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Introduction

Mesh adaptation: Initially understood as devoted to improving a mesh,
mesh adaptation is progressively specifying its problematic:

- A. Problem setting: what properties define the mesh we look for?

- B. Problem solving: how can we specify and build the mesh?

- C. Analysis of solution: what are the bonus properties of the adapted
mesh?
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Introduction

(i)- Hessian-based criteria easily produce optimal specification for mesh den-
sity and local stretching. But they rely on local interpolation error and link
with PDE’s is difficult.
Castro-Diaz et al. IJNMF 1997, Habashi et al. IJNMF 2000, Huang et al. JCP 2005, Courty et al. ANM

2006, Alauzet et al. IMR 2006

(ii)- PDE-based estimates are closer to PDE goals but produce stretching
criteria less easy to exploit.
Venditti-Darmofal et al. JCP 2002, Formagggia et al. ANM 2004

We explain first a context where both combine well.
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Introduction

- τh is a 3D tetrahedrization.
- Vh = {ψ ∈ C0, linear by element}
- Let Πh be the P1 interpolation from vertices.
- Discrete Euler equations:

Wh ∈ (Vh)
5and ∀ φh ∈ (Vh)

5 :∫
ΩF(Wh).∇φhdΩ−Dh(Wh, φh)−

∫
∂Ω, φhF̄(Wh).nd∂Ω = 0 (∗)

Assuming P1 exactness of (*) we can (+) derive by an a priori estimate:

(g,Wh −W ) ≈ (g,ΠhW −W )−
∫
Ω∇Ph.(F(W )− ΠhF(W ))dΩ

+
∫
∂Ω Ph(F̄

out(W )− ΠhF̄ out(W )).nd∂Ω.

Ph: discrete adjoint with g as RHS.

(+) Alauzet-Loseille-Dervieux-Mesri, 2007.
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Introduction

Min (|g|, |ΠhW −W |)−
∫
Ω |∇Ph|.(|F(W )− ΠhF(W )|)dΩ

+
∫
∂Ω |Ph||(F̄

out(W )− ΠhF̄ out(W )).n|d∂Ω.

A variational analysis allows exhibit the metric minimizing a weighted Lp

norm of interpolation errors.

We explain now this variational analysis.
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Introduction

Problem setting: Lp interpolation:

Given a function u in Ω ⊂ Rn, of bounded derivatives except on a set of
smooth curves with bounded length.

Mesh set (τh)h contains simplexes (2D-triangulations/3D-tetrahedrizations)

Let Πhu: continuous, affine by element, (Πhu)(Xi) = u(Xi) ∀ i vertex.

Find the mesh which gives the smallest P1-interpolation error
Πhu− u in Lp norm.

Analyse the resulting convergence when mesh size increases.
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Three contexts under study:

• Case C1: u is smooth, analytically available, or from a PDE.

• Case C2: u is assumed to be known analytically but it is singular.

• Case C3: Only a PDE solution is known through its numerical approx-
imate uh given on the current mesh.
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PLAN

1) Optimal mesh for smooth function

2) Discontinuous fonction

3) 2D Numerical experiment

4) 3D Flow problems
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1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Problem statement:
Let u a smooth function, with Hessian denoted:

Hu = R−1
u Diag( ∂

2u
∂α1

2 ,
∂2u
∂α2

2 ,
∂2u
∂α3

2)Ru .
The goal is to obtain the best mesh if a given size for interpolating u.
The mesh is parameterised by a Riemannian metric, a n×n field defined on
the computational domain:

M = R−1
MDiag(λ1, λ2, λ3)RM .

To M corresponds the following Riemannian distance between two arbitrary
points of the computational domain:

distM(X,Y ) ==
∫1
0

√
~XY .M. ~XY (x′ ~X + (1− x′)~Y ) dx′.

To M the corresponds a equivalence class of unitary meshes (τM), i.e.
satisfying:
The distance distM(Xi, Xj) between any ends of edge ij of the mesh
is equal to one.
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1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

A two-step study can be applied (+):

After anisotropy direction optimization the dominent error term reduces to:

eM(a) =
n∑
i=1
h2
i

∣∣∣∣∣∣∣∣
∂2u

∂αi2

∣∣∣∣∣∣∣∣ ,

Directional mesh size optimization problem writes:

min
M

E(M) = min
hi

∫Ω
 n∑
i=1
h2
i (x)

∣∣∣∣∣∣∣∣
∂2u

∂αi2
(x)

∣∣∣∣∣∣∣∣

p

dx


1
p

,

under the constraint:

C(M) =
∫
Ω

n∏
i=1
h−1
i (x) dx =

∫
Ω d(x) dx = N.

See in particular:
(+)Alauzet et al., Leservoisier et al., Long Chen et al., Weizhan Huang.
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1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Lp Optimal metric:
The metric M , a n× n field on Ω, represents the mesh. After solving the
optimality conditions:

MLp = DLp (det |Hu|)
−1

2p+nR−1
u |Λu|Ru

with

DLp = N
2
n


∫
Ω

∣∣∣∣∣∣∣∣
n∏
i=1

∂2u

∂αi2

∣∣∣∣∣∣∣∣
p

2p+n

− 2
n

, Λu = Diag(
∂2u

∂α1
2
,
∂2u

∂α2
2
,
∂2u

∂α3
2
).

The positive number DLp is a global normalization term to obtain a mesh

with N vertices. The field (det |Hu|)
−1

2p+n is a local normalization term ac-
counting for the sensitivity of the Lp norm. The three last matrices account
for stretching control.
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1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Mesh convergence order:

Error at optimum writes:

E(MLp) = nN− 2
n


∫
Ω

∣∣∣∣∣∣∣∣
n∏
i=1

∂2u

∂α2
i

∣∣∣∣∣∣∣∣
p

2p+n


2p+n
pn

.

As u is assumed to be twice continuously differentiable, the error committed
with the optimal metric MLp satisfies:

E(MLp) ≤
C(n, p, u)

N 2/n

which expresses the second-order convergence.

The fact that C(n, p, u) does not depend on N shows that optimal meshes
classes are embedded.

N.B. All above extends to a weighted sum of Lp interpolation error!
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1. OPTIMAL MESH FOR SMOOTH SOLUTIONS

Fixed point adaptation algorithm: Pure interpolation or adapta-
tion for a discretised EDP. N is specified:

(Hi,Si)

(Hi,Mi)

(Hi,S0
i )

(H0,S0
0 )

(Hi+1,Si,Hi)

Si

Mi

Hi+1

S0
i+1

Compute Solution

Compute Metric

Generate Mesh

Interpolate Solution
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2. DISCONTINUOUS SOLUTIONS

1D example:

Interpolate optimally:

u(x) = usmooth(x) + σH(x− x0) .

- Hessian is approximated on the iterated mesh.
- mesh size tends to zero on discontinuity.
Mesh becomes non-valid. The fixed point fails.

Now, an infinitely thin capture of the discontinuity is not necessary for ac-
curacy, since it remains other errors on smooth region.
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2. DISCONTINUOUS SOLUTIONS

1D model:

∫ 1
0 |eM(x)|pdx =

∫ 1
0

(
m2(x)g(N)(x)

)p
dx.

where:

g(N)(x) = δ(N)−2|u(x + δ(N))− 2u(x) + u(x− δ(N))| .

Model validity, smooth, unsmooth regions:

g(N)(x) ≈
∣∣∣∣∣∣∣∣
∂2u

∂x2
(x)

∣∣∣∣∣∣∣∣ .

m(x)2g(N)(x) ≥
m(x)

δ(N)


2

|σ| + R ≥ |σ| + R

∫ x0+m
x0

(
m2g(N)

)p
=
mσp

p + 1

m
δ

2p
≥ mσp

p + 1
.
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2. DISCONTINUOUS SOLUTIONS

Formal second-order accuracy:Independantly of the size of δ(N)
supposed sufficiently small, the optimally adapted interpolation con-
verges to the discontinuous function u with “formal” second-order ac-
curacy.

mopt(x) =
1

N

(∫ 1
0 g(N)(y)

p
2p+1 dy

)
g(N)(x)−

p
2p+1

Eopt =
(∫ 1

0 (m2
optg(N))p

)1
p =

2

N 2

(∫
g(N)

p
2p+1

)2p+1
p
.

|g(N)| ≤ |σ|δ(N)−2 .

|g(N)|
p

2p+1 ≤ |σ|
p

2p+1δ(N)−
p

2p+1 ≤ |σ|
p

2p+1δ(N)−1

⇒ Eopt ≤
K

N 2
.
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2. DISCONTINUOUS SOLUTIONS

Case of a real mesh: The issue is to adequately choose g(N). We

observe that
∫1
0 g(N)(x)

p
2p+1 dx is uniformly bounded. In the discontinuity,

mopt(x0) is of order:

mopt(x0) = KN−1 g(N)−
p

2p+1 +R = KN−1 δ(N)
2p
p+1 +R.

Writing δ(N)
2p
p+1 = Nα, and imposing

mopt, 2N =
1

22p
mopt,N

in the discontinuity then α = 1 − 2p. Consequently, an upper bound for
δ(N) is given by:

δ̄(N) = K ′N
1−4p2

2p (1)

We get mopt(x0) = KN−2p. Dividing N by 2 divides mopt(x0) by 22p and:
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2. DISCONTINUOUS SOLUTIONS

Real mesh second-order convergence: Second-order convergence
holds on discontinuity for a mesh specified by:

∫ 1
0 |eM(x)|pdx =

∫ 1
0

(
m2(x)g(N)(x)

)p
dx.

g(N)(x) = δ(N)−2|u(x + δ(N))− 2u(x) + u(x− δ(N))| .

δ̄(N) = K ′N
1−4p2

2p
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2. DISCONTINUOUS SOLUTIONS

Application to Case C3, numerical solution:
Minimal step size:

Min ∆x = const.N−15
4 .(∗)

Our strategy is to choose it for the finer adapted mesh to be applied and
then to use (*) to fix the Min ∆x for the coarser ones in order to ensure
second-order convergence. The same formula is applied to multi-dimensional
cases.
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3. 2D NUMERICAL EXPERIMENT

Function to interpolate:
We adapt for the best interpolation of:

sin(2π(exp(x) + 0.5 + y2)) if x > 0.5y2

sin(2π(exp(x) + 0.5 + y2)) + 5 else.
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3. 2D NUMERICAL EXPERIMENT

Results:

Convergence of adaptative P1 interpolation on a complex discontinuous func-
tion. Top, function under study, bottom, convergence in L2 norm as a func-
tion of the number of nodes. Each curve correspond to a curvature of the
discontinuity.
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4. 3D FLOW PROBLEMS

Flow model:

∂W

∂t
+∇ · F (W ) = 0 ,

where W = t(ρ, ρu, ρv, ρw, ρE)
Mixed-Element-Volume approximation: values on vertices, P 1 interpolation.
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4. 3D FLOW PROBLEMS

Scramjet internal flow(1):

Final anisotropic mesh with L1 norm based mesh adaptation.
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4. 3D FLOW PROBLEMS

Scramjet internal flow(2):

Final density iso-lines.
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4. 3D FLOW PROBLEMS

Scramjet internal flow(3):
Order of mesh convergence in L1 norm for the pressure.
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4. 3D FLOW PROBLEMS

Flow around a supersonic aircraft(1):
Final anisotropic mesh with L2 norm adaptation.
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4. 3D FLOW PROBLEMS

Flow around a supersonic aircraft(2):
Final Mach number iso-value in the symmetry plane.

27



4. 3D FLOW PROBLEMS

Flow around a supersonic aircraft(3):
Order of mesh convergence in L2 norm for the Mach number.
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5. CONCLUDING REMARKS

Many ingredients in a simulation tool can provoke a degradation of mesh
convergence down to less than first order accuracy.

We have analysed a particular family: discontinuities, steadiness.

A: Initial best mesh setting is to obtain a minimal L2 interpolation error.

B: In contrast with smooth case, mesh distribution and stratching is specified
by a N -dependant metric.

C: Second order convergence is theoretically predicted and numerically ob-
tained.

Current work concerns extension to unsteady flows with interfaces (with D.
Guegan).
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5. CONCLUDING REMARKS (end’d)
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Thank you for your attention!

Retour plan
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