

# SCHÉMAS NUMÉRIQUES ET MÉCANIQUE DES FLUIDES

R. Abgrall I-MATH Universität Zürich

















April 10, 2015









April 10, 2015











Merci Alain !

April 10, 2015





#### **RAE2822** AIRFOIL, TURBULENT **M=0.734**, **R**=6.5 10<sup>6</sup>, **A**OA=2.79°





# GOALS

$$\frac{\partial W}{\partial t} + \operatorname{div} \left( F(W) - F_{v}(W, \nabla W) \right) = S(\mathbf{x}, W)$$

- Emphasis on the structure of the operators: multidimensional, symetries, structure of differential operators, equilibriums, etc: role of conservation in the large
- Easy implementation: very local structures (geometrical+memory-wise) → compact stencil
- Truly high order
- Stable and parameter free, including for strong shocks



# GOALS

$$\frac{\partial W}{\partial t} + \operatorname{div} \left( F(W) - F_{v}(W, \nabla W) \right) - S(\mathbf{x}, W) = 0$$

- Emphasis on the structure of the operators: multidimensional, symetries, structure of differential operators, equilibriums, etc: role of conservation in the large
- Easy implementation: very local structures (geometrical+memory-wise) → compact stencil
- Truly high order
- Stable and parameter free, including for strong shocks



# COLLABORATIVE WORK

- INRIA: M. Ricchiuto, M. Mezine, A. Larat, D. de Santis, A. Froehly, L. Nouveau, P. Jacq, etc
- U. Bordeaux: K. Mer-Nkonga, H. Beaugendre
- VKI: H. Deconinck,
- U. Michigan: P.L. Roe
- Curved meshes: C. Dobrzynski (U. Bordeaux), A. Froehly (Inria)



## COLLABORATIVE WORK

- INRIA: M. Ricchiuto, M. Mezine, A. Larat, D. de Santis, A. Froehly, L. Nouveau, P. Jacq, etc
- U. Bordeaux: K. Mer-Nkonga, H. Beaugendre
- VKI: H. Deconinck,
- U. Michigan: P.L. Roe
- Curved meshes: C. Dobrzynski (U. Bordeaux), A. Froehly (Inria)



# OUTLINE

## FORMULATIONS: CONSERVATION AND ACCURACY ISSUES

# **Residual distribution framework**

APPLICATION TO STEADY TURBULENT FLOW PROBLEMS

EXTENSIONS: SHALLOW WATER

CONCLUSION



## **OVERVIEW**

## FORMULATIONS: CONSERVATION AND ACCURACY ISSUES

**RESIDUAL DISTRIBUTION FRAMEWORK** 

APPLICATION TO STEADY TURBULENT FLOW PROBLEMS

EXTENSIONS: SHALLOW WATER

CONCLUSION



# MODEL PROBLEM, FRAMEWORK FOR STEADY SCALAR CONSERVATION LAWS.

div 
$$f(u) = 0$$
 in  $\Omega$ 

$$u = g$$
 on  $\Gamma^{-}$ 



# SOME NOTATIONS...

- Consider  $\mathcal{T}_h$  triangulation of  $\Omega$  (can do with quads...)
- Unknowns (Degrees of Freedom, DoF) :  $u_i \approx u(M_i)$
- $M_i \in \mathcal{T}_h$  a given set of nodes (vertices +other dofs)
- Denote by *u<sub>h</sub>* continuous piecewise approximation (for example *P<sup>k</sup>* Lagrange triangles/quads)

 $\overset{\text{April 10, 2015}}{=} \sum \varphi_i U_i$ 



## VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,1

**Continuous finite elements: Galerkin+stabilisation.**: Choose  $V^h = U^h = \bigoplus \{ u^h_{|K} \in \mathbb{P}^k(K) \text{ and globally continuous} \}$ 

STREAMLINE DIFFUSION (HUGHES ET AL.)

$$\sum_{\kappa} \left( -\int_{\kappa} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial \kappa} v^{h} f(u^{h}) \cdot \mathbf{n} \right. \\ \left. + h_{\kappa} \int_{\kappa} \left( \nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \mathcal{T} \left( \nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) = 0, \quad \mathcal{T} \ge 0.$$

JUMP OPERATOR (BURMAN ET AL.)

$$\sum_{K} \left( -\int_{K} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial K} v^{h} f(u^{h}) \cdot \mathbf{n} \right)$$
April 10, 2015
$$+ \sum_{e \in \mathcal{O}} \Gamma h_{e}^{2} \int_{e} ||\nabla_{u} f(u^{h})|| [\nabla u^{h}] [\nabla v^{h}] = 0, \quad \Gamma \geq 0$$



#### VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,1

**Continuous finite elements: Galerkin+stabilisation.**: Choose  $V^h = U^h = \bigoplus \{ u^h_{|K} \in \mathbb{P}^k(K) \text{ and globally continuous} \}$ 

STREAMLINE DIFFUSION (HUGHES ET AL.)

$$\sum_{K\ni i} \left( -\int_{K} \nabla \varphi_{i} \cdot f(u^{h}) dx + \int_{\partial K} \varphi_{i} f(u^{h}) \cdot \mathbf{n} \right. \\ \left. + h_{K} \int_{K} \left( \nabla f_{u}(u^{h}) \cdot \nabla \varphi_{i} \right) \mathcal{T} \left( \nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) = 0, \quad \mathcal{T} \ge 0.$$

JUMP OPERATOR (BURMAN ET AL.)

$$\sum_{K \ni i} \left( -\int_{K} \nabla \varphi_{i} \cdot f(u^{h}) dx + \int_{\partial K} \varphi_{i} f(u^{h}) \cdot \mathbf{n} \right)$$
April 10, 2015
$$+ \sum_{e \neq q \neq q} \left[ \Gamma h_{e}^{2} \int_{\varphi} \left| \left| \nabla_{u} f(u^{h}) \right| \right| \left[ \nabla u^{h} \right] \left[ \nabla \varphi_{i} \right] = 0, \quad \Gamma \geq 0$$



# REMARK

for all degree of freedom, 
$$\sum_{\substack{K \\ \Phi_i^K}} \Phi_i^K = \mathbf{0}$$

$$\sum_{i \in K} \left( \overbrace{-\int_K \nabla \varphi_i \cdot f(u^h) d\mathbf{x} + \int_{\partial K} \varphi_i f(u^h) \cdot \mathbf{n} + h_K \int_K (\nabla f_u(u^h) \cdot \nabla \varphi_i) \mathcal{T}(\nabla f_u(u^h) \cdot \nabla u) \right)$$

$$= \int_{\partial K} f(u^h) \cdot \mathbf{n}$$

Jump stabilisation

$$\sum_{i \in K} \left( \overbrace{-\int_{K} \nabla \varphi_{i} \cdot f(u^{h}) d\mathbf{x} + \int_{\partial K} \varphi_{i} f(u^{h}) \cdot \mathbf{n} + \sum_{edges \subset K} \Gamma h_{e}^{2} \int_{e} ||\nabla_{u} f(u^{h})|| [\nabla u^{h}] [\nabla \varphi_{i}]} \right)$$

$$= \int_{\partial K} f(u^{h}) \cdot \mathbf{n}$$
because  $\sum_{i \in K} \varphi_{i} = 1 \longrightarrow \sum_{i \in K} \nabla \varphi_{i} = 0$ 
April 10, 2015



#### VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2

Discontinuous finite elements: Stabilisation via the jumps accross edges  $V^h = U^h = \bigoplus \{u_{|K}^h \in \mathbb{P}^k(K)\}$ 

$$\sum_{K} \left( -\int_{K} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial K} \hat{f}(u^{h}_{+}, u^{h}_{-}, \mathbf{n}) v^{h} dl \right) = 0$$

Choice of numerical flux  $\hat{f}$ : E-scheme implies entropy stability.



#### VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2

Discontinuous finite elements: Stabilisation via the jumps accross edges  $V^h = U^h = \bigoplus \{u_{|K}^h \in \mathbb{P}^k(K)\}$ 

$$\sum_{K \ni i} \int_{K} \left( -\int_{K} \nabla \varphi_{i} \cdot f(u^{h}) dx + \int_{\partial K} \hat{f}(u^{h}_{+}, u^{h}_{-}, \mathbf{n}) \varphi_{i} dl \right) = 0$$

Choice of numerical flux  $\hat{f}$ : E-scheme implies entropy stability.



# REMARK

for all degree of freedom, 
$$\sum_{K \ni} \Phi_i^K = 0$$

DG

$$\sum_{i\in K} \left( \overbrace{-\int_{K} \nabla \varphi_{i} \cdot f(u^{h}) dx + \int_{\partial K} \hat{f}(u^{h}_{+}, u^{h}_{-}, \mathbf{n}) \varphi_{i} dl}^{\Phi_{i}^{K}} \right)$$
$$= \int_{\partial K} \hat{f}(u^{h}_{+}, u^{h}_{-}, \mathbf{n}) dl$$

because again  $\sum_{i \in K} \varphi_i = 1 \longrightarrow \sum_{i \in K} \nabla \varphi_i = 0$ 







div  $\mathbf{f}(u) = 0$ 

k $n_{ik}^$  $n_{ij}^+$ 

$$\sum_{K \ni i} \left[ \hat{f}(u_i, u_j, \mathbf{n}_{ij}^+) + \hat{f}(u_i, u_k, \mathbf{n}_{ik}^-) \right] = 0$$





$$\sum_{K \ni i} \left[ \hat{f}(u_i, u_j, \mathbf{n}_{ij}^+) + \hat{f}(u_i, u_k, \mathbf{n}_{ik}^-) - \mathbf{f}(u_i) \cdot (\mathbf{n}_{ij}^+ + \mathbf{n}_{ik}^-) \right] = 0$$





 $n_{jk}$ G $n_i$  $n_{ii}$ 

Again, we have

div  $\mathbf{f}(u) = 0$ 

 $\sum_{K\ni i} \Phi_i^K = \mathbf{0}$ 

with

$$\begin{split} \Phi_i &:= \hat{f}(u_i, u_j, \mathbf{n}_{ij}^+) + \hat{f}(u_i, u_k, \mathbf{n}_{ik}^-) \\ &- \mathbf{f}(u_i) \cdot \left(\mathbf{n}_{ij}^+ + \mathbf{n}_{ik}^-\right) \\ &= \hat{f}(u_i, u_j, \mathbf{n}_{ij}^+) + \hat{f}(u_i, u_k, \mathbf{n}_{ik}^-) \\ &- \mathbf{f}(u_i) \cdot \frac{\mathbf{n}_i}{2} \end{split}$$



#### **CASE OF FINITE VOLUME FORMULATION**





## **PARTIAL CONCLUSION:**

We can rephrase many/all known schemes as:

$$\sum_{K\ni i}\Phi_i^K(u^h)=0$$

where

- The  $\Phi_i^{\kappa}(u^h)$  are residuals, i.e. basically difference of fluxes,
- They all satisfy a conservation relation:

$$\sum_{i\in K} \Phi_i^{\kappa}(u^h) = \int_{\partial K} \hat{f}(u^+, u^-, \mathbf{n})$$

 $\hat{f}$  numerical flux, take into account continuous/discontinuous element



## **PARTIAL CONCLUSION:**

We can rephrase many/all known schemes as:

$$\sum_{K\ni i}\Phi_i^K(u^h)=0$$

where

- The  $\Phi_i^{\kappa}(u^h)$  are residuals, i.e. basically difference of fluxes,
- They all satisfy a conservation relation:

$$\sum_{i\in K} \Phi_i^K(u^h) = \int_{\partial K} \hat{f}(u^+, u^-, \mathbf{n})$$

 $\hat{f}$  numerical flux, take into account continuous/discontinuous element Can we exploit this to design schemes



## **PARTIAL CONCLUSION:**

We can rephrase many/all known schemes as:

$$\sum_{K\ni i}\Phi_i^K(u^h)=0$$

where

- The  $\Phi_i^{\kappa}(u^h)$  are residuals, i.e. basically difference of fluxes,
- They all satisfy a conservation relation:

$$\sum_{i\in K} \Phi_i^K(u^h) = \int_{\partial K} \hat{f}(u^+, u^-, \mathbf{n})$$

 $\hat{f}$  numerical flux, take into account continuous/discontinuous element Can we exploit this to design schemes: yes !



#### FURTHER REMARKS ON THE TRUNCATION ERROR

Consider for example the residuals of SUPG for Steady problem

- div  $\mathbf{f}(u^{ex}) = 0$  and assume  $u^{ex}$  smooth enough.
- Call  $u^h$  some interpolant of  $u^{ex}$ ,  $u^h u^{ex} = O(h^{r+1}_K)$ ,  $u^h \in \mathbf{\Phi}^r(K)$
- Denote  $\delta \mathbf{f} = \mathbf{f}(u^h) \mathbf{f}(u^{ex})$

$$\Phi_{i}^{K}(u^{h}) = -\int_{K} \nabla \varphi_{i} \cdot \mathbf{f}(u^{h}) d\mathbf{x} + \int_{\partial K} \varphi_{i} \mathbf{f}(u^{h}) \\ h_{K} \int_{K} (\nabla f_{u}(u^{h}) \cdot \nabla \varphi_{i}) \mathcal{T} (\nabla f_{u}(u^{h}) \cdot \nabla u^{h}) d\mathbf{x} \\ = -\int_{K} \nabla \varphi_{i} \cdot \delta \mathbf{f} d\mathbf{x} + \int_{\partial K} \varphi_{i} \delta \mathbf{f} \\ h_{K} \int_{K} (\nabla f_{u}(u^{h}) \cdot \nabla \varphi_{i}) \mathcal{T} (\operatorname{div} \delta \mathbf{f}) d\mathbf{x} \\ = O(h^{k+1+d-1}) + O(h^{k+1+d-1}) + O(h^{1+d-1+k}) = O(h^{k+d})$$



#### FURTHER REMARKS ON THE TRUNCATION ERROR

#### ASSUMPTIONS AND FACTS:

Under steady problem+ smooth solution approximated in  $\Phi^k(K)$ 

$$\Phi_i^K(u^h) = O(k^{k+d}).$$

- Same true for stabilisation with jumps
- Same true for DG (thanks to flux consistency) BUT violated when limiting: extrema problem.
- Wrong in general for FV, or difficult to achieve (very large stencils)
- Can be shown as the basis of a systematic truncation error analysis.



#### FURTHER REMARKS ON THE TRUNCATION ERROR

#### ASSUMPTIONS AND FACTS:

Under steady problem+ smooth solution approximated in  $\Phi^k(K)$ 

$$\Phi_i^K(u^h) = O(k^{k+d}).$$

# - Same true for stabilisation with jumps

- Same true for DG (thanks to flux consistency) BUT violated when limiting: extrema problem.
- Wrong in general for FV, or difficult to achieve (very large stencils)
- Can be shown as the basis of a systematic truncation error analysis.


#### FURTHER REMARKS ON THE TRUNCATION ERROR

#### ASSUMPTIONS AND FACTS:

Under steady problem+ smooth solution approximated in  $\Phi^k(K)$ 

$$\Phi_i^K(u^h) = O(k^{k+d}).$$

- Same true for stabilisation with jumps
- Same true for DG (thanks to flux consistency) BUT violated when limiting: extrema problem.
- Wrong in general for FV, or difficult to achieve (very large stencils)
- Can be shown as the basis of a systematic truncation error analysis.



#### FURTHER REMARKS ON THE TRUNCATION ERROR

#### ASSUMPTIONS AND FACTS:

Under steady problem+ smooth solution approximated in  $\Phi^k(K)$ 

$$\Phi_i^K(u^h) = O(k^{k+d}).$$

- Same true for stabilisation with jumps
- Same true for DG (thanks to flux consistency) BUT violated when limiting: extrema problem.
- Wrong in general for FV, or difficult to achieve (very large stencils)
- Can be shown as the basis of a systematic truncation error analysis.



#### FURTHER REMARKS ON THE TRUNCATION ERROR

#### ASSUMPTIONS AND FACTS:

Under steady problem+ smooth solution approximated in  $\Phi^k(K)$ 

$$\Phi_i^K(u^h) = O(k^{k+d}).$$

- Same true for stabilisation with jumps
- Same true for DG (thanks to flux consistency) BUT violated when limiting: extrema problem.
- Wrong in general for FV, or difficult to achieve (very large stencils)
- Can be shown as the basis of a systematic truncation error analysis.



#### NEXT STEP

Dual situation

- Combine the conservation relation

$$\sum_{i\in K} \Phi_i^K(u^h) = 0$$

- and the residual property

$$\Phi_i^K(u^h) = O(k^{k+d}).$$

to construct compact, stable, accurate, non oscillatory schemes: Residual distribution scheme



#### **OVERVIEW**

#### FORMULATIONS: CONSERVATION AND ACCURACY ISSUES

#### **RESIDUAL DISTRIBUTION FRAMEWORK**

APPLICATION TO STEADY TURBULENT FLOW PROBLEMS

EXTENSIONS: SHALLOW WATER

CONCLUSION



#### **RESIDUAL DISTRIBUTION SCHEMES**

### HISTORY

- Ni scheme, 1981. Engineer at Bombardier
- Roe, 1981(−x)-today
- Deconinck, Ricchiuto, Nishikawa, Caraeni, ...
- Strong connections with stabilized FEM methods for convection-diffusion problems.

- ...

#### AIMS

- Combine ideas from finite volume schemes (non oscillatory,  $L^\infty$  stability, upwinding with finite element methods
- Simple implementation: no fancy limiters, no Riemann solvers, compact stencil, no tunable parameters

April 10, 2015 something else than DG and high order finite volume

\_\_\_\_\_



#### **RESIDUAL DISTRIBUTION SCHEMES**

#### HISTORY

- Ni scheme, 1981. Engineer at Bombardier
- Roe, 1981(−x)-today
- Deconinck, Ricchiuto, Nishikawa, Caraeni, ...
- Strong connections with stabilized FEM methods for convection-diffusion problems.

- ...

#### AIMS

- Combine ideas from finite volume schemes (non oscillatory,  $L^\infty$  stability, upwinding with finite element methods
- Simple implementation: no fancy limiters, no Riemann solvers, compact stencil, no tunable parameters

 $_{\mbox{\sc April \sc 10,\sc 20}} \mbox{\sc Something else than DG and high order finite volume}$ 

#### \_\_\_\_\_



#### MODEL EQUATION: SCALAR STEADY CONVECTION-DIFFUSION

 $\mathsf{div}\;\mathsf{f}(u)-\mathsf{div}\;(\mathbb{K}\nabla u)=0\qquad\text{on}\;\Omega\subset\mathbb{R}^d\;\text{boundary conditions on}\;\partial\Omega$ 

- $\mathbf{f}(u) = (f_1(u), \cdots, f_d(u)), f_i \text{ smooth enough.}$
- Boundary conditions: Dirichlet or inflow/outflow depending on  $\ensuremath{\mathbb{K}}$

- Scalar problem



#### MODEL EQUATION: SCALAR STEADY CONVECTION-DIFFUSION

 $\mathsf{div}\;\mathsf{f}(u)-\mathsf{div}\;(\mathbb{K}\nabla u)=0\qquad\text{on}\;\Omega\subset\mathbb{R}^d\;\text{boundary conditions on}\;\partial\Omega$ 

- $\mathbf{f}(u) = (f_1(u), \cdots, f_d(u)), f_i$  smooth enough.
- Boundary conditions: Dirichlet or inflow/outflow depending on  $\ensuremath{\mathbb{K}}$
- Scalar problem



#### MODEL EQUATION: SCALAR STEADY CONVECTION-DIFFUSION

 $\mathsf{div}\;\mathsf{f}(u)-\mathsf{div}\;(\mathbb{K}\nabla u)=0\qquad\text{on}\;\Omega\subset\mathbb{R}^d\;\text{boundary conditions on}\;\partial\Omega$ 

- $\mathbf{f}(u) = (f_1(u), \cdots, f_d(u)), f_i \text{ smooth enough.}$
- Boundary conditions: Dirichlet or inflow/outflow depending on  $\ensuremath{\mathbb{K}}$
- Scalar problem

Analysis done for non viscous problems first



MODEL PROBLEM, FRAMEWORK FOR SCALAR CONSERVATION LAWS.





#### SOME NOTATIONS...

- Consider  $\mathcal{T}_h$  triangulation of  $\Omega$  (can do with quads...)
- Unknowns (Degrees of Freedom, DoF) :  $u_i \approx u(M_i)$
- $M_i \in T_h$  a given set of nodes (vertices +other dofs)
- Denote by *u<sub>h</sub>* continuous piecewise approximation (for example *P<sup>k</sup>* Lagrange triangles/quads)

 $-\underbrace{U_h}_{\text{April 10, 2015}} = \sum_i \frac{\varphi_i}{U_i} U_i$ 



#### **PRINCIPLE FOR HIGHER ORDER**

1. 
$$\forall K \in \mathcal{T}_h \text{ compute} : \Phi^K = \int_{\partial K} f_h(u_h) \cdot \mathbf{n}$$

2. Distribution :

$$\Phi^{K}(u^{h}) = \sum_{i \in K} \Phi^{K}_{i}$$

Distribution coeff.s :

$$\Phi_i^K(u^h) =$$
sub-residuals

3. Compute nodal values : solve algebraic system

∀ degree of freedom i

$$\sum_{K|i\in K} \Phi_i^K(u^h) = 0,$$









#### **PRINCIPLE FOR HIGHER ORDER**

1. 
$$\forall K \in \mathcal{T}_h \text{ compute } : \Phi^K = \int_{\partial K} f_h(u_h) \cdot \mathbf{n}$$

2. Distribution :

$$\Phi^{K}(u^{h}) = \sum_{i \in K} \Phi^{K}_{i}$$

Distribution coeff.s :

$$\Phi_i^{\kappa}(u^h) =$$
sub-residuals

3. Compute nodal values : solve algebraic system

 $\forall$  degree of freedom i

$$\sum_{K|i\in K} \Phi_i^K(u^h) = 0,$$

 $\underset{\mbox{\tiny April 10, 2015}}{\mbox{\scriptsize Solved}}$  by some iterative technique.









#### **DESIGN PROPERTIES**

#### STRUCTURAL CONDITIONS, BASIC PROPERTIES

Under which conditions on the  $\Phi_i^K$ s we get

- Correct weak solutions (if convergent with h)
- Formal k<sup>th</sup> order of accuracy
- Monotonicity (discrete max principle)
- Convergence



#### **DESIGN PROPERTIES**

#### STRUCTURAL CONDITIONS, BASIC PROPERTIES

Under which conditions on the  $\Phi_i^K$ s we get

- Correct weak solutions (if convergent with h)
- Formal k<sup>th</sup> order of accuracy
- Monotonicity (discrete max principle)
- Convergence

#### Notation: DOF: $\sigma_i$ or $M_i$ or simply *i*



#### **CONDITION 1 : CONSERVATION**

### **CONSERVATION PRINCIPLE** If there is a $f_h$ , continuous approximation of f such that $\Phi^{K} = \sum_{j \in K} \Phi_j^{K} = \oint_{\partial K} \mathbf{f}(u^h) \cdot \mathbf{n}$

#### Implies convergence to a (weak) solution of the problem $\operatorname{div} \mathbf{f}(u) = 0$ under standard stability conditions



#### **CONDITION 2 : ACCURACY.**

 $u^{ex,h}$  interpolant of exact sol. assumed smooth Truncation error

$$\mathcal{E}(u^{ex,h};v) := \sum_{i \in \mathcal{T}_h} v_i \Big( \sum_{K \mid i \in K} \Phi_i^K(u^{ex,h}) \Big)$$

**GUIDING PRINCIPLE** 

$$\mathcal{E}(u^{\text{ex},h}; v) = \overbrace{\int_{\Omega} \nabla v_h \cdot f_h(u^{\text{ex},h})}^{I \equiv \mathcal{E}^{\text{Galerkin}}} + \overbrace{\sum_{K \in \mathcal{T}_h} \frac{1}{N_K} \sum_{i,j \in K} (v_i - v_j) (\Phi_i^K - \Phi_i^{\text{Gal}}) (u^{\text{ex},h})}^{II}}^{II}$$
$$\Phi_i^{\text{Gal},K} = \int_K \Phi_i \text{div } f(u^h) dx = -\int_K \nabla \Phi_i \cdot \mathbf{f}(u^h) dx + \int_{\partial K} \Phi_i \mathbf{f}(u^h) \cdot \mathbf{n} d\sigma$$



#### **CONDITION 2 : ACCURACY.**

**KEY REMARK**  
div 
$$\mathbf{f}(w) = 0 \Longrightarrow \Phi_i^{Gal,K}(u^{ex,h}) = \int_T \nabla \psi_i \cdot \mathbf{f}_h(u^{ex,h}) dx - \int_{\partial K} \Phi_i \mathbf{f}_h(u^{ex,h}) \cdot \mathbf{n} = O(h^{k+d})$$



#### **CONDITION 2 : ACCURACY.**

FINAL RESULT Truncation error :  $|\mathcal{E}(u^{ex,h};v)| \leq C'(\mathcal{T}_h, u^{ex}) \|\nabla v\|_{\infty} h^{k+1}$ 

 $\text{if (in d-D)} \qquad |\Phi_i^{\mathsf{K}}(u^{ex,h})| \leq \mathcal{C}''(\mathcal{T}_h, u^{ex})h^{\mathsf{k}+\mathsf{d}} = \mathcal{O}(h^{\mathsf{k}+\mathsf{d}})$ 



#### **CONDITION 2 : ACCURACY**

"LINEARITY" (ACCURACY) PRESERVING SCHEMES Since  $\Phi^{K}(u^{h}) = \int_{\partial K} f^{h}(u^{h}) \cdot \mathbf{n} = \mathcal{O}(h^{k+d})$  schemes for which  $\Phi_{i}^{K} = \beta_{i}^{K} \Phi^{K}$  with  $\beta_{i}^{K}$  uniformly bounded distribution coeff.s

are formally  $k + 1^{\text{th}}$  order accurate (for  $k + 1^{\text{th}}$  order spatial interpolation)



#### **CONDITION 2 : ACCURACY**

"LINEARITY" (ACCURACY) PRESERVING SCHEMES Since  $\Phi^{K}(u^{h}) = \int_{\partial K} f^{h}(u^{h}) \cdot \mathbf{n} = \mathcal{O}(h^{k+d})$  schemes for which

 $\Phi_i^{\kappa} = \beta_i^{\kappa} \Phi^{\kappa}$  with  $\beta_i^{\kappa}$  uniformly bounded distribution coeff.s

are formally  $k + 1^{\text{th}}$  order accurate (for  $k + 1^{\text{th}}$  order spatial interpolation)

#### HOWEVER: GODUNOV'S THEOREM

The  $\beta_i^{\kappa}$  must depend on the solution : A scheme cannot be both high order accurate and linear for a linear problem.



#### **CONDITION 2 : ACCURACY**

"LINEARITY" (ACCURACY) PRESERVING SCHEMES Since  $\Phi^{K}(u^{h}) = \int_{\partial K} f^{h}(u^{h}) \cdot \mathbf{n} = \mathcal{O}(h^{k+d})$  schemes for which

 $\Phi_i^{\kappa} = \beta_i^{\kappa} \Phi^{\kappa}$  with  $\beta_i^{\kappa}$  uniformly bounded distribution coeff.s

are formally  $k + 1^{\text{th}}$  order accurate (for  $k + 1^{\text{th}}$  order spatial interpolation)

#### HOWEVER: GODUNOV'S THEOREM

The  $\beta_i^{\kappa}$  must depend on the solution : A scheme cannot be both high order accurate and linear for a linear problem.

#### SOLUTION METHOD

- Start from a monotone scheme
- Use a 'limiter' that produce a set of residuals that enables the residual property for any elements and any degree of freedom



# ONE EXAMPLE OF MONOTONE SCHEME: THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)

First order distribution :

$$\Phi_{i}^{\mathsf{Rv}} = \frac{\Phi^{\mathsf{K}}}{n_{\mathsf{K}}} + \frac{\alpha}{n_{\mathsf{K}}} \sum_{\substack{j \in \mathsf{K} \\ j \neq i}} (u_{i} - u_{j}), \ \alpha \geq \max_{j \in \mathsf{K}} \left| \int_{\mathsf{K}} \nabla_{u} f(u^{h}) \cdot \nabla \psi_{j} \right|$$

- $n_K$  number of DoF per element
- $\varphi_j$  Lagrange basis fcn. relative to node j

#### WHY THIS SCHEME ?

- 1. The Rv scheme is cheap and has general formulation
- 2. The Rv scheme is monotone and energy stable in the  $P^1$  case.
- 3. By far one of the most dissipative ones



# ONE EXAMPLE OF MONOTONE SCHEME: THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)

#### Choice of Rusanov : not essential at all ! First order distribution :

$$\Phi_{i}^{\mathsf{Rv}} = \frac{\Phi^{\mathsf{K}}}{n_{\mathsf{K}}} + \frac{\alpha}{n_{\mathsf{K}}} \sum_{\substack{j \in \mathsf{K} \\ j \neq i}} (u_{i} - u_{j}), \ \alpha \geq \max_{j \in \mathsf{K}} \left| \int_{\mathsf{K}} \nabla_{u} f(u^{h}) \cdot \nabla \psi_{j} \right|$$

- $n_K$  number of DoF per element
- $\varphi_j$  Lagrange basis fcn. relative to node j

#### WHY THIS SCHEME ?

- 1. The Rv scheme is cheap and has general formulation
- 2. The Rv scheme is monotone and energy stable in the  $P^1$  case.
- 3. By far one of the most dissipative ones



#### SOLUTION METHOD SUMMARY

- For any K
- Start from Rusanov' residuals,
- Use Struijs' limiter

$$\beta_i^H = \frac{\max(0, \Phi_i^{R\nu} / \Phi^{\kappa})}{\sum\limits_{j \in \kappa} \max(0, \Phi_j^{R\nu} / \Phi^{\kappa})}$$

- Define:  $\Phi_i^H = \beta_i^H \Phi^K$ .
- $-\theta = 0$  is  $u_i$  is a local extrema,  $u_i = 1$  else
- This scheme satisfies a local maximum/minimum property and is formaly k-th order accurate



#### SOLUTION METHOD SUMMARY

- For any K
- Start from Rusanov' residuals,
- Use Struijs' limiter

$$eta_i^H = rac{\max(0, \Phi_i^{Rv}/\Phi^K)}{\sum\limits_{j \in K} \max(0, \Phi_j^{Rv}/\Phi^K)}$$

– Define:

 $\Phi_i^H = \beta_i^H \Phi^K + \theta(u^h) \times h_K \int_K \left( \nabla \mathbf{f}_u(u^h) \cdot \nabla \varphi_i \right) \tau \left( \nabla \mathbf{f}_u(u^h) \cdot \nabla u^h \right) dx$ 

- $-\theta = 0$  is  $u_i$  is a local extrema,  $u_i = 1$  else
- This scheme satisfies a local maximum/minimum property and is formaly k-th order accurate



#### SOLUTION METHOD SUMMARY

- For any K
- Start from Rusanov' residuals,
- Use Struijs' limiter

$$\beta_i^{H} = \frac{\max(0, \Phi_i^{R\nu} / \Phi^{\kappa})}{\sum\limits_{j \in \kappa} \max(0, \Phi_j^{R\nu} / \Phi^{\kappa})}$$

- Define:  $\Phi_i^H = \beta_i^H \Phi^K$
- $-\theta = 0$  is  $u_i$  is a local extrema,  $u_i = 1$  else
- This scheme satisfies a local maximum/minimum property and is formaly k-th order accurate



#### MOTIVATION FOR THIS TERM

Solve  $\frac{\partial u}{\partial x} = 0$  on  $[0, 1]^2$ 



- In both cases,  $\Phi^{K} = 0$ : these are steady solutions when  $\Phi_{i}^{H} = \beta_{i}^{K} \Phi^{K}$ .

- Cure :

 $\Phi_i^{H,K} = \beta_i^K \Phi^K \longrightarrow \beta_i^K \Phi^K + \theta(u^h) \times h_K \int_K \left( \nabla f_u(u^h) \cdot \nabla \varphi_i \right) \tau \left( \nabla f_u(u^h) \cdot \nabla u^h \right) dx$ 



#### MOTIVATION FOR THIS TERM

Solve  $\frac{\partial u}{\partial x} = 0$  on  $[0, 1]^2$ 



- In both cases,  $\Phi^{K} = 0$ : these are steady solutions when  $\Phi_{i}^{H} = \beta_{i}^{K} \Phi^{K}$ .

- Cure :

$$\Phi_i^{H,K} = \beta_i^K \Phi^K \longrightarrow \beta_i^K \Phi^K + \theta(u^h) \times h_K \int_K (\nabla f_u(u^h) \cdot \nabla \varphi_i) \tau (\nabla f_u(u^h) \cdot \nabla u^h) dx$$



#### **NUMERICAL EXAMPLE : ROTATION**





#### **NUMERICAL EXAMPLE : ROTATION**





#### **GRID CONVERGENCE**

| h     | $\epsilon_{L^2}(P^1)$            | $\epsilon_{L^2}(P^2)$            | $\epsilon_{L^2}(P^3)$            |
|-------|----------------------------------|----------------------------------|----------------------------------|
| 1/25  | 0.50493E-02                      | 0.32612E-04                      | 0.12071E-05                      |
| 1/50  | 0.14684E-02                      | 0.48741E-05                      | 0.90642E-07                      |
| 1/75  | 0.74684E-03                      | 0.13334E-05                      | 0.16245E-07                      |
| 1/100 | 0.41019E-03                      | 0.66019E-06                      | 0.53860E-08                      |
|       | $\mathcal{O}_{L^2}^{ls} = 1.790$ | $\mathcal{O}_{L^2}^{ls} = 2.848$ | $\mathcal{O}_{L^2}^{ls} = 3.920$ |



#### NUMERICAL EXAMPLE : BURGER'S EQ.N



April 10, 2015



#### NUMERICAL EXAMPLE : BURGER'S EQ.N





#### ALGORITHM

The scheme consists in 4 steps :

- 1. Evaluate the total residual, local (continuous interpolant)
- 2. Evaluate monotone residual (Rusanov) : local,
- 3. Evaluate high order residual : local
- 4. Gather residual : indirections, importance of good numering of the degrees of freedom

The scheme is local and easy to parallelise

SOLUTION METHOD Jacobian free + LUSGS-ILU



#### **RD** WITH VISCOUS TERMS: WHAT ARE THE PROBLEMS?

$$\text{div } \mathbf{f}^{a}(u) - \text{div } (\mathbb{K}(u).\nabla u) = \text{div } \left(\mathbf{f}^{a}(u) - \mathbb{K}(u).\nabla u\right) = 0$$

- Accuracy: coupling of convection and diffusion: one single operator
- Total residual:

$$\Phi^{K}(u^{h}) = \int_{\partial K} \left( \mathbf{f}^{a}(u) - \mathbb{K}(u^{h}) \nabla u^{h} \right) \cdot \mathbf{n} d\partial K.$$

- Major issue:  $\nabla u^h$  not single valued on edges.
- Reconstruct the gradients using out-of-element information, and keeping the compacness of the stencil
- experimental fact:  $\nabla u^h$  should be reconstructed with the same accuracy as  $u^h...$


#### **RD** WITH VISCOUS TERMS: WHAT ARE THE PROBLEMS?

$$\text{div } \mathbf{f}^{a}(u) - \text{div } (\mathbb{K}(u).\nabla u) = \text{div } \left(\mathbf{f}^{a}(u) - \mathbb{K}(u).\nabla u\right) = 0$$

- Accuracy: coupling of convection and diffusion: one single operator
- Total residual:

$$\Phi^{K}(u^{h}) = \int_{\partial K} \left( \mathbf{f}^{a}(\mathbf{u}) - \mathbb{K}(\mathbf{u}^{h}) \nabla \mathbf{u}^{h} \right) \cdot \mathbf{n} d\partial K.$$

- Major issue:  $\nabla u^h$  not single valued on edges.
- Reconstruct the gradients using out-of-element information, and keeping the compacness of the stencil
- experimental fact:  $\nabla u^h$  should be reconstructed with the same accuracy as  $u^h$ ...



#### **RD** WITH VISCOUS TERMS: WHAT ARE THE PROBLEMS?

$$\text{div } \mathbf{f}^{a}(u) - \text{div } (\mathbb{K}(u).\nabla u) = \text{div } \left(\mathbf{f}^{a}(u) - \mathbb{K}(u).\nabla u\right) = 0$$

- Accuracy: coupling of convection and diffusion: one single operator
- Total residual:

$$\Phi^{K}(u^{h}) = \int_{\partial K} \left( \mathbf{f}^{a}(\mathsf{u}) - \mathbb{K}(\mathsf{u}^{h}) \nabla \mathsf{u}^{h} \right) \cdot \mathbf{n} d\partial K.$$

- Major issue:  $\nabla u^h$  not single valued on edges.
- Reconstruct the gradients using out-of-element information, and keeping the compacness of the stencil
- experimental fact:  $\nabla u^h$  should be reconstructed with the same accuracy as  $u^h...$



#### **RD** WITH VISCOUS TERMS: WHAT ARE THE PROBLEMS?

$$\text{div } \mathbf{f}^{a}(u) - \text{div } (\mathbb{K}(u).\nabla u) = \text{div } \left(\mathbf{f}^{a}(u) - \mathbb{K}(u).\nabla u\right) = 0$$

- Accuracy: coupling of convection and diffusion: one single operator
- Total residual:

$$\Phi^{K}(u^{h}) = \int_{\partial K} \left( \mathbf{f}^{a}(\mathsf{u}) - \mathbb{K}(\mathsf{u}^{h}) \nabla \mathsf{u}^{h} \right) \cdot \mathbf{n} d\partial K.$$

- Major issue:  $\nabla u^h$  not single valued on edges.
- Reconstruct the gradients using out-of-element information, and keeping the compacness of the stencil
- experimental fact:  $\nabla u^h$  should be reconstructed with the same accuracy as  $u^h$ ...



## **GRADIENT RECOVERY**

# IDEA

- Obtained from super-convergent patch recovery introduced by O. C. Zienkiewicz and J. Z. Zhu, *Int. J. Numer. Meth. Eng.*, *33*, *1992*: Use of superconvergent points:  $\nabla u^h(x_q) \nabla u(x_q) = O(h^{k+1})$  instead of  $O(h^k)$  as it should be
- Local least square to get high order  $(O(h^{k+1}))$  approximations of  $\nabla u$  at Lagrange points
- the gradient are approximated with the same order as the unknowns.



## **GRADIENT RECOVERY**

# Idea

- Obtained from super-convergent patch recovery introduced by O. C. Zienkiewicz and J. Z. Zhu, *Int. J. Numer. Meth. Eng.*, *33*, *1992*: Use of superconvergent points:  $\nabla u^h(x_q) \nabla u(x_q) = O(h^{k+1})$  instead of  $O(h^k)$  as it should be
- Local least square to get high order  $(O(h^{k+1}))$  approximations of  $\nabla u$  at Lagrange points
- the gradient are approximated with the same order as the unknowns.



#### LINEAR ADVECTION-DIFFUSION EQUATION

$$\boldsymbol{a} \cdot \nabla \boldsymbol{u} = \nu \operatorname{div} (\nabla \boldsymbol{u}), \quad \operatorname{on} \quad \Omega = [0, 1]^2,$$

the exact solution of the problem reads

$$u = -\cos(2\pi\eta)\exp\left(rac{\xi\left(1-\sqrt{1+16\pi^2
u^2}
ight)}{2
u}
ight),$$

with  $\eta = a_y x - a_x y$  and  $\xi = a_x x + a_y y$ . Here  $\boldsymbol{a} = (0, 1)^K$  and  $\nu = 0.01$ 



#### LINEAR ADVECTION-DIFFUSION EQUATION



 $L^2$  error in the solution of the linear advection-diffusion problem on triangular girds with quadratic elements. Error of the solution (first column), error of the *x*-component of the gradient (second column) error of the *y*-component of the gradient (third column).



#### **ANISOTROPIC PURE DIFFUSION**

$$-\operatorname{div}(\mathbb{K}\nabla \boldsymbol{u}) = 0, \quad \text{on } \Omega = [0, 1]^2,$$

with

$$\mathbb{K} = \begin{pmatrix} \mathsf{1} & \mathsf{0} \\ \mathsf{0} & \delta \end{pmatrix},$$

the problem has the following exact solution

$$\boldsymbol{u}=\sin(2\pi x)\,\boldsymbol{e}^{-2\pi y\sqrt{1/\delta}},$$

and in the numerical simulations  $\delta = 10^3$ .



#### **ANISOTROPIC DIFFUSION**



 $L^2$  error in the solution of the anisotropic diffusion problem on triangular girds with linear (dashed lines) and quadratic (solid lines) elements. Error of the solution (first column), error of the *x*-component of the gradient (second column) error of the *y*-component of the gradient (third column). April 10, 2015



# **OVERVIEW**

#### FORMULATIONS: CONSERVATION AND ACCURACY ISSUES

# **RESIDUAL DISTRIBUTION FRAMEWORK**

# APPLICATION TO STEADY TURBULENT FLOW PROBLEMS

EXTENSIONS: SHALLOW WATER

CONCLUSION



#### MANUFACTURED SOLNS: ACCURACY TEST Sol made of trigs functions



# **Observed order**

- Top: linear scheme;
- Bottom: non linear scheme
- Left: error on solution;
- Right: error on gradients



#### **SHOCK-WAVE/LAMINAR BOUNDARY LAYER INTERACTION M=2.15**, $\theta = 30, 8^{\circ}, Re = 10^{5}$



FIGURE : Left: contours of the pressure obtained with the third order scheme for the shock/boundary layer interaction. Right: zoom of the solution near the impinging point of the shock with the boundary layer, streamlines are also reported to show the separation bubble.



#### **RAE2822** AIRFOIL, TURBULENT M=0.734, RE=6.5 10<sup>6</sup>, A0A=2.79°



Mach





# Delta wing, turbulent, IDIHOM project M=0.734, Re=6.5 $10^6$ , A0A=2.79°





# **L1T2 AIRFOIL, TURBULENT M=0.197, RE=3.52** 10<sup>6</sup>, **AOA=4.01°**



Experiment
 P2



# **L1T2 AIRFOIL, TURBULENT M=0.197, RE=3.52** 10<sup>6</sup>, **AOA=4.01°**





# **HYPERSONICS** $M = 10, Re = 3 \times 10^5, T_{wall}, \mathbb{P}^2$





Pressure contour



# **HYPERSONICS** $M = 10, Re = 3 \times 10^5, T_{wall}, \mathbb{P}^2$



 $C_p$ 

heat transfert



# **OVERVIEW**

#### FORMULATIONS: CONSERVATION AND ACCURACY ISSUES

# **RESIDUAL DISTRIBUTION FRAMEWORK**

APPLICATION TO STEADY TURBULENT FLOW PROBLEMS

EXTENSIONS: SHALLOW WATER

CONCLUSION

April 10, 2015



#### SHALLOW WATER, MODEL

$$\frac{\partial W}{\partial t} + \operatorname{divf}(W) - S(x, W) = 0$$

-  $W = (h, h\mathbf{u}), S(x, W)$  depends on the bathymetry and W

- issues:
  - "lake at rest problem", i.e and coupling between div f and S
  - $-h \ge 0$ : dry bed

# Shallow water: Mario Ricchiuto (INRIA)



# SHALLOW WATER, MODEL

$$\frac{\partial W}{\partial t} + \operatorname{divf}(W) - S(x, W) = 0$$

- $W = (h, h\mathbf{u}), S(x, W)$  depends on the bathymetry and W
- issues:
  - "lake at rest problem", i.e and coupling between div f and S
  - $-h \ge 0$ : dry bed

Total residual to be distributed:

$$\Phi^{K} = \int_{\partial K} \mathbf{f}(u^{h}) \cdot \mathbf{n} - \int_{K} S(x, u^{h})$$

plus coherent integration formula for accuracy

Shallow water: Mario Ricchiuto (INRIA)



3rd Int. workshop on long-wave run-up models. Bathymetry, inlet wave profile, experimental data on the workshop web.





3rd Int. workshop on long-wave run-up models. Bathymetry, inlet wave profile, experimental data on the workshop web.

Parameters :

- Amplitude :  $\pm 10\%$ , uniform PDF
- Manning coefficient : ±50%, uniform PDF
- Wave phase :  $\pm 10\%$ , uniform PDF



# UQ: Pietro-Marco Congédo (INRIA)



Deterministic result (parameters prescribed in the workshop)

April 10, 2015



Deterministic result (parameters prescribed in the workshop)

April 10, 2015





Deterministic result : run-up plot





Deterministic run-up vs statistical average (mesh) plus deviation





Deterministic run-up vs statistical average (mesh) minus deviation



#### UNSTEADY SHOCK CALCULATION

Image !

April 10, 2015



# **OVERVIEW**

#### FORMULATIONS: CONSERVATION AND ACCURACY ISSUES

# **RESIDUAL DISTRIBUTION FRAMEWORK**

APPLICATION TO STEADY TURBULENT FLOW PROBLEMS

EXTENSIONS: SHALLOW WATER

CONCLUSION



# CONCLUSIONS

- High order finite element like method
- All see from the discrete point of view: no natural variational formulation
- in the scalar case:  $L^{\infty}$  and  $L^2$ /entropy stable, and still formaly high order
- Applications for compressible flows, turbulent, shallow water, ...
- Some perspective on h p adaption (in progress)
- Unsteady high order: in progress.



