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SUMMARY

The use of volume-agglomeration for introducing one or several levels of coarse grids in an Additive
Schwarz (AS) multi-domain algorithm is revisited. The purpose is to build an algorithm applicable to elliptic
and convective models. The sub-domain solver is ILU. We rely on algebraic coupling between the coarse
grid and the Schwarz preconditioner. The Deflation Method (DM) and the Balancing Domain Decomposition
(BDD) Method are experimented for a coarse grid as well as domain-by-domain coarse gridding. Standard
coarse grids are built with the characteristic functions of the sub-domains. We also consider the building of
a set of smooth basis functions (analog to smoothed-aggregation methods). The test problem is the Poisson
problem with a discontinuous coefficient. The two options are compared for the standpoint of coarse-grid
consistency and for the gain in scability of the global Schwarz iteration. Applications to parallel calculation
of incompressible and compressible flows are then presented. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The parallel resolution of main CFD models, and in particular of compressible ones such as the
Navier-Stokes equations for compressible gas remain an important issue in efficient modelling
and design. While Multigrid methods appeared, at least for a while, as the best CFD solution
algorithm, Domain Decomposition methods (DDM) emerged as a new star in Computational
Structural Mechanics due to matrix stiffness issues in CSM. A DDM relies on a partition of the
computational domain into sub-domains and assumes that representative sub-problems on sub-
domains can be rather easily computed and can help convergence towards global problem’s solution.
An ideal DDM should be strongly scalable, that is, when solving a particular problem on a given
mesh, it takes some time on p processors, and half of this time on 2p processors.

Most software using unstructured meshes apply a domain partition and subdomain local
preconditioners. Two families of methods allow the design and analysis of the resulting algorithms.
Shur methods the set of local problems allow to reduce the unknowns to interface degrees of
freedom. Shur methods apply very efficiently to elliptic systems such as those arising in structural
Mechanics and therefore are also applied to incompressible Navier-Stokes.
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Figure 1. Left: finite-Volume partition built as dual of a triangulation. Right: Greedy Algorithm for finite-
volume cell agglomeration: four fine cells (left) are grouped into a coarse cell

In Schwarz DDM, the set of local problems preconditions a global loop updating all degrees of
freedom. Boundary conditions for each sub-domain problem are fetched in neighboring domains.
The resulting iterative solver generally involves a Krylov iteration and is often refered as Newton-
Krylov-Schwarz [6]. In contrast to the incompressible case, compressible flows are quasi exclusively
addressed with additive Schwarz methods. More precisely, the Restrictive Additive Schwarz
algorithm (RAS), which was initially introduced for elliptic models [7], was early extended with
success to compressible flow models, [5, 26]. Schwarz and RAS algorithms combine well with
various local preconditoners. In [26] the ILU local preconditioner is used. In [12], colored Gauss-
Seidel is used.

However, Schwarz methods are subject to a -yet moderate- lack of scalability, in the sense that
increasing the number of domains results in degrading the convergence rate. It has been shown by
S. Brenner [4] that the resulting algorithm is not scalable, unless an extension called coarse grid
is added. In [4], the coarse grid correction is computed on a particular coarser mesh, embedded
into the main mesh. A similar approach was applied in [1] to compressible CFD. The advantage
of this approach is to produce a convergent coarse mesh solution. However the coarse mesh
option is not practical in many cases, in particular for arbitrary unstructured meshes. As a result,
it was tried later to build a coarse basis using other principles. An option is to look for a few
global eigenvectors of the operator, see for example [25]. For CPU cost reasons, these eigenvectors
should not be exactly computed but only approximated. In a recent study [22],[23], it is proposed
to compute eigenvectors of the local Dirichlet-to-Neumann operator, which can be computed in
parallel on each sub-domain. The evaluation of eigenvectors is difficult when the matrix has a
dominent Jordan behavior, which happens for convection dominent models, the privileged domain
of finite-volume methods. In general, the eigenvector-based coarse grid corrections are introduced
in an algebraic way, either by deflation or by balancing. Deflation and Balancing methods were
respectively introduced by Nicolaides [24] and Mandel [19] and an interesting comparison can be
found in [29]. Very simplified coarse basis can be used, like charateristic functions of subdomains.
In particular, Deflation and Balancing allow for coarse basis without considering the accuracy of the
coarse grid system. These methods are progressively compared with multi-grid like ones, and are
sometimes found more efficient, see [28].

This paper addresses the combination of Schwarz algorithms with coarse grid methods based on
Volume Agglomeration. The idea of Volume Agglomeration is directly inspired by the multi-grid
idea, but inside the context of Finite-Volume Method. In this paper we consider meshes made of
triangles or tetrahedra. On the mesh we consider a vertex centered approximation, similar to the
P1 finite element. A finite-volume partition is built from the dual cells of triangles, Figure 1, left.
In order to build a coarser grid, it is possible to build coarse cells by sticking together neighboring
cells for example with a greedy algorithm, Figure 1, right. The coarser grid is a priori unstructured
as is the fine one. By the magic of FVM, a consistent coarse discretisation of a divergence-based
first-order PDE is directly available. Indeed, we can consider that the new unknown is constant over
the coarse cell and it remains to apply a Godunov quadrature of the fluxes between any couple
of two coarse cells. Elliptic PDE can also be addressed in similar although more complicated
way, [16]. As a result, consistent linear and non-linear coarse grid approximations are built using
the agglomeration principle. Linear and nonlinear MG have been derived, in contrast with AMG
algorithms. This method extends to Discontinuous Galerkin approximations [21]. More elaborated
versions and their analysis have been under the aggregated methods such as [14]. The extension
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of Agglomeration MG to multi-processor parallel computing, however, are less easily achieved, as
compared to Domain Decomposition Methods, see however [9]. The many works on multi-level
methods à la Bramble-Pasciak-Xu [3] has drawn attention to the question of basis smoothness.
Indeed, the underlying basis function in volume-agglomeration is a characteristic function equal to
zero or one. In [20], the agglomeration basis is extended to H1 consistent ones in an analog way
to smoothed-aggregation. In [10], a Bramble-Pasciak-Xu algorithm is built on these bases for an
optimal design application.

In the proposed study, we try to build a convergent coarse mesh basis for an arbitrary unstructured
fine mesh. It has been observed that coarser meshes for unstructured meshes are elegantly build with
volume-agglomeration. In this study, we follow this track, define a convergent basis and examine
how it behaves as a coarse grid preconditioner. Different ways in partitioning are also recalled.
These methods are presented in next Section 2. In Section 3, the first test problem we concentrate
on is inspired by a pressure-correction phase in compressible Navier-Stokes calculations (see for
example [17]), and expresses as a Neumann problem with strongly discontinuous coefficient. in
which the well-posedness is fixed with a Dirichlet condition on one cell. Section 4 is devoted to an
example of complete incompressible flow resolution. In Section 5 we concentrate on the linearised
compressible Navier-Stokes system to be solved at every iteration of a time-implicit unsteady LES
simulation.

2. THE ALGORITHMS

2.1. Basic Additive exact and ILU Schwarz algorithm

Our discrete model has its unknowns attached to vertices of the triangulation. Let us assume that the
set of unknown, Ω is split into two sub-sets, Ω1 and Ω2 Local systems on Ω1 and Ω2 are defined
through the operators:

Ri = Diag(ak), where ak = 1 if k ∈Ωi, 0 otherwise

Ai = RiARi.

It results that:
(Ai)kl = Akl if k ∈Ωi and l ∈Ωi, 0 else.

Which turns into Dirichlet-type interface conditions at the first node outside from Ωi. The Additive
Schwarz algorithm is written in terms of preconditioning, as

M−1
AS =

2

∑
i=1

A−1
i (1)

where we have written in short:

(A−1
i f ) j = A−1

i ( f |Ωi) if j ∈Ωi, 0 else.

The preconditioner M−1 can be used inside a quasi-Newton iteration. In this paper, in order to keep
some generality in our algorithms, we use GMRES, also used in [25], or BiCGStab [11]. In the
Additive Schwarz-ILU version, the exact solution of the Dirichlet on each sub-domain is replaced
by the less costly Incomplete Lower Upper (ILU) approximate solution.

M−1
ASILU =

2

∑
i=1

ILU(Ai)−1 (2)

with analog notation convention. Under some conditions concerning the overlapping of the local
systems, both AS methods are convergent, but not completely satisfactory:
Definition: Let us call the scalability factor of a DDM method the ratio between n1 the number
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of iterations for converging to zero machine for N subdomains and n2 the number of iterations for
converging to zero machine for 2N subdomains .�

This factor is measured for a given PDE, with a given mesh (strong scalability) or with a mesh
two times larger for the run on 2N domains (weak scalability).

Definition: A DDM method is scalable if its scalability factor is 1 or smaller.�

Here we do not discuss in terms of number of operations, but in terms of convergence rate, i.e. of
number of main iterations. It is known, see for example [4], that:

Lemma: A Schwarz method as defined above is not scalable.�

2.2. Algebraic Coarse grid

As shown by S. Brenner [4], the combination M−1 = A−1
0 + ∑

N
i=1 A−1

|Ωi
of the Additive Schwarz

method with a coarse grid A−1
0 reduces the convergence rate of the previous iteration to an essentially

scalable one. In [4], a coarse grid system is introduced in a geometrical manner, using two embedded
meshes. Looking for an algebraic way to introduce a coarse grid, we observe that two methods have
been proposed in the literature. Both rely on the following ingredients:

• Ahu = fh is the linear system to solve in V , fine-grid approximation space.
• V0 ⊂V coarse approximation space. V0 = [Φ1 · · ·ΦN ].
• Z an extension operator from V0 in V and ZT a restriction operator from V in V0.
• ZT AhZuH = ZT fh is the coarse system.

The Deflation Method (DM) has been introduced by Nicolaides [24] and is used by many authors.
Saad et al.[25] encapsulate it into a Conjugate Gradient. Aubry et al. [2, 18] apply it to a pressure
Poisson equation. In DM, the projection operator is defined as:

PD = In−AhZ(ZT AhZ)−1ZT with Ah ∈ Rn×n and Z ∈ Rn×N

The DM algorithm consists in solving first the coarse system ZT AhZuH = ZT fh, then the projected
system PDAhǔ = PD fh in order to get finally u = (In−PT

D )u+PT
D u = Z(ZT AhZ)−1ZT fh +PT

D ǔ.
The Balancing Domain Decomposition (BD) has been introduced by J. Mandel [19] and applied

to a complex system in [27]. In [29] a formulation close to DM is proposed. It consists in replacing
the original preconditioner M−1 (ex.: global ILU, Schwarz, or Schwarz-ILU) by:

PB = PT
D M−1PD +Z(ZT AhZ)−1ZT .

The two above algorithms are close to each other. Vuik and Nabben [29] show in a particular context
that their convergence rate should be the same. With DM preconditioning, some eigenvalues are
replaced by zero. With BDD, they are replaced by one. A consequence is that DM involves the
solution by the fixed point iteration of an ill-posed problem, and this may induce difficulties in
obtaining an iterative convergence reaching machine zero and staying there. The BDD has not this
problem, but involves a larger number of operations. It can be about two times more expensive. We
turn now to the way in choosing our coarse basis.

2.3. Smooth and non-smooth coarse grid

The coarse grid is then defined by set of basis functions. A central question is the smoothness of
these functions. According to Galerkin-MG, smooth enough functions provide consistent coarse-
grid solutions. Conversely, DDM methods preferably use the characteristic functions of the sub-
domains, Φi(x j) = 1 si x j ∈ Ωi. In the case of P1 finite-elements, for example, the typical basis
function corresponds to setting to 1 all degrees of freedom in sub-domain. According to [20], the
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Figure 2. Left: characteristic coarse grid basis function. Right: smooth coarse grid basis function

Figure 3. Accuracy of the coarse grid approximation (four basis functions) for a Poisson problem with a
sin function (of amplitude 2.) as exact solution. Left: coarse grid solution with the characteristic basis

(amplitude is 0.06). Right: coarse grid solution with a smooth basis (amplitude is 1.8).

coarse system

UH(x) = ΣiUiΦi(x) ;
∫

∇UH
∇Φi =

∫
f Φi ∀i

produces a solution UH which does not converge towards the continous solution U when H tends to
0. In order to build a better basis, we need to introduce a hierarchical coarsening process from the
fine grid to a coarse grid G j which will support the preconditioner. Level j is made of N j macro-cells
C jk, i.e.:

G j = {u,u|C jk = const.}.

Transfer operators are defined between successive levels (from coarse to fine):

P j
i : Gi→ G j P j

i (u)(Cik′) = u(C jk) with Cik′ ⊂C jk

Following [20] we introduce the smoothing operator:

(Lku)i = ∑
j∈N (i)∪{i}

meas( j) u j/{ ∑
j∈N (i)∪{i}

meas( j)}

where N (i) holds for the set of cells which are direct neigbors of cell i. The smoothing is applied
at each level between the coarse level k defining the characteristic basis and the finest level.

Ψk = (L1P2
1 L2 · · ·Pp−1

p−2 Lp−1Pp
p−1)Φk.

The resulting smooth basis function is compared with the characteristic one in Figure 2. The
inconsistency of the characteristic basis and the convergence of this new smooth basis is illustrated
by the solution of a Poisson equation with a sin function as exact solution, Figure 3.

Conversely, first-order hyperbolic problems, like advection, allow both types of basis. This
is illustrated by the solution of the diffusion convection problem with a Peclet of 100, and an
upwind fine approximation. For the fine approximation the mesh numerical Peclet is 1/2 and the
approximation solution is free of oscillation, Fig.4a. The characteristic basis produces a not so
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6 H. ALCIN, O. ALLAIN, B. KOOBUS, A. DERVIEUX

Figure 4. Accuracy of the coarse grid approximation for an advection-diffusion problem: (a) fine grid
solution, (b) coarse solution with characteristic basis, (c) coarse solution with smooth basis,(d) coarse

solution with smooth basis and numerical viscosity.

Figure 5. DEcomposition 1: Domain decomposition without (vertex) overlap. Domain 1 is inside dots (....),
Domain 2 is inside dashes (- - -).

bad approximation (Fig.4b) We force the smooth coarse basis to satisfy the Dirichlet boundary
conditions. Since the mesh numerical Peclet is now much larger, the solution oscillates (Fig.4c). We
have tried to moderate the oscillation by means of a coarse-grid numerical viscosity, built with the
difference between the coarse mass matrix and its lumped version (sum of each line concentrated
on the diagonal term)(Fig.4d).

2.4. Schwarz decomposition

The way an Additive Schwarz algorithm will converge strongly depends on the way the domain
decomposition is defined. From algorithm complexity standpoint, it is important that overlapping is
as small as possible. But for a given problem, overlapping thickness can have an important influence
on iterative convergence. Also, in the theoretical analysis -without coarse grid- of e.g. [4], scalability
holds if the overlapping thickness does not decreases when the number of nodes is increased. We
define now four ways in decomposing the domain and discuss shortly the impact chosing each
option on algorithm efficiency.

Decomposition 1, node partition. In Decomposition 1, we assume that the decomposition
Ω1, ...ΩN is a nodewise partition in such a way that the range of elements behind two neighboring
subdomains is of width 1, Fig.5. Then according to Ai = RiARi, each local operator Ai is a
discretisation of a Dirichlet problem with zero condition on the vertices which are direct neighbors
of vertices of Ωi, but not belonging to Ωi. The geometrical overlapping is the range of element of
width 1 refered below. We note in passing that this minimalist option degrades the scalability of the
Schwarz algorithm since the overlapping width decreases for a finer mesh.
The additive Schwarz (AS) (resp. additive Schwarz ILU, (ASILU)) algorithm is defined as follows:
- Apply a Conjugate Gradient (CG) with MAS, defined according to (1), resp. MASILU , defined
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TWO-LEVEL SCHWARZ ALGORITHM FOR INCOMPRESSIBLE AND COMPRESSIBLE FLOWS 7

Figure 6. Decomposition 2: Purely local solver, without overlap, and with a vertex range inside neither
domains.(....): Domain 1. (- - -): Domain 2.

according to (2), as preconditioner.
The preconditioner inherits the initial operator symmetry, allowing CG iteration. We also note that
the product by preconditioners can be locally computed without an extra communication.

Decomposition 2, Block Jacobi. In Decomposition 2, the Ω1, ...ΩN have empty intersections (in
terms of nodes) and their union is not Ω, Fig.6. Further, the nodes of Ωi are not neighbors of them
of Ω j. The local preconditioner is not of Schwarz type, but some block-Jacobi where the blocks
are the Ωi’s.The preconditioner inherits the initial operator symmetry, allowing CG iteration. We
also note that the product of residual by preconditioners can be locally computed without an extra
communication.

Decomposition 3, Minimal Decomposition. Decomposition 3 is refered as the minimal
decomposition, in [5, 7]. The different subdomains ovelap on a node row, Fig.7. On each node of
Ωi∩Ω j, a corrector is produced by both local preconditioners. In the Restrictive Additive Schwarz
of [7, 26], the nodes shared by to different Ωi’s are partitioned:

∪1≤i≤N,1≤ j≤N (Ωi∩Ω j) = ∪1≤i≤N Ω̂i

in which Ω̂i’s are disjoint, and Ω̂i ⊂ Ωi. Only the A−1
i local preconditioner of subdomain Ωi will

update any node of Ω̂i. In other words, let us define:

Ωi,0 = { j ∈Ωi,∀k 6= i, j /∈Ωk}∪ Ω̂i

(R0
i u) j = u if j ∈Ωi and l ∈Ωi, 0 else. (3)

The RAS preconditioner writes:

M−1
RAS =

N

∑
1

R0
i A−1

i Ri.

Thanks to the replacement of one of the Ri by R0
i , the product of residual by preconditioners can be

locally computed without an extra communication. It has been also observed that RAS has generally
a better conditioning and better convergence, see also an analysis in [13]. In contrast to the previous
Decompositions 1 and 2, due to the choice of Ri,0, the preconditioner becomes a non-symmetric one
and CG needs to be replaced by GMRES or BiCGStab. The inconvenient of GMRES is the storage
of Krylov basis, which need to be limited to a “restart” dimension. The inconvenient of BiCGStab is
a computational cost about two times higher than the other iterations, while, in general, BiCGStab’s
convergence is not two times faster.
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Prepared using fldauth.cls DOI: 10.1002/fld



8 H. ALCIN, O. ALLAIN, B. KOOBUS, A. DERVIEUX

Figure 7. Decomposition 3: Minimal domain decomposition of Cai et al.[7]: the matrix local solvers apply
on sets of node inside bubbles, which have an overlap of one vertex row. In the case of Restricted Additive
Schwarz version, updating in Domain 1 is restricted to black vertices, updating in Domain 2 is restricted to

white vertices.(....): Domain 1. (- - -): Domain 2.

Figure 8. Decomposition 4: Domain decomposition with two rows of vertex overlap.In the case of Restricted
Additive Schwarz version, updating in Domain 1 (resp. 2) is restricted to vertices having no neighbors not

belonging to Domain 1, (resp. 2)

Decomposition 4, Two-row overlap. Decomposition 4 is a second version of the Restricted
Additive Schwarz, but with an overlapping between subdomain that is thick of two node rows,
Fig.8. The RAS preconditioner writes:

M−1
RAS =

N

∑
1

R0
i A−1

i Rδ
i .

Here, Rδ
i is the usual restriction corresponding to the overlapping set of subsets of Ω. Operator R0

i
corresponds to the restriction to the corresponding nonoverlapping decomposition of Ω. the effect
of using RAS instead of AS is to impose an iteration for non symmetric system, since, in contrast to
M−1

AS , M−1
RAS is not symmetric. Therefore CG need be replaced by GMRES or BiCGStab. The second

communication for preconditioned residual assembly is not necessary. This algorithm also enjoys
the better conditioning of RAS.

In Fig.9 and 10, we shortly compare the above methods for a Neumann problem with a mesh
of 10,000 nodes (i.e. vertices) and a partition into two subdomains. As remarked above, CG
can be applied to Decompositions 1 and 2, and we observe that, although without any overlap,
Decomposition 2 is converging in a reasonable way, not so slowly in comparison with Case
1. BiCGStab is used for the four Decompositions. Rather surprisingly, this choice is bad for
Decomposition 2. Convergence of Decompositions 1 and 3 are good, similar to the CG convergence
of Decomposition 1, but since BiCGStab is twice more complex, we would expect a better behavior.
Convergence of Decomposition 4 is two times faster than the two previous ones.
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Figure 9. Application of a global conjugate gradient to Decomposition 2 (local preconditioning) and
Decomposition 1 (only elementwise overlap)

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0  50  100  150  200  250  300  350  400

re
si

du
al

iteration

Decomposition 4
Decomposition 1
Decomposition 3
Decomposition 2

Figure 10. Application of a BiCGStab to (starting from the fastest convergence) Decomposition 4 with RAS,
Decomposition 1, Decomposition 3 with RAS, Decomposition 2

2.5. Two-level Algorithm

We define now how the coarse grid is combined with a Schwarz algorithm. The two-level Additive
Schwarz algorithm has two versions defined as follows:

Deflation:
- Apply a Conjugate Gradient (CG) with P̄D as preconditioner, with:

P̄D = M−1
AS (In−AhZ(ZT AhZ)−1ZT ).� (4)

Balancing:
- Apply a Conjugate Gradient (CG) with PB as preconditioner, with:

PB = PT
D M−1

AS PD +Z(ZT AhZ)−1ZT . (5)

with M−1
AS defined in (1).�

The two-level Additive Schwarz-ILU algorithm has two versions defined by replacing in (4) or
(5) M−1

AS by M−1
ASILU defined in (2).

In the two-level Restrictive Additive Schwarz (resp. Restrictive Additive Schwarz-ILU), the
MAS−1 (resp. M−1

ASILU ) is replaced by M−1
RAS (resp. M−1

RASILU ) and the fixed point iteration is changed
into GMRES.
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3. NUMERICAL EVALUATION OF TWO LEVEL FORMULATIONS

3.1. Elliptic case

We present some performance evaluations for the Additive Schwarz and Additive Schwarz-ILU
algorithms, for a partition described in “Decomposition 1” (see Section 2.4). The conjugate gradient
is used as fixed-point. The test case is a Neumann problem with a discontinuous coefficient ρ:

−∇
∗ 1

ρ
∇p = RHS in Ω

∂ p
∂n

= 0 on ∂Ω p(0) = 0. (6)

The computational domain is a square. The coefficient ρ takes two values with a ratio 100., on
two regions separated by the diagonal of the domain. The right-hand side is a sin function. DM
and BDD produced essentially the same convergence rate. We present convergence statistics for a
division of the residual by 1020. Convergence at this level were sometimes problematic with DM,
and the results are presented for BDD.

We recall first how behaves the original Schwarz method when the number of domains is fixed
but the number of nodes increased. We compare in Table 1 a 2D calculation with two domains and
400 nodes with the analog computation with two domains and 10,000 nodes, which correspond to a
h ratio of 5. We observe (Tab. I) that the convergence of a Schwarz-ILU is four times slower on the
finer mesh. We also observe that the convergence of the Schwarz algorithm with exact sub-domain
solution is also degraded by a factor 2.6, a loss which may be explained by the fact that with one
layer overlapping, passing to a finer mesh makes a thinner overlapping.

Table I. Additive Schwarz method

# sub- # Local #
domains cells solver Iterations

2 400 ILU 55
2 400 Direct 28
2 10,000 ILU 221
2 10,000 Direct 74

Table II. Scalability of the two-level AS-ILU method

Cells 10K 20K 47K 94K

Domains 12 28 66 142
Cells/domain 833 714 712 661
Char. basis 480 546 750 810
Smooth basis 400 391 444 491

We continue with the study of the impact of choosing a smooth basis for the two-level Additive
Schwarz ILU method. We observe (Tab. II) that the scalability again does not hold. Scalability is
rather bad for the characteristic basis. Conversely, it is nearly attained for the smooth basis option.
The rest of the paper uses only the smooth basis for the purely elliptic cases.

3.2. Advection dominated case

We evaluate now the extension to an advection model. This kind of models combines two main
difficulties. First, These models correspond to Jordan matrices, and show 1D local behavior along
advection trajectories, these are obstacles to the application of coarse grid correctors. Second, we
have already noted the difficulty in developing a coarse basis applying to both convective and
diffusive effects.

Advection-diffusion model. We consider solving the following partial differential equation : −div(c(x)u)+
−→
b .∇u+u = f dans Ω

u = 0 sur ∂Ω (7)

This model is discretised on a triangulation with nodes at vertices, in order to apply for diffusion
terms the same P1 finite element approximation as for the previous elliptic model. The convection
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Figure 11. Application of the characteristic coarse basis on an advection diffusion model with Péclet=100
(left ) and Péclet=1000 (left).

term −div(V (x)u) is approximated by an upwind first-order accurate vertex-centered finite volume
formulated in dual cells built from triangle medians. We define the mesh Péclet number as Min ||b||∆x

ν

where the Min is taken over triangulation edges. We consider only Cartesian meshes (∆x = ∆y =
const.).

Regular partition of a square. A first experiment show the difficulty of the problem. We consider
a Cartesian mesh of 10 000 nodes regularly partitioned in 16 subdomains. At Péclet 100, both coarse
bases give an improvementbut the characteristic one is already better. At Péclet 1000, the smooth
basis gives a too slow convergence. Figure 11 depicts the characteristic case. The convergence
characteritic one is only slightly better than the Schwarz iteration without coarse basis. However, it
must be observed that in both cases the coarse grid allows a convergence of 14 decades in less than
150 iterations.

4. APPLICATION TO INCOMPRESSIBLE FLOW

4.1. Numerical scheme

The Navier-Stokes system for incompressible flow writes:

ρ
∂U
∂ t

+ρ∇ · (U⊗U) = ∇ · (ν(ρ)∇U)−∇p+ρg in Ω (8)

∇ ·U = 0 in Ω (9)

where U denotes the fluid velocity, p the pressure, ρ the density, and ν(ρ) the viscosity. Let
V = {ψ ∈ C 0(Ω̄)

∣∣ ψ|K is affine ∀K ∈ H } which is the usual P1 Finite Element space. V is
spanned by the set of basis functions ψi where ψi verifies for any vertex xi of H , ψi(xi) = 1
and ∀ j 6= i, ψi(x j) = 0. Let V = V d , where d is the space dimension. The discretized multi-fluid
variables are:

U = ∑
i

Uiψi , p = ∑
i

piψi and φ = ∑
i

φiψi .

A transfer operator into V is defined as follows: for any u ∈ L2(Ω), we denote by Pu : L2 7→V
the function such that for any vertex xi of H :

Pu(xi) =
∫

Ω
uψi dx∫

Ω
ψi dx

.

And, for all U = (u,v)∈ (L2(Ω))2, we denote by PU = (Pu,Pv) the transfer into V. The transfer
operator P will be used for transforming a discrete field that is constant by element into a discrete
field that is continuous and piecewise linear.
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Figure 12. Mesh and pressure in a pump. Courtesy of PCM.

The global algorithm for advancing in time writes:

Stage 1 is an explicit prediction step:

Ūi = Un
i −

∆t
|Ci|

∫
Ω

ψi (∇.(U⊗U) −ν∇.∇U − g)dx ,

where |Ci|= ∑ j
∫

Ω
ψiψ j dx .

Stage 2 is a projection step imposing Relation (9):∫ 1
ρ

∇pn+1.∇ψ dx =
1
∆t

∫
∇ψ.Ūdx ∀ ψ ∈V ,

Un+1 = Ū+∆t P
(

1
ρ

∇pn+1
)

and Un+1 = 0 on ∂Ω .

We observe that only the projection step needs the solution of a matrix system and that this matrix
system is the same as in our model problem (6).

4.2. Original Solution Algorithm

The linear system arising from the projection step is solved with a RAS algorithm with an
overlapping domain decomposition as defined by Decomposition 4 above. In our algorithm, the
GMRES iteration is applied.

4.3. Two level algorithm

A two-level version of the above algorithm is defined by combining the above DM preconditioner
into the RAS one.

4.4. Example: Incompressible flow in a pump

We consider the steady flow through a pump. The geometry of the pump is depicted in Fig.12. It
involves thin boundary layers. The mesh involves 2M cells and is distributed on 100 processors.
We compare in (Tab.III) the efficiency of a single implicit pressure projection step with (1) a pure
RAS-ILU preconditioner and (2) the same combined with DM. We observe that with the second
option, convergence of the projection linear solver is 12 time faster in terms of iterations. the gain
in efficiency is about a factor 9.7.
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Figure 13. Mesh and pressure in a pump. Courtesy of PCM.

Table III. Flow through a pump, comparison of # of iterations for convergence

Type of preconditioner M−1 # sub-domains Iterations CPU(sec.)

RA-Schwarz-ILU 40 2364 291
Balanced-RA-Schwarz-ILU 40 186 30

5. APPLICATION TO COMPRESSIBLE FLOW

5.1. Numerical scheme

The deflation and balancing preconditioners have been adapted to a software computing turbulent
compressible flows. In the original numerical scheme, the spatial approximation is a vertex centered
mixed-element-volume approximation stabilised by an upwind term introducing a sixth-order
dissipation, see [8]. The flow equations are advanced in time with an implicit scheme, based on
a second-order time-accurate backward difference scheme.

F(W n+1,W n,W n−1) = 0 (10)

Where W is the five-component discretisation of (ρ,ρu,ρE), where ρ is the density, u the velocity,
and ρE the total energy per unit volume. This non-linear system has to be solved at each time step
to find W n+1. It is solved by a (Newton-like) defect-correction iteration

A(W (α+1)−W (α)) =−F(W (α),W n,W n−1) (11)

in which a simplified Jabobian A is used. Since Equation (10) has 5 fields as unknown, A is defined
as a block 5×5 sparse matrix. The Jacobian is built from the sum of a first-order discretisation of the
linearized Euler fluxes and of a linearization of the second-order accurate diffusive fluxes.Typically,
2 defect-correction iterations are performed, each of them requiring two linear solutions. The
performances of this algorithm has been studied for example in [15]. The most cpu consuming part
of the algorithm is the resolution of the sparse linear system in (11). It is solved by 20 iterations of
a Restricted Additive Schwarz (RAS) method, in the formulation proposed in [26], which we know
describe. The linear system (11) is first transformed with the block 5 diagonal D = BlockDiag(A)
as follows:

D−1A δW = D−1 f . (12)
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The domain decomposition is Decomposition 3. For the local, i.e. subdomain solve, an ILU(0)
factorisation is applied to the product D−1

i Ai. The preconditioner then writes:

M−1 =
N

∑
i=1

R0
i ILU−1(D−1

i Ai)R1
i . (13)

This preconditioner is a right one, i.e. we solve

(D−1A)M−1 v = D−1 f ,

and then put δW = M−1v. This keeps the same residual D−1AδW − D−1 f as for the
unpreconditioned iteration. The RAS formulation (13) needs less communication (thanks to the
use of Ri), and has proved to have better convergence properties than the analog AS formulation [7].

5.2. New linear solution algorithm.

Now DM or BDD are applied to the solution of (12). They are used as right preconditioners,
and the residual is again the same as for unpreconditioner iteration. Using the same notation
E = Zt(D−1A)Z, we write the Deflation-RAS iteration by defining the following preconditioners:

P = I− (D−1A)ZE−1Zt

Q = I−ZE−1Zt(D−1A)

then we solve:
(D−1A)QM−1v = PD−1 f

and finally put:

δW̃ = (M−1)v
δW = ZE−1ZtD−1 f +QδW̃ .

The Balancing writes:

PB = Z(E−1)Zt +QM−1P
(14)

for solving:

(D−1A)(PB)v = (D−1) f

and then putting u = (PB)v.

5.3. Example: Compressible flow around a cylinder

Test case. The compressible 3D flow (Mach=.1) around a cylinder with circular section is
computed using a Smagorinsky Large Eddy Simulation. The Reynolds number is 20 000. The mesh
involves 1.8 Million cells and is stretched near the cylinder wall with a maximum aspect ratio of
500. It is split into 64 to 1024 processors and we examine the convergence of a single implicit phase
for a CFL of 100.

The flow is convection dominent and a characteristic coarse basis should be a reasonable choice.
In a preliminary study, we try to evaluate and confirm the consistency of the characteristic coarse
grid. For this, we introduce a manufactured solution φ in the linearised system. The function φ is a
quadratic one for each component. We define the RHS as the corresponding residual, in such a way
that the solution of the linearised system is exactly φ . The coarse grid defined from 64 subdomains.
In Fig.15 we show the coarse grid solution. It matches quite well with the manufactured quadratic
function.
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Figure 14. VMS Large Eddy Simulation of a turbulent flow around a cylinder, Re=20000, with 1.8 million
cells; vorticity

Figure 15. Evaluation of coarse-grid consistency for a characteristic basis: comparison of a quadratic
discrete solution with its coarse grid approximation

Performance of the original algorithm. We first study the strong scalability of the original RAS
algorithm. In Fig.16, we observe that the convergence degrades, with a number of iteration 29%
larger when the number of subdomain is doubled, which expresses a lack of scalability. See also
Tabs.IV and V.

Performance of the two-level algorithms. From Fig.16 and Tabs.IV and V, we observe that the
scalability is better than 1.
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Figure 16. Compressible LES: convergence during one time step (CFL=100) of the RAS, RAS with Deflation,
RAS with Balancing .
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Table IV. Compressible Navier-Stokes simulation, residual ∗10−8

Type of preconditioner CFL 64procs 128procs 256 procs 1024procs
# it. # it. # it. # it.

Schwarz-ILU 100 138 190 230 222
Deflated Schwarz-ILU 100 83 88 87 70
Balanced Schwarz-ILU 100 80 81 78

Table V. Compressible Navier-Stokes simulation, residual ∗10−8

Type of preconditioner CFL 128procs 256 procs Sca. Factor
# it. # it.

Schwarz-ILU 100 190 230 1.21
Deflated Schwarz-ILU 100 88 87 .988
Balanced Schwarz-ILU 100 81 78 .963

6. CONCLUDING REMARKS

The building of a coarse grid for deflated or balanced formulations are presented. We study the effect
of coarse-grid consistency. Choosing a consistent coarse grid with smooth basis functions can help
for a better scalability in the case of a diffusion dominated model. The case of diffusion-convection
is better addressed with characteristic bases for Péclet as small as 100. Probably, developing a zonal
strategy adapted to phenomena in which part of the domain is convection dominated and part of the
domain diffusion dominated might be a source of extra efficiency.
An application of the two-level method is presented for the elliptic part of an incompressible flow.
The best option is Deflation. The gain in efficiency is already 5 for a medium number of processors,
e.g. 100. An application to a compressible flow is then presented. Although Balancing is converging
a little faster, the most efficient option (in term of CPU) is Deflation. The improvement factor in
convergence is smaller than for the elliptic case, even for a number of processors as high as 1024,
but still interesting (about 3). In particular, weak and strong scalability is observed, which tend to
show that a higher factor can be reached for larger computations.
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