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Abstract

A variational multiscale large-eddy simulation (VMS-LES) model with dynamic subgrid scale
(SGS) models is used for the prediction of flows around bluff bodies in subcritical regime. The
test-cases considered in this paper consist in a circular cylinder at Reynolds number 20000, and a
sphere at Reynolds numbers 10000 and 50000. A mixed finite-element/finite-volume discretization
on unstructured grids is used. The separation between the largest and the smallest resolved scales
is obtained through a variational projection operator and a finite-volume cell agglomeration. The
dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the
unresolved scales; in the VMS approach, it is only added to the smallest resolved scales. The capability
of this methodology to accurately predict the aerodynamic forces acting on the cylinder and the sphere
are evaluated for the different Reynolds numbers considered.

1 Introduction

In spite of an extensive research for more than a century applied to the flows in turbulent regime,
their modelling remains a big challenge even today. It is commonly accepted that the physics of the
flow of a continuous fluid is well represented by the Navier-Stokes equations. Three main axes of
simulation appear : the direct numerical simulation, the large eddy simulation and the statistical
modelisation. The direct numerical simulation (DNS) numerically resolves all the significant scales
of motion in a flow down to the Kolmogorov scales, corresponding to the scales responsible for the
dissipation of energy in the flow. To achieve this, Blazek (2001) [11] pointed out that a sufficient

spatial resolution and CPU time requirement for DNS is proportional to Re
9
4 and Re3 respectively

(Re=Reynolds number). This agrees with the investigation of Frolich et al. (1998) [15] in determining
the required resolution for DNS. Thus, it is still not practical to accurately resolve the non-linear
nature and three dimensional characteristics of turbulence at rather moderate and high Reynolds
numbers using DNS with the currently available computer technology. In an attempt to resolve flow
at higher Reynolds number of 10,000 using DNS, Tremblay concluded that the simulation needs about
80 computing days running on a 32 processor parallel computer system. This could mean that DNS
is still not practical for engineering applications and for the time being, applications are restricted
to lower Reynolds number. The statistical simulation consist in time-averaging the Navier-Stokes
equations. The latter are usually referred as the Reynolds Averaged Navier Stokes (RANS) models,
where the unsteadiness of the flow is averaged out. In the RANS model, all aspects of turbulence are
modelled. Large eddy simulation (LES) is classified as a space filtering method in CFD. LES directly
computes the large-scale turbulent structures which are responsible for the transfer of energy and
momentum in a flow while modelling the smaller scale of dissipative and more isotropic structures.
In order to distinguish between the large scales and small scales, a filter function is used in LES. A
filter function dictates which eddies are large by introducing a length scale, the characteristic filter
width of the simulation. All eddies larger than this length scale are resolved directly, while those
smaller than the length scale are approximated. Today large-eddy simulations (LES) are increasingly
used for engineering and industrial applications, at least for those flows for which the RANS approach
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encounters diffculties in giving accurate predictions. Paradigmatic examples of such flows are bluff-
body wakes. A RANS calculation is little dependent on the number of Reynolds and little greedy
in CPU time, but provides only a limited information: average and statistical fields in a point of
the turbulence only. However the RANS model presents a strong degree of empiricism, making them
little reliable in certain types of flow. LES is the midway between DNS and RANS modelisation as
regards informations acquired on flow and the cost of calculating. A variational multiscale (VMS)
approach has been proposed in [22]. This approach might be effective in obtaining a good compromise
between accuracy and computational requirements. The main idea of VMS-LES is to decompose,
through Galerkin projection, the resolved scales into the largest and smallest ones and to add the
SGS model only to the smallest ones. This is aimed at reducing the excessive dissipation introduced
by eddy-viscosity SGS models also on the large scales.

The present work is part of a research activity aimed at investigating the contribution of the
dynamic procedure used with the classical LES and especially with the Variational Multiscale (VMS)
LES approach, used together with an industrial numerical set-up. This industrial numerical set-up
is based on a mixed finite-volume/finite-element discretization on unstructured grids, second order
accurate in space and time. The VMS approach is particularly attractive for variational numerical
methods and unstructured grids, because it is easily incorporated in such formulations [23, 4] and the
additional computational costs with respect to classical LES are very low, while other approaches may
bring rather large additional complexity and computational costs [20]. The used VMS approach is
the one proposed in [4], in which the projection operator in the largest resolved scale space is defined
through finite-volume cell agglomeration. Two different eddy-viscosity SGS models are considered,
both for classical LES and VMS-LES, viz. the dynamic version [28, 29] of Smagorinsky [24] and
Wall-Adapting local Eddy-Viscosity (WALE) models [26]. We propose to use for numerics a second-
order accurate MUSCL upwind scheme equipped with a tunable dissipation made of sixth-order [1]
spatial derivatives of all flow variables. The classical LES and VMS methodology have been applied
[8], together with different eddy-viscosity SGS models, to the flow around a circular cylinder at a
Reynolds number 20000, and around a sphere at Reynolds numbers 20000 and 50000. Results for the
considerd circular cylinder test-case are reported in [19, 12]. For the case of the sphere , see [7] for
Reynolds number 10000 and [13, 17] for 50000. The main aim of the present work is to investigate
whether the VMS-LES approach with dynamic SGS models is able to predict, on an unstructered
grid as those often used in industrial applications, the variation of aerodynamic forces acting on the
considered bluff bodies and to capture the important flow features for such problems.

2 Methodology

2.1 Classical LES approach

Large eddy simulation (LES) is classified as a space filtering method in CFD , in order to get rid of
the high frequency fluctuations. It consists in filtering in space the Navier-Stokes equations. In order
to seperate the large scales and small scales, a filter function is used in LES. All eddies larger than
the filter are resolved directly, while those smaller than the filter are approximated. In LES, each
variable W of the flow is separated into a filtered, resolved part W and a sub-filter, unresolved part,
w′.

W = W + w′ (1)

The filtered Navier-Stokes equations for compressible flows and in conservative form are consid-
ered. In fluid flow around an immersed object, shear stress occurs because not all the fluid exerts
forces tangentially to the wall of the object. This results in the appearance of the stress terms in the
equations governing fluid flow. After dividing the Navier-Stokes Equation into filtered and sub-filter
components, unknown stress terms arise due to the nonlinearity of the equations and the shear stress
of the flow. These terms need to be approximated to solve the filtered Navier-Stokes Equations.
In modeling the SGS terms resulting from filtering the Navier-Stokes equations, the effects of com-
pressibility present in the SGS fluctuations are assumed low and the heat transfer and temperature
gradients are assumed moderate. Thus, the retained SGS term in the momentum equations is the
classical SGS stress tensor:
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Mij = ρuiuj − ρũiũj , (2)

where the over-line denotes the grid fillter and the tilde the density-weighted Favre filter (f̃ =`
ρf
´
/ (ρ)). The isotropic part of Mij can be neglected under the assumption of low compressibility

effects in the SGS fluctuations [35]. The deviatoric part, Tij , is expressed by an eddy viscosity term:

Tij = −2µsgs

„fSij −
1

3
gSkk

«
, (3)

Sij being the resolved strain tensor fSij = 1
2
( ∂ui

∂xj
+

∂uj

∂xi
) and µSGS the SGS viscosity.

In the total energy equation, the effect of the SGS fluctuations has been modeled by the intro-
duction of a constant SGS Prandtl number to be a priori assigned:

Prsgs = Cp
µsgs

Ksgs
(4)

where Ksgs is the SGS conductivity coefficient; it takes into account the diffusion of total energy
caused by the SGS fluctuations and is added to the molecular conductivity coefficient. We refer to
[5] and [20] for a more detailed discussion of the simplifying assumptions leading to the adopted SGS
modeling.

2.2 Variational Multiscale LES approach

The VMS formulation consist in splitting between the large resolved scales (LRS) i.e. those resolved on
a virtual coarser grid, and the small resolved ones (SRS). The VMS-LES method does not compute the
SGS component of the solution, but modelizes its effect on the small resolved scales which corresponds
to the highest level of discretization, and preserves the Navier-Stokes model for the large resolved
scales. In the present work, we adopt the VMS approach proposed by Koobus and Farhat [4] for the
simulation of compressible turbulent flows through a finite volume/finite element discretization on
unstructured tetrahedral grids. Let VFV be the space spanned by Φk, the finite volume basis function
and VFE the one spanned by ψk, the finite element basis function. In order to separate coarse- and
fine- scales, these spaces are decomposed as: ψk = ψk +ψ′k and φk = φk + φ′k where overline denotes
a coarse scale and the prime a fine scale. Consequently to this decomposition, the variables of the
flow are decomposed as follows:

W = W +W ′ +WSGS (5)

where W are the LRS, W ′ the SRS and WSGS are the unresolved scales. In [4] , a projector operator
based on spatial average on macrocelles is defined in the LRS space to determinate the basis functions
of the LRS space:

ψk =
V ol(Ck)X

jεIk

V ol(Cj)

X
jεIk

ψj (6)

for finite volumes, and

φk =
V ol(Ck)X

jεIk

V ol(Cj)

X
jεIk

φj (7)

for finite elements. V ol(Cj) designate the volume of Cj , the cell around the vertex j. Ik = j/Cj ∈ Cm(k)

and Cm(k) denotes the macro-cell containing the cell Ck. The macro-celles are obtained by a process
known as agglomeration [2]. The SGS model which modelizes the dissipatif effect of the unresolved
scales on the resolved scales is only added to the fine-resolved scales. The term bellow is added to
the fine-scale momentum equation Z

Ω

τ ′∇Φ′ dΩ (8)

Where τ ′ij = −µ′t(2S′ij − 2
3
S′kkδij) and S′ij = 1

2
(

∂u′
i

∂xj
+

∂u′
j

∂xi
) and µ′t designate the viscosity of the

SGS model used to close the problem. Likewise, the term
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Z
Ω

Cpµ
′
t

Prsgs
∇T ′ · ∇Φ′ dΩ (9)

is added to the fine scales energy equation. Cp is the specific heat at constant pressure and Prt
is the subgrid-scale Prandtl number which is assumed to be constant.

2.3 SGS models

Smagorinsky
To approximate the SGS Reynolds stress a SGS model can be employed. The most commonly

used SGS models in LES is the Smagorinsky model in which the eddy viscosity is defined by

µsgs = ρ (Cs∆)2
˛̨̨ eS ˛̨̨ , (10)

where ∆ is the filter width, Cs is the Smagorinsky coefficient and
˛̨̨ eS ˛̨̨ =

q
2fSij . A typical value for

the Smogorinsky coefficient is Cs = 0, 1 that is often used, especially in the presence of the mean
shear.

WALE
The second SGS model we considered is the Wall-Adapting Local Eddy -Viscosity (WALE) SGS

model proposed by Nicoud and Ducros [26]. The eddy-viscosity term µsgs of the model is defined by:

µsgs = ρ(CW ∆)2
(fSij

dfSij

d
)

3
2

(fSij
fSij)

5
2 + (fSij

dfSij

d
)

5
4

(11)

with being the symmetric part of the tensor gij
2 = gikgkj , where gij = ∂ũi/∂xj :

fSij

d
=

1

2
(gij

2 + gji
2)− 1

3
δijgkk

2

Dynamic model
Historically,the constant (Cs ,Cw ) appearing in the expression of the viscosity of a SGS model

was often arbitrarily set to a constant over entire flow field. For general inhomogeneous flows, it can
be a strong function of space. This constant is replaced, according to Germano et al. [28], with a
dimentionless parameter C(x, t) that is allowed to be a function of space and time. This dynamic
procedure provides a systematic way of adjusting Csor Cw allowing it to be a function of position
which is desirable for inhomogeneous flows. A novel feature of this method is that C(x, t) is estimated
dynamically using information from the resolved scales making the model self- tuning. The so-called
dynamic model [28] has been refined [30, 29] over the past several years and has been successfully
used to study a variety of complex inhomogeneous flows. The first step in the dynamic model consists
in the introduction of a second filter, larger than the flter width, which is called the test-filter. The
test-filter is applied to the grid filtered Navier Stokes equations, then, the sub test-scale stress is
defined as

M test
ij = ρ̂uiuj −

`
ˆ̄ρ
´−1

“dρui
dρui

”
(12)

and, can be written using a Smagorinsky or WALE model, as

M test
ij − 1

3
M test

kk δij = − C∆̂2 ˆ̄ρg(ˆ̃u) ˆ̃Pij (C denotes Cw
2 or Cs

2) (13)

We recall that the over-line denotes the grid filter, the tilde the Favre filter and the chapeau the
test-filter, and C, as originally shown by Germano et al. [28], is choosen so that the subgrid-scale is
consistant with the subtest-scale. The quantity

Lij = M test
ij − M̂ij = ̂̄ρũiũj −

`
ˆ̄ρ
´−1

“d̄ρũi
d̄ρũi

”
(14)

is called the Leonard stress. In order to determine the constant, one can compare Lij to the value
that would be obtained using the SGS model (Smagorinsky or WALE). This leads to

Lij = Lij −
1

3
Lkkδij = (C∆2)Bij (15)
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where

Bij = ̂ρ̄g(ũ)P̃ij −

 
∆̂

∆

!2

ˆ̄ρg(ˆ̃u) ˆ̃Pij

Equation (15) represents six equations with one unknown . The unknown (C∆2) has to satisfy

Lij = (C∆2)Bij (16)

This system of six equations can be resolved using the least squares approach. (C∆2) minimizes
the quantity

Q = (Lij − (C∆2)Bij)
2 (17)

Thus, (C∆2) is found by setting ∂Q
∂(C∆2)

= 0, from which we derive the value of (C∆2) :

(C∆2) =
LijBij

BpqBpq
. (18)

A drawback to the development of any dynamic version based on the Germano-identity [28] could
be caused by the sensitivity of SGS models having the correct behavior near the wall to the filtering
procedure and the stabilization method. A simple way to avoid this inconvenient is to have a sensor
able to detect the presence of the wall, without a priori knowledge of the geometry, so that the
considered SGS model of WALE adapts the classical constant of the model, which is equal to 0, 5 in
the near wall region, and compute the constant dynamically otherwise We adapt the sensor proposed
by Toda and Truffin in [Nicoud SVS], the expression of which is:

SV S =
Sd

ijS
d
ij

3
2

Sd
ijS

d
ij

3
2 + SijSij

3
(19)

This parameter has the property to behave like y+3, to be equal to 0 for pure shear flows and 1
for pure rotating flows.

3 Numerical discretization

The choice of the numerical discretization will influence in two ways this study. First, we use a
numerical scheme for compressible flow which needs to be stabilized by numerical dissipation. As
discussed in the Introduction, it is compulsory that the numerical dissipation does not interfere with
the LES model. A particular attention is paid to this issue. Second, the VMS formulation is based
on the basis functions of the scheme. This issue is addressed in the next section. We recall now the
main features of the numerical scheme. Further details can be found in [1] and in [3].

The governing equations are discretized in space using a mixed finite-volume/finite-element method
applied to unstructured tetrahedrizations. The adopted scheme is vertex centered, i.e. all degrees of
freedom are located at the vertices. P1 Galerkin finite elements are used to discretize the diffusive
terms.

A dual finite-volume grid is obtained by building a cell Ci around each vertex i; the finite-volume
cells are built by the rule of medians: the boundaries between cells are made of triangular interface
facets. Each of these facets has a mid-edge, a facet centroid, and a tetrahedron centroid as vertices.
The convective fluxes are discretized on this tessellation by a finite-volume approach, i.e. in terms of
the fluxes through the common boundaries between each couple of neighboring cells:X

j∈V (i)

Z
∂Cij

F (W,~n) dσ , (20)

where V (i) is the set of neighboring nodes to vertex i, ∂Cij is the boundary between cells Ci and
Cj , and ~n is the outer normal to the cell Ci and F (W,~n) the Euler flux in the direction of ~n. The
unknowns are discontinuous along the cell boundaries and this allows an approximate Riemann solver
to be introduced.
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The Roe scheme [9] (with low-Mach preconditioning) represents the basic upwind component for
the numerical evaluation of the convective fluxes F :Z

∂Cij

F (W,~n) dσ ' ΦR (Wi, Wj , ~n) =
F (Wi, ~n) + F (Wj , ~n)

2
− γsd

R (Wi, Wj , ~n) (21)

dR (Wi, Wj , ~n) = P−1|PR (Wi, Wj , ~n) | Wj −Wi

2
(22)

in which Wi is the unknown vector at the i-th node, ~n is the normal to the cell boundary and R
is the Roe Matrix. The matrix P (Wi, Wj) is the Turkel-type preconditioning term, introduced to
avoid accuracy problems at low Mach numbers. According to [14], we use this preconditioning only
in the stabilizing terms and time consistency is preserved. Finally, the parameter γs multiplies the
upwind part of the scheme and permits a direct control of the numerical viscosity, leading to a full
upwind scheme (the usual Roe scheme) for γs = 1 and to a centered scheme when γs = 0.

The spatial accuracy of quadrature (22) is only first order. Two reconstruction steps are allied
for increasing the accuracy. First, the MUSCL linear reconstruction method (“Monotone Upwind
Schemes for Conservation Laws”), introduced by Van Leer [16], is adapted. The basic idea is to
express the Roe flux as a function of a reconstructed value of W at the boundary between the two
cells centered respectively at nodes i and j: ΦR (Wij , Wji, ~nij). Wij and Wji are extrapolated from
the values of W at the nodes, as follows:

Wij = Wi +
1

2

“
~∇W

”
ij
· ~ij (23)

Wji = Wj −
1

2

“
~∇W

”
ji
· ~ij (24)

Schemes with different properties can be obtained by different numerical evaluation of the slopes“
~∇W

”
ij
.~ij and

“
~∇W

”
ji
.~ij. In a second step, the slopes are defined in a parametrized form:

(~∇W )ij .~ij = (1− β)(~∇W )C
ij .~ij + β(~∇W )U

ij .~ij

+ξc

h
(~∇W )U

ij .~ij − 2(~∇W )C
ij .~ij + (~∇W )D

ij .~ij
i

+ξd

h
(~∇W )M .~ij − 2(~∇W )i.~ij + (~∇W )j .~ij

i (25)

(~∇W )U
ij is the gradient on the upwind tetrahedron Tij , (~∇W )D

ij is the gradient on the downwind

tetrahedron Tji, (~∇W )i is the nodal gradient computed over the finite-volume cell around node i,
(~∇W )j is the nodal gradient computed over the finite-volume cell around node j, (~∇W )C

ij is the

centered gradient ((~∇W )C
ij .~ij = Wj −Wi) and (~∇W )M is the gradient at the point M . This last

gradient is computed by interpolation of the nodal gradient values at the nodes contained in the face
opposite to i in the upwind tetrahedron Tij . The reconstruction of Wji is analogous.

In choosing a particular set of free coefficients (β, ξc, ξd) in Eq. (25) attention has been dedicated
to the dissipative properties of the resulting scheme which is a key point for its successful use in LES
simulations. Two schemes have been proposed: the first one (V4) [20] is characterized by β = 1/3,
ξc = ξd = 0, while the latter (V6) [1] is obtained by β = 1

3
, ξc = − 1

30
and ξd = − 2

15
. The

numerical dissipation in the schemes V4 and V6 is made of fourth- and sixth-order space derivatives,
respectively, and, thus, it is concentrated on a narrow-band of the highest resolved frequencies. As
previously stated, this is important in LES simulations to limit as far as possible the interactions
between numerical and SGS dissipation, which could deteriorate the accuracy of the results. The V6
scheme is used in the simulations reported herein.

Time advancing is carried out through an implicit linearized method, based on a second-order
accurate backward difference scheme and on a first-order approximation of the Jacobian matrix [27].
The resulting numerical discretization is second-order accurate both in time and space.
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4 Numerical results

4.1 Cylinder test-case

Simulations for the flow around a circular cylinder are carried out at Reynolds number based on
the cylinder diameter, D, and the freestream velocity, equal to 20000. The computational domain
is such that−10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and −π/2 ≤ z/D ≤ π/2, where x, y and z denote
the streamwise, transverse and spanwise directions respectively, the cylinder center being located at
x = y = 0. Periodic boundary conditions are applied in the spanwise direction while no-slip conditions
are imposed on the cylinder surface. Characteristic based conditions are used at the inflow and outflow
as well as on the lateral surfaces. The freestream Mach number is set equal to 0.1 in order to make
a sensible comparison with incompressible simulations in the literature. Preconditioning is used to
deal with the low Mach number regime. The computational domain is discretized by unstructured
grid consisting of approximately 1808485 nodes. Several LES and VMS-LES simulations have been
carried by variying SGS models using the dynamic procedure.

Let us start to analyze the results obtained in the simulations carried out around the circular
cylinder at Reynold number equal to 20000. For all simulations, statistics are computed by averaging
in the spanwise homogeneous direction and in time for 30 vortex shedding cycles. The main bulk
flow parameters are summarized in table 1. They are compared with LES results of [6, 18] and the
experimental results of [21, 12, 19]. We also report the VMS-LES results of [25] carried out with SGS
model of WALE and with the non-dynamic procedure.

For the mean drag coefficient Cd, experimental values are in the range [1.10 − 1.20]. An over-
estimation is observed in the LES and in the VMS-LES simulations equipped with the dynamic
Smagorinsky model. Conversely, the prediction given by the dynamic VMS-LES approach with the
WALE model is better. The obtained value 1.2 well agrees with the experimental data. As for the
Strouhal number associated to vortex shedding, St, the value of 0.194 is obtained in the experiments,
which well agrees with those obtained in our simulations. Clearly, the mean drag depends on the
pressure distribution on the cylinder surface. Figs (1), (2) and (3) show the mean pressure coefficient
distribution at the cylinder obtained in the various simulations, together with the experimental data.
We can easily see the discrepancy between the numerical results and experimental data obtained by
Yokuda (1990), in the dynamic LES simulation and in the dynamic VMS-LES one with the model
of Smagorinsky, while the dynamic WALE VMS-LES simulation shows less discrepancy especially at
the rear part of the cylinder. For the mean recirculation length, lr, the values obtained by Salvatici et
al. in [6] are in the range of [0.7−1.4] which well agree with the predictions given with both dynamic
LES and VMS-LES simulations. As for the r.m.s of the lift coefficient, the quantitative agreement
with the available numerical and experimental data is good for all the considered approaches.

4.2 Sphere test-case

According to the previous analysis, we observe that the variational multiscale LES simulation equipped
with the dynamic WALE SGS model provides the best agreement with the experimentals data. There-
fore, we adopt this model to compute the flow around a sphere at reynolds numbers equal to 10000
and 50000.

As for the cylinder, the freestream Mach number is set equal to 0.1, and preconditionning is used
to deal with the low Mach number regime. We apply the same boundary conditions applied for the
cylinder test-case and we use characteristic based conditions at the inflow and outflow as well as on
the lateral surfaces.

Next, we continue with the analysis of the simulation carried out around the sphere, first, at
Reynolds number equal to 10 000. Table 3 presents the main flow bulk parameters of the VMS-
LES simulation equipped with the SGS model of WALE. For the mean drag coefficient, Cd = 0, 4
was obtained in the experiments of Achenbach [7]. This value well agrees with the prediction of
our simulation. The mean pressure coefficient distribution over the sphere is shown in Fig 4(a),
compared to the reference experimental data of Achenbach [7] at Reynolds number equal to 162000.
Furthermore, the agreement in the separation angle is excellent. A value of 82.6 is obtained in our
simulation, which totally agrees with the one of 82.5 given by Achenbach [7]. A good agreement is
noticed while an overestimation is encountered at [90◦-170◦].
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In the last part of this section, we discuss the behavior of the same model, the VMS-LES with
the dynamic SGS model of WALE, used to compute the flow around the sphere at Reynolds number
equal to 50000 on the same grid as for Re=10000. For the mean recirculation length, the experimental
value obtained by Bakic is in the range of [0.98 − 1.43]. However, the value given by the dynamic
WALE VMS-LES is slightly smaller.

As for the mean drag coefficient, the value of 0.5 obtained in our simulation totally agrees with
the experimental values given by Achenbach [7] and Maxworthy [31]. We observe that the separation
angle is slightly underested when compared to the experimental value of Bakic which is in the range
of [80◦-83◦]. The mean pressure coefficient distribution around the sphere at Re=50000 is depicted in
Fig 4(b). An underestimation is oserved by comparison with the experimental result of Bakic. This
fact can be explained by the use of a rather coarse grid for the considered Reynolds number.

5 Concluding remarks

A variational multiscale LES approach combined with dynamic SGS models have been presented and
used for the simulation of bluff body flows in subcritical regime. More specifically, the simulation
of the flow around a cylinder at Re = 20000, and the flow around a sphere at Re = 10000 and
Re = 50000 have been carried out. The key ingredeints of the used numerics and modeling are
: unstructured grids, a second-order accurate numerical scheme stabilized by a tunable numerical
diffusion proportional to sixth-order space derivatives, and the VMS-LES approach combined with
the dynamic version of Smagorinsky and WALE SGS models. The overall results show the capabilities
of the proposed dynamic VMS-LES model to accurately predict the aerodynamic forces acting on
the considered bluff bodies, and to properly capture the main flow features associated to such vortex
shedding flow problems.

Table 1: Bulk flow parameters predicted by dynamic LES and dynamic VMS-LES around a circular
cylinder at Reynolds 20000

Simulation Cd CLrms lr -Cpb θsep St

LES Smagorinsky (non-dyn) 1.295 0.574 0.779 1.3 86 .197
LES Smagorinsky dyn 1.24 0.44 0.9 1.24 84 0.19
LES WALE dyn 1.17 0.4 1.182 1.149 84 0.197
VMS-LES Smagorinsky dyn 1.296 0.563 0.852 1.336 86.24 0.186
VMS-LES WALE dyn 1.20 0.44 1.0733 1.197 84 0.191

Experiments [21, 12, 19] [1.10-1.20] [0.4-0.6] – [1.03-1.09] – 0.194
LES [6] [0.94-1.28] [0.17-0.65] [0.7-1.4] [0.83-1.38] – –
LES [18] – – 1. [1.04-1.25] – –
Vms-LES WALE [25] 1.27 0.60 0.80 1.09 86 0.19
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Table 2: Bulk coefficients obtained with the dynamic WALE VMS-LES model for a a sphere at Reynolds
50000.

Simulation Cd CLrms lr -Cpb θsep St

VMS-LES WALE DYN .50 .05 .83 .32 79 –

VMS-LES-Smagorinsky (S.Wornom) .44 .04 1.08 .34 85 0.17

Bakic – – .98-1.43 – 80-83 .18
Achenbach(1972),Maxworthy(1969) .55 , 0.5 – – – – —

Table 3: Bulk coefficients obtained with the dynamic WALE VMS-LES model for a sphere at Reynolds
10000.

Simulation Cd CLrms lr -Cpb θsep St

VMS-LES WALE DYN .43 .02 1.44 .28 82.5 –

Achenbach [7] .4 – – – 82.5 .195
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Figure 1: Mean pressure coefficient distribution at the cylinder (Reynolds 20000). (a) Simulations with
the dynamic LES Smagorinsky model (b) Simulations with the non dynamic LES Smagorinsky model.
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