS viscosity and must be a-priori assigned. Current investigations focus on a
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Figure 3: Flow past a sphere at Reynolds 50,000 number: velocity wake and comparison with
experiments by Bakic [39]

dynamic version of the SGS viscosity, of low computational cost and combining well to our VMS
formulation.
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