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Introduction

Mesh adaptation: Initially understood as devoted to improving a mesh,
mesh adaptation is progressively specifying its problematic:

- A. Problem setting: what properties define the mesh we look for?
- B. Problem solving:. how can we specify and build the mesh?

- C. Analysis of solution: what are the bonus properties of the adapted
mesh?



Introduction

(i)- Hessian-based criteria easily produce optimal specification for mesh den-
sity and local stretching. But they rely on local interpolation error and link
with PDE's is difficult.
Castro-Diaz et al. [JNMF 1997, Habashi et al. [JNMF 2000, Huang et al. JCP 2005, Courty et al. ANM
2006, Alauzet et al. IMR 2006

(ii))- PDE-based estimates are closer to PDE goals but produce stretching
criteria less easy to exploit.
Venditti-Darmofal et al. JCP 2002, Formagggia et al. ANM 2004

We explain first a context where both combine well.



Introduction

- 75, I1s a 3D tetrahedrization.
-V, = {4 € CY linear by element}

- Let II;, be the P; interpolation from vertices.
- Discrete Euler equations:

W, € (Vh)5and v, th & (Vh>5
Joo F(Wh). NV éndSY — Dp(Wh, ¢n) — Joq 0 F (Wh).nd0Q = 0 ()

Assuming P; exactness of (*) we can () derive by an a priori estimate:

(9, Wi, = W) = (g, LW — W) — |, VP.(F(W) — ILF(W))dQ
+ Joq Po(FOH W) = I, F(W)).ndOS).

Py discrete adjoint with g as RHS.

(*) Alauzet-Loseille-Dervieux-Mesri, 2007.



Introduction

Min  (|gl, LW = W|) = jo [VBu[.(|F (W) — I F(W)])dS2
+ foo | Pal|[(FOH (W) — I F(W)).n|dOS2.

A variational analysis allows exhibit the metric minimizing a weighted L”
norm of interpolation errors.

We explain now this variational analysis.



Introduction

Problem setting: LP interpolation:
Given a function u in {2 C R", of bounded derivatives except on a set of
smooth curves with bounded length.
Mesh set (73,), contains simplexes (2D-triangulations/3D-tetrahedrizations)

Let I1u: continuous, affine by element, (I1,u)(X;) = u(X;) V i vertex.

Find the mesh which gives the smallest Pi-interpolation error
IIyu — w in L? norm.

Analyse the resulting convergence when mesh size increases.



Three contexts under study:

e Case C1: u is smooth, analytically available, or from a PDE.
e Case C2: u is assumed to be known analytically but it is singular.

e Case C3: Only a PDE solution is known through its numerical approx-
imate u;, given on the current mesh.
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1) [Optimal mesh for smooth function

2) |Discontinuous fonction

3) [2D Numerical experiment

4) 3D Flow problems




1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Problem statement:
Let 4 a smooth function, with Hessiar21 den20ted:2
Hu = R Diag (5, sty g2) R
The goal is to obtain the best mesh if a given size for interpolating w.
The mesh is parameterised by a Riemannian metric, a n X n field defined on
the computational domain:
M = R]/}Dlag()\l, )\2, )\3>RM .
To M corresponds the following Riemannian distance between two arbitrary
points of the computatlonal domain:
distp(X,Y) == 1| XY MXY (@ X + (1 - 2)Y) do'.
To M the corresponds a equivalence class of unitary meshes (7)), i.e.
satisfying:
The distance distpm(Xi, X;) between any ends of edge ij of the mesh
1S equal to one.




1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

A two-step study can be applied (*):
After anisotropy direction optimization the dominent error term reduces to:
0*u
Ja;?

Directional mesh size optimization problem writes:

n 5’2U
. . >
g EM) = min (35 100 1 )

epm(a) = > h2

i=1

)

P\p
) dx) :
under the constraint:

C(M) = |, i[l h; ' (x) dx = [,d(x)dx = N.

See in particular:
(T)Alauzet et al., Leservoisier et al., Long Chen et al., Weizhan Huang.



1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Lp Optimal metric:
The metric M , an x n field on (2, represents the mesh. After solving the
optimality conditions:

My = Dy (det | H, )% R [Ay| R

with

0N 2 2 2
| p) | Au:Diag(au 0“u  O0-u

(904127 (905227 8&32 .

The positive number Dy is a global normalization term to obtain a mesh

with NV vertices. The field (det |H,|)2*" is a local normalization term ac-
counting for the sensitivity of the LL” norm. The three last matrices account
for stretching control.



1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Mesh convergence order:

Error at optimum writes:

2p+n

Db
2p—|—n] pr

As wu is assumed to be twice continuously differentiable, the error committed
with the optimal metric My, satisfies:

C(n,p,u)
N2/n

which expresses the second-order convergence.

o O
i=1 Oar?

E(Myy) = nN™n [ A

E(Mypp) <

The fact that C'(n, p,u) does not depend on IV shows that optimal meshes
classes are embedded.

N.B. All above extends to a weighted sum of L? interpolation error!



1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Fixed point adaptation algorithm: Pure interpolation or adapta-
tion for a discretised EDP. N is specified:

(H07 88)

P { Interpolate Solution
D 0 Sy
(7, 5?) l o

\
{ Compute Solution }

S; Hit1

A

Generate Mesh }

J Compute Metric }




2. DISCONTINUOUS SOLUTIONS

1D example:

Interpolate optimally:
u(x) = Usmootn(T) + o H(x — x0) .

- Hessian is approximated on the iterated mesh.
- mesh size tends to zero on discontinuity.
Mesh becomes non-valid. The fixed point fails.

Now, an infinitely thin capture of the discontinuity is not necessary for ac-
curacy, since it remains other errors on smooth region.



2. DISCONTINUOUS SOLUTIONS

1D model:

b lem(@)Pdz = [ (m?(z)g(N)(2))" da.

where:
g(N)(z) = 8(N)"*Ju(z + 5(N)) — 2u(z) + u(z — 6(N))]| .
Model validity, smooth, unsmooth regions:

0*u

g(N)(z) =5 ()]

5(N)

nmeWNz( Mﬂ+sz+R

moP moP




2. DISCONTINUOUS SOLUTIONS

Formal second-order accuracy:Independantly of the size of 6(IN)

supposed sufficiently small, the optimally adapted interpolation con-
verges to the discontinuous function u with “formal” second-order ac-
curacy.

Mopt (T ]1] (/0 2p+1 dy) (N)(a:)_2p]il
Eopt = </01(mgptg (V) )219 </ g(N)2 H)ZPH

g(N)] < [o]d(N)

g(N)|Z+T < |o|BFE(N) "2 < |o|2Fs(N) !

K
— goptgj\m-



2. DISCONTINUOUS SOLUTIONS

Case of a real mesh: The issue is to adequately choose g(N). We

observe that /} g(N)(x)Qpﬁl dx is uniformly bounded. In the discontinuity,
Mopt(To) is of order:

Mope(z0) = K N7 g(N)"%%1 + R = K N~ §(N)#T 4 R,

2
Writing (5(N)p+pl = N, and imposing
1
Mopt, 2N — 22pmopt,N
in the discontinuity then o« = 1 — 2p. Consequently, an upper bound for
d(N) is given by:

2

1—4p
D

S(N)=K' N2 (1)
We get mpi(zg) = K N~?7. Dividing N by 2 divides my(zo) by 2% and:



2. DISCONTINUOUS SOLUTIONS

Real mesh second-order convergence: Second-order convergence
holds on discontinuity for a mesh specified by:

by lem(@)Pdz = ) (m*(z)g(N)(@))’ da.

g(N)(@) = 8(N)"*Ju(z + 6(N)) — 2u(z) + u(z — 6(N))| .

_ 1—4p?

5(N) =K' N %




2. DISCONTINUOUS SOLUTIONS

Application to Case C3, numerical solution:
Minimal step size:

. _15
Min Ax = const. N~ 1 .(x)
Our strategy is to choose it for the finer adapted mesh to be applied and
then to use (*) to fix the Min Az for the coarser ones in order to ensure
second-order convergence. The same formula is applied to multi-dimensional
cases.



3. 2D NUMERICAL EXPERIMENT

Function to interpolate:
We adapt for the best interpolation of:

sin(2m(exp(x) + 0.5 +y?)) if = > 0.59°
sin(2m(exp(x) + 0.5 +y*)) +5 else.



3. 2D NUMERICAL EXPERIMENT

Results:
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Convergence of adaptative P1 interpolation on a complex discontinuous func-
tion. Top, function under study, bottom, convergence in L? norm as a func-
tion of the number of nodes. Each curve correspond to a curvature of the

discontinuity.



4. 3D FLOW PROBLEMS

Flow model:

ow
m‘FVF(W)—O,

where W = (p, pu, pv, pw, pE)
Mixed-Element-Volume approximation: values on vertices, P! interpolation.



4. 3D FLOW PROBLEMS

Scramjet internal flow(1):

Final anisotropic mesh with L' norm based mesh adaptation.




4. 3D FLOW PROBLEMS

Scramjet internal flow(2):

Final density iso-lines.
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4. 3D FLOW PROBLEMS

Scramjet internal flow(3):
Order of mesh convergence in L! norm for the pressure.

Scramjet L.1-norm pressure convergence
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norm adaptation.

Flow around a supersonic aircraft(1):

Final anisotropic mesh with L?

4. 3D FLOW PROBLEMS
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4. 3D FLOW PROBLEMS

Flow around a supersonic aircraft(2):
Final Mach number iso-value in the symmetry plane.




4. 3D FLOW PROBLEMS

Flow around a supersonic aircraft(3):
Order of mesh convergence in L? norm for the Mach number.

SSBJ L2-norm Mach number convergence
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5. CONCLUDING REMARKS

Many ingredients in a simulation tool can provoke a degradation of mesh
convergence down to less than first order accuracy.

We have analysed a particular family: discontinuities, steadiness.
A: Initial best mesh setting is to obtain a minimal L? interpolation error.

B: In contrast with smooth case, mesh distribution and stratching is specified
by a /N-dependant metric.

C: Second order convergence is theoretically predicted and numerically ob-
tained.

Current work concerns extension to unsteady flows with interfaces (with D.
Guegan).



5. CONCLUDING REMARKS (end'd)




Thank you for your attention!

Retour plan



