ANISOTROPIC GOAL-ORIENTED MESH OPTIMISATION

Adrien Loseille^{1,2}, Frédéric Alauzet¹, Damien Guégan³, Alain Dervieux⁴

¹INRIA, Domaine de Voluceau, Le Chesnay, 78153, France e-mail:Frederic.Alauzet@inria.fr
²George Mason University, MS6A2, Fairfax, VA, 22030 e-mail:aloseill@gmu.edu
³ LEMMA, 06410 Biot, France e-mail:damien.guegan@lemma-ing.com
⁴ INRIA, BP92, 06902, Sophia-Antipolis, France e-mail:alain.dervieux@inria.fr

MAMERN'09, Pau(France), june 8-11, 2009

An example

Numerical convergence, uniform embedded refinement

Navier-Stokes, Mach number is 1.2, Reynolds is 100.

	mesh 1	mesh 2	mesh 3	mesh 4
# of nodes	800	3114	12284	48792
L^2 Numerical convergence order			0.94	1.14

Overview:

- 1. Anisotropic adapted meshes,
- 2. Hessian-based unsteady applications,
- 3. Goal-oriented applications.

1. Mesh adaptation by P1 interpolation adaptation

1.1. Motivation: what are the conditions for asymptotic convergence? Two 1D examples : smooth arctangent, discontinuous Heavyside.

L^p $(p \neq \infty)$ convergence to the continuous: Heavyside

Abscissae : number of nodes (from 8 to 512) ; ordinates : interpolation error, dashes : uniform refinement(slope $\approx 1/2$), line : adaptive refinement.

Convergence to the continuous: Arctangent

Uniform refinement: late capturing Adaptative refinement : early capturing

Early capturing/late capturing

Uniform refinement needs $O(N_S)$ nodes, where N_s is the inverse of the size of the smallest detail (1D).

A good adaptative refinement needs $O(N_d)$ nodes, where N_d is (1D) the number of details (for example: the function is monotone on N_d intervals).

In general, $N_d \ll N_S$.

We look for a mesh adaption method which is higher order accurate on discontinuities, and, therefore enjoys early capturing of smooth details.

1.

1.2. Minimizing P1-Interpolation error in L^2

(Castro-Diaz et al., Habashi et al., Lipnikov-Vasilevski-Agouzal, Huang, Long Chen, Alauzet et al.) (Loseille, PhD, Paris VI, 2008)

$$||u - \pi_{\mathcal{M}}u||^2 = \int \left(|\frac{\partial^2 u}{\partial\xi^2}|.m_{\xi}^2 + |\frac{\partial^2 u}{\partial\eta^2}|.m_{\eta}^2 \right)^2 dxdy$$

where ξ and η are directions of diagonalization of the Hessian of u.

$$\min_{\mathcal{M}} \mathcal{E}_{\mathcal{M}}$$

under the constraint $N_{\mathcal{M}} = N$.

This can be solved analytically.

W

$$\mathcal{M}_{opt} = \frac{C}{N} \mathcal{R}^{-1} \begin{pmatrix} \left| \frac{\partial^2 u}{\partial \eta^2} \right|^{-5/6} \left| \frac{\partial^2 u}{\partial \xi^2} \right|^{1/6} & 0 \\ 0 & \left| \frac{\partial^2 u}{\partial \xi^2} \right|^{-5/6} \left| \frac{\partial^2 u}{\partial \eta^2} \right|^{1/6} \end{pmatrix} \mathcal{R} .$$
(1)
ith: $C = \int \left(\left| \frac{\partial^2 u}{\partial \xi^2} \right| . \left| \frac{\partial^2 u}{\partial \eta^2} \right| \right)^{\frac{2}{6}} dx dy .$

- Since the theoretical optimal error can be expressed in terms of the number of nodes,

$$\mathcal{E}_{\mathcal{M}_{opt}} = fcn_1(N) \Leftrightarrow N_{\varepsilon} = fcn_2(\varepsilon)$$

then, in practice, *either* the number of nodes *or* the optimal L^2 error can be specified.

- It can be shown this interpolation adaptation is higherorder and it has been observed that it enjoys early capturing. For a **PDE**, a sensor field, e.g. the Mach field can be chosen. Then a **Fixed Point** between interpolation-adaptation, PDE solution transfer and PDE recomputing needs be applied.

Example: sonic boom prediction (spike NASA flight measurement)

Mesh and pressure field partial view

 L^2 convergence from 1.1Mnodes to 5Mnodes.

1.3. Conditions for multidim'al higher-order convergence L^p mesh convergence on two 2D Heavyside functions, $p \neq \infty$

1.3. Conditions for multidim'al higher order convergence

Barrier lemma: best L^p convergence of P_1 interpolation for an isotropic mesh adaptation method in dimension d on discontinuity lying on a surface of dimension d-1 satisfies $\alpha \leq d/(dp-p)$.

Coudière-Dervieux-Leservoisier-Palmerio, 2001

L^2 Conv. order	Unif. Ref.	Adap. Isotropic	Adap. Anisotropic	
2D barrier theory	$\leq \frac{1}{2}$	≤ 1	≤ 2	
2D Optimal L^p Metric				
Theory		1	2	
Optimal L^2 Metric				
Num. exp. interp.				
Heavyside 2D		1	2	
3D barrier theory	$\leq \frac{1}{3}$	$\leq \frac{3}{4}$	≤ 2	
Optimal L^2 Metric				
Num. exp. Euler				
Spike 3D		not comp'd	2+	

 $L^{\infty}(0,T;L^2_x)$ Transient Fixed point Mesh Adaptation:

$$[0,T] = [0 = t_0, t_1] \cup, \dots \cup [t_i, t_{i+1}] \cup, \dots \cup [t_{n-1}, t_n].$$

Step0: Choose error level ε ,

Step1: On $[t_i, t_{i+1}]$, time-discretise: $t_i^0 = t_i, t_i^1, ..., t_i^{n-1}, t_i^n = t_{i+1}$,

Step2: Advance in time the discrete PDE,

Step3: Get Hessians and corresponding L^2 optimal metrics for ε :

$$H_i^0, H_i^1, \dots H_i^{n-1}, H_i^n \quad \Rightarrow \quad \mathcal{M}_i^0, \mathcal{M}_i^1, \dots \mathcal{M}_i^{n-1}, \mathcal{M}_i^n$$

Step4: Use $\mathcal{M}_i = \mathcal{M}_i^0 \cap \mathcal{M}_i^1 \cap \dots \mathcal{M}_i^{n-1} \cap \mathcal{M}_i^n$ for remeshing. **Step5:** Go to **Step1** until convergence.

2. An example of 3D unsteady mesh adaptative flow calculation

MARIN test case: geometry, interface, colors from velocity

2. An example of 3D unsteady mesh adaptative flow calculation

Wave sloshing in a basin with cubic obstacle at different times.

2. 3D unsteady mesh adaptative flow, cont'd

Wave sloshing in a basin: number of mesh nodes as a function of physical time.

2. 3D unsteady mesh adaptative flow, cont'd

Wave sloshing in a basin: comparision computation/measurement for pressure at various spot

3. PDE-approximation-based adaptation

Abstract representation of the Partial Differential Equation: $\Psi(W)=0 \ . \label{eq:phi}$

Discretisation of the PDE:

$$\Psi_h(\mathbf{W}_h) = \mathbf{0} \in \mathbb{R}^N$$
$$\mathbf{W}_h \in \mathbb{R}^N, \ \mathbf{W}_h = [(\mathbf{W}_h)_i].$$

Operators between continuous and discrete:

$$R_h: R^N \to V \subset L^2(\Omega) \cap \mathcal{C}^0(\bar{\Omega}) \mathbf{v}_h \mapsto R_h \mathbf{v}_h$$
$$T_h: V \to R^N \qquad v \mapsto T_h v$$

 $W_h(x, y, z) = (R_h \mathbf{W}_h)(x, y, z) \quad ; \quad W - W_h \approx ?$

3. PDE-approximation-based adaptation

A posteriori estimate:

$$\Psi(W) - \Psi(W_h) = -\Psi(W_h) \Rightarrow W - W_h \approx -\left[\frac{\partial\Psi}{\partial W}\right]^{-1} \Psi(W_h),$$

in practice:

$$\delta W_h = -R_h \left[\frac{\partial \Psi_h}{\partial W_h}\right]^{-1} T_h \Psi(R_h W_h),$$

quadratures formulas can be used for $\Psi(R_h W_h)$.

A priori estimate:

$$\Psi_h(W) - \Psi_h(W_h) = \Psi_h(W) \Rightarrow W - W_h \approx \left[\frac{\partial \Psi_h}{\partial W_h}\right]^{-1} \Psi_h(W),$$

in practice:

$$\delta W_h = R_h \left[\frac{\partial \Psi_h}{\partial W_h}\right]^{-1} (\Psi_h - T_h \Psi)(W_{(h)}).$$

3. PDE-approximation-based adaptation

Goal-oriented error:

$$j(W) = (g, W)_{L^2(\Omega)} \ s.t. \ \Psi(W) = 0$$

 $(\frac{\partial \Psi}{\partial W})^* p = g$

$$j_{h} = (g, R_{h} \mathbf{W}_{h})_{L^{2}(\Omega)} \ s.t. \ \Psi_{h}(\mathbf{W}_{h}) = 0$$
$$\mathbf{g}_{h} = T_{h}g$$
$$(\frac{\partial \Psi_{h}}{\partial \mathbf{W}_{h}})^{*} \mathbf{p}_{h} = \ \mathbf{g}_{h} \Leftrightarrow \mathbf{p}_{h} = [\frac{\partial \Psi_{h}}{\partial W_{h}}]^{-*}T_{h} \ \mathbf{g}_{h}$$
$$p_{h} = R_{h}\mathbf{p}_{h} \ .$$

A fundamental assumption of the present analysis is that this discrete adjoint is a good enough approximation of continuous adjoint. Adjoint-based goal-oriented a posteriori analysis (Giles-Pierce)

$$\delta_1 j = -(p_h , T_h \Psi(W_h))_{V \times V'}$$

Adjoint-based goal-oriented a priori analysis

$$\delta_2 j = -\left(p_h , \left(\Psi_h - T_h \Psi\right)(W_{(h)})\right)_{V \times V'}$$

Both formulas assume mesh convergence.

Let us apply the second formula...

Steady Euler equations:

$$W \in V = \left[H^{1}(\Omega)\right]^{5}, \ \forall \phi \in V,$$
$$(\Psi(W), \ \phi) = \int_{\Omega} \phi \, \nabla.\mathcal{F}(W) \ \mathsf{d}\Omega - \int_{\Gamma} \phi \, \hat{\mathcal{F}}(W).\mathbf{n} \ \mathsf{d}\Gamma = 0$$

where $\Gamma = \partial \Omega$ and $\hat{\mathcal{F}}$ is B.C. fluxes.

Mixed-Element-Volume appoximation:

$$\forall \phi_h \in V_h, \quad \int_{\Omega_h} \phi_h \nabla .\Pi_h \mathcal{F}(W_h) \ \mathsf{d}\Omega_h - \int_{\Gamma_h} \phi_h \Pi_h \hat{\mathcal{F}}(W_h) .\mathbf{n} \ \mathsf{d}\Gamma_h = \\ - \int_{\Omega_h} \phi_h D_h(W_h) \mathsf{d}\Omega_h,$$

where Π_h is the usual elementwise linear interpolation and where D_h holds for a numerical dissipation term.

A priori adjoint-based error estimate:

$$(g, W - W_h) \approx ((\Psi_h - \Psi)(W), P), \text{ with } \left[\frac{\partial \Psi}{\partial W}\right]^* P = g,$$

the optimal mesh is obtain after some transformations by solving:

Find
$$\mathcal{M}_{opt} = \operatorname{Argmin}_{\mathcal{M}} \int_{\Omega} |\nabla P| |\mathcal{F}(W) - \pi_{\mathcal{M}} \mathcal{F}(W)| d\Omega$$

 $+ \int_{\Gamma} |P| |(\bar{\mathcal{F}}(W) - \pi_{\mathcal{M}} \bar{\mathcal{F}}(W)).\mathbf{n}| d\Gamma$

(2)

under the constraint $\mathcal{C}(\mathcal{M}) = N$.

Solved analytically as interpolation case.

Remark: The adjoint-based formulation is compulsory.

Application to sonic boom : Hessian-based (Mach L2)

Goal-oriented + Hessian-based ("foot print" funct.)

Concluding remarks

- Metric-based Anisotropic adaptation is an important tool for mesh convergence and then for approximation error control and certification.
- This kind of study rises much more questions than it solves: other models, other approximations (h-p?), among others.
- A main component is the scientific and technical effort in mesh generation and control, in particular by P.L.George and co-workers.
- For adjoint developement, an important help is given by Automatic Differentiation, in particular with TAPENADE, developed by Hascoet-Pascual.

Current investigations:

- Second-order PDE models.
- Mesh adaptation, correction and accuracy control for large instationary state systems.