THE DOMAIN DECOMPOSITION : A solution method

Colloque en l'honneur d'Alain DERVIEUX April 10 th 2015, Sophia-Antipolis

Marina Vidrascu

Project team REO Inria Paris-Rocquencourt & Laboratoire J-L Lions marina.vidrascu@inria.fr & Collaborators!!!!

jeudi 30 avril 15

What is Domain Decomposition ?

Data decomposition

- ★ Parallel computing: distribute data among processors
- \star Do not change the solution algorithm

Homogenous domain decomposition

- \star New solution method for large scale linear systems
- ★ Well adapted for coarse grain parallel methods
- ★ Principle : solve independently on each domain and glue solutions at interface

Heterogenous domain decomposition

- \star Separate the physical domain in regions
- \star Use a different model in each region
- \star Glue solutions at interface

Domain decomposition: a solution method

jeudi 30 avril 15

What is Domain Decomposition ?

Data decomposition

- ★ Parallel computing: distribute data among processors
- \star Do not change the solution algorithm

Homogenous domain decomposition

- \star New solution method for large scale linear systems
- ★ Well adapted for coarse grain parallel methods
- ★ Principle : solve independently on each domain and glue solutions at interface

Heterogenous domain decomposition

- \star Separate the physical domain in regions
- \star Use a different model in each region
- \star Glue solutions at interface

Un peu d'histoire

Schwarz alterné

- décomposition avec recouvrement
- calcul analytique de fonctions harmoniques

Ω_1 Γ_2 Γ_1 Ω_2

Sous-structuration

Marina Vidrascu (INRIA)

Décomposition de domaines

le 27 novembre 2010 13 / 35

Décomposition de domaines moderne

• Débuts

- Motivation : parallélisme
- Algorithme :
 - Avec recouvrement : Schwarz mult, Schwarz additif
 - Sans recouvrement : Stecklov-Poincaré (cont), Shur
- Avantages et inconvénients
 - formulations continues, analyse mathématique
 - méthodes itératives performantes bon préconditionneur
 - maillages incompatibles mortar
- Très peu après....
 - Motivation : parallélisme mais plus encore!
 - très robustes pour pb de grande et moyenne! taille
 - couplage de méth. de résolution et/ou de discrétisation
 - Algorithme : Neumann-Neumann, FETI analysées (Schwarz additif)
 - Avantages : Analyse, nombreuses extensions

Marina Vidrascu (INRIA)

Décomposition de domaines

le 27 novembre 2010 15 / 35

Décomposition de domaines moderne

- Débuts
 - Motivation : parallélisme
 - Algorithme :
 - Avec recouvrement : Schwarz mult, Schwarz additif
 - Sans recouvrement : Stecklov-Poincaré (cont), Shur
 - Avantages et inconvénients
 - formulations continues, analyse mathématique
 - méthodes itératives performantes bon préconditionneur
 - maillages incompatibles mortar
- Très peu après....
 - Motivation : parallélisme mais plus encore!
 - très robustes pour pb de grande et moyenne! taille
 - couplage de méth. de résolution et/ou de discrétisation
 - Algorithme : Neumann-Neumann, FETI analysées (Schwarz additif)
 - Avantages : Analyse, nombreuses extensions

Marina Vidrascu (INRIA)

Décomposition de domaines

le 27 novembre 2010 15 / 35

Domain decomposition: a solution method

April 2015

Solveur grossier

jeudi 30 avril 15

Un exemple

NB SD	Neumann	Coarse
2	9	6
4	14	10
8	28	10
16 (4*4)	65	21
16 (8*2)	45	8
16 (irregular)	70	17
64	140	9

Marina Vidrascu (INRIA)

Décomposition de domaines

le 27 novembre 2010 10 / 35

Inría UPMC

Domain decomposition: a solution method

Décomposition de domaines moderne

- Débuts
 - Motivation : parallélisme
 - Algorithme :
 - Avec recouvrement : Schwarz mult, Schwarz additif
 - Sans recouvrement : Stecklov-Poincaré (cont), Shur
 - Avantages et inconvénients
 - formulations continues, analyse mathématique
 - méthodes itératives performantes bon préconditionneur
 - maillages incompatibles mortar
- Très peu après....
 - Motivation : parallélisme mais plus encore!
 - très robustes pour pb de grande et moyenne! taille
 - couplage de méth. de résolution et/ou de discrétisation
 - Algorithme : Neumann-Neumann, FETI analysées (Schwarz additif)
 - Avantages : Analyse, nombreuses extensions

Marina Vidrascu (INRIA)

Décomposition de domaines

le 27 novembre 2010 15 / 35

Décomposition de domaines moderne

- Débuts
 - Motivation : parallélisme
 - Algorithme :
 - Avec recouvrement : Schwarz mult, Schwarz additif
 - Sans recouvrement : Stecklov-Poincaré (cont). Shur
 - Avantage
 - forr
 mét

Mais... plus encore!

• Très peu après....

• ma

- Motivation : parallélisme mais plus encore!
 - très robustes pour pb de grande et moyenne! taille
 - couplage de méth. de résolution et/ou de discrétisation
- Algorithme : Neumann-Neumann, FETI analysées (Schwarz additif)
- Avantages : Analyse, nombreuses extensions

Marina Vidrascu (INRIA)

Décomposition de domaines

le 27 novembre 2010 15 / 35

Inría UPM

DD a tool for practical solution of asymptotic problems *Multi-scale elasticity problems*

*A sandwich structure with a thin layer. High ratio in material properties

- $E_l \ll E_{3d}$ glue
- $E_l >> E_{3d}$ reinforcement sheets
- ★ With heterogeneities

Modeling

Gamma difference of the problem is not efficient

- ★poor conditioning
- ★large size (the element size same order as the thickness of the layer)

symptotic study : **eliminate** the thin layer and replace it with ad hoc transition conditions on the interface

Soft layer

(G.Geymonat, F. Krasucki, D. Marini et M. V, 1996)

Goland and Reissner conditions

Fourier Robin conditions

$$\begin{cases} \sigma^{+}n^{+} = -\sigma^{-}n^{-} \\ \sigma^{+}n^{+} = -\frac{K^{s}}{h}[u] \end{cases} \qquad \begin{cases} \sigma^{+}n^{+}2\frac{K^{s}}{h}u^{+} = \sigma^{-}n^{-} + 2\frac{K^{s}}{h}u^{+} \\ \sigma^{+}n^{+} = -\sigma^{-}n^{-} \end{cases}$$

Soft layer

(G.Geymonat, F. Krasucki, D. Marini et M. V, 1996)

Goland and Reissner conditions

Fourier Robin conditions

 $\begin{cases} \sigma^{+}n^{+} = -\sigma^{-}n^{-} \\ \sigma^{+}n^{+} = -\frac{K^{s}}{h}[u] \end{cases} \qquad \begin{cases} \sigma^{+}n^{+}2\frac{K^{s}}{h}u^{+} = \sigma^{-}n^{-} + 2\frac{K^{s}}{h}u^{+} \\ \sigma^{+}n^{+} = -\sigma^{-}n^{-} \end{cases}$

Reinforcement sheet

(A.L Bessoud, F. Krasucki, M. Serpilli, 2008) (M. Serpilli, MV)

Add a membrane energy

Interface problem

 $A_m(\bar{u},\bar{v}) + A_{3D}(\bar{U},\bar{V}) = F(V) \qquad \qquad \mathcal{A}(\lambda) = S_1(\lambda) + S_2(\lambda) + A_m(\lambda) = 0$

Domain decomposition: a solution method

Innia

Heterogeneities: a model problem

(G.Geymonat, S. Hendili, F. Krasucki, et M. V, 2012)

Domain decomposition: a solution method

jeudi 30 avril 15

Inría

Difficulties to solve the problem

Large number of heterogeneities
 Computational cost increase with the number of heterogeneities
 Difficult to obtain a correct mesh

A two scale problem

Ima Domain decomposition: a solution method

Matched asymptotic method : Results

Zero order approximation

• outer approximation

$$\begin{cases} -div\sigma^{0} = 0 & \text{in } \Omega \setminus \Gamma \\ \sigma^{0} = A\gamma(u^{0}) & \text{in } \Omega \setminus \Gamma \\ \sigma^{0}n = F & \text{on } \partial_{F}\Omega \\ u^{0} = u^{d} & \text{on } \partial_{u}\Omega \\ [\sigma^{0}]e_{1} = [u^{0}] = 0 & \text{on } \Gamma \end{cases}$$

inner approximation

$$\boldsymbol{v}^{0}\left(\boldsymbol{x},\boldsymbol{y}
ight)=\boldsymbol{v}^{\prime}\left(\boldsymbol{x}
ight)=\boldsymbol{u}^{0}\left(0,\boldsymbol{\hat{x}}
ight)$$

April 2015

Remark : Zero order problem is **independent** of the heterogeneities

Domain decomposition: a solution method

jeudi 30 avril 15

Inría

Matched asymptotic method : Results(cont)

First order approximation

• outer approximation :

$$\begin{array}{lll} & -div\sigma^1 & = & \mathbf{0} & & & & & & & & & \\ \sigma^1 & = & A\gamma(\mathbf{u}^1) & & & & & & & & & & & & \\ \end{array}$$

$$\begin{array}{ccc} \boldsymbol{\sigma}^{1}\boldsymbol{n} & = & \mathbf{0} & & & & & & & \\ \boldsymbol{u}^{1} & = & \mathbf{0} & & & & & & & & \\ \end{array}$$

$$\begin{aligned} \mathbf{u}^{\mathbf{i}} &= \mathbf{0} & \text{on} \\ \begin{bmatrix} \mathbf{u}^{1} \end{bmatrix} (\hat{\mathbf{x}}) &= \mathbf{\mathcal{G}}_{\mathbf{d}} \left(\mathbf{u}^{0}(0, \hat{\mathbf{x}}); \begin{bmatrix} \mathbf{V}^{ij} \end{bmatrix}^{\infty} \right) \\ \begin{bmatrix} \boldsymbol{\sigma}^{1} \mathbf{e}_{1} \end{bmatrix} (\hat{\mathbf{x}}) &= \mathbf{\mathcal{G}}_{\mathbf{nS}} \left(\mathbf{u}^{0}(0, \hat{\mathbf{x}}); \int_{Y^{\star}} \mathbf{T}^{ij}(\mathbf{y}) d\mathbf{y} \right) \end{aligned}$$

• $\mathcal{G}_d, \mathcal{G}_{nS}$ depend on u^0 and its first derivative

This is a **non standard** problem which will be solved by a *domain decomposition type* algorithm

Innía

Conta UPMC Domain decomposition: a solution method

jeudi 30 avril 15

Inner problem : comparison of stresses

April 2015

jeudi 30 avril 15

Heterogeneous Domain Decomposition

Collaboration with: Miguel Fernández, Mikel Landajuela

Domain decomposition: a solution method

jeudi 30 avril 15

Inría

Incompressible Fluid-Structure Interaction

- Framework: coupling of
 - Fluid: incompressible (viscous,...)
 - Structure: elastic (non-linear,...)
- Widespread multi-physic problem:
 - Aeroelasticity (bridge, parachute, etc.), naval hydrodynamics,...
 - Mechanics of bio-fluid flow: blood, cerebrospinal fluid, air,...

Incompressible Fluid-Structure Interaction

- Framework: coupling of
 - Fluid: incompressible (viscous,...)
 - Structure: elastic (non-linear,...)
- Widespread multi-physic problem:
 - Aeroelasticity (bridge, parachute, etc.), naval hydrodynamics,...
 - Mechanics of bio-fluid flow: blood, cerebrospinal fluid, air,...
- Solution Targeted application: arterial and ventricular blood flow simulation

Domain decomposition: a solution method

Innia

Incompressible Fluid-Structure Interaction

- Framework: coupling of
 - Fluid: incompressible (viscous,...)
 - Structure: elastic (non-linear,...)
- Widespread multi-physic problem:
 - Aeroelasticity (bridge, parachute, etc.), naval hydrodynamics,...
 - Mechanics of bio-fluid flow: blood, cerebrospinal fluid, air,...
- **W** Targeted application: arterial and ventricular **blood** flow simulation

April 2015

Motivations:

- Improve diagnosis (via data assimilation), therapy planing, medical devices
- Major issues in modeling, scientific computing and numerical analysis

Standard 3D Model of Blood Flow in Arteries

Domain decomposition: a solution method

 $\Omega^{\rm s}(t)$

 $\Sigma(t)$

jeudi 30 avril 15

Standard 3D Model of Blood Flow in Arteries

April 2015

$$\boldsymbol{u} = \partial_t \boldsymbol{d}$$
 on Σ $\boldsymbol{\leftarrow}$ kinematic continuity

$$(\mathbf{\Pi}(\boldsymbol{d})\boldsymbol{n}^{\mathrm{s}} = -J\boldsymbol{\sigma}(\boldsymbol{u},p)\boldsymbol{F}^{-\mathrm{T}}\boldsymbol{n} \quad \mathrm{on} \quad \Sigma \quad \boldsymbol{\leftarrow} \quad \text{kinetic continuity}$$

Standard 3D Model of Blood Flow in Arteries

Major issue:

Computational complexity: efficient partitioning extremely difficult

Domain decomposition: a solution method

Why FSI in a DD framework?

Domain decomposition: a solution method

jeudi 30 avril 15

Why FSI in a DD framework?

Revisit vocabulary

Coupling schemes

• Explicit (weak) coupling vs Implicit (strong) and semi-implicit coupling

Wikipedia

Two main approaches exist for the simulation of fluid-structure interaction problems:

- **Monolithic** approach: the equations governing the flow and the displacement of the structure are solved simultaneously, with a single solver
- **Partitioned** approach: the equations governing the flow and the displacement of the structure are solved separately, with two distinct solvers

Why FSI in a DD framework?

Revisit vocabulary

Coupling schemes

• Explicit (weak) coupling vs Implicit (strong) and semi-implicit coupling

Wikipedia

Two main approaches exist for the simulation of fluid-structure interaction problems:

- **Monolithic** approach: the equations governing the flow and the displacement of the structure are solved simultaneously, with a single solver
- **Partitioned** approach: the equations governing the flow and the displacement of the structure are solved separately, with two distinct solvers

Domain decomposition framework

- Formulation : monolithic
- Solution algorithm : DD (partitioned...)
- Weak coupling : one iteration of a given DD algorithm (with an appropriate initialization)
- Strong coupling : iterate till convergence

FSI = Heterogenous domain decomposition (Not a new idea!)

DD5 (1991) Quarteroni, Pasquarelli, Valli

In introduction FSI is mentioned,

Focus on problems homogenous in nature can be faced in a heterogeneous fashion after reducing the given problem to a simplified one in a subregion ex in fluid dynamics NS and Boltzmann Kinetic models

(1999) Le Tallec, Mouro Fluid structure interaction with large structural displacements

(2001---> today) a lot of people!

Design efficient and reliable parallel methods

***** Methodology :

- Fake advantage of modularity and use robust well validated components
- $\stackrel{\checkmark}{=}$ Numerical methods:

- Fluid : ALE Navier-Stokes
- Structure : Non-linear elasto-dynamic (shells)
- FSI : Explicit coupling

Solution Experimental Section Parallel Computing : use domain decomposition

Additive Schwarz for the fluid (PETSCI)

Balanced domain decomposition method for the solid solver

***** Implementation

Use different solvers for fluid and solid validation platform Solution Use the most appropriate parallelization technique (PVM, MPI....)

***** Performance

W Robustness and efficiency of the algorithms, *numerical scalability* Optimize the decomposition, level of parallelism....

Domain decomposition: a solution method

April 2015

jeudi 30 avril 15

Domain decomposition technique

- Monolithic approach (formulation view point)
- **Partitioned** approach (implementation view point)
- Possible to use *state of the art* different solvers

Domain decomposition technique

- Monolithic approach (formulation view point)
- **Partitioned** approach (implementation view point)
- Possible to use *state of the art* different solvers

jeudi 30 avril 15

Innía

Domain decomposition technique

- Monolithic approach (formulation view point)
- **Partitioned** approach (implementation view point)
- Possible to use *state of the art* different solvers

Domain decomposition technique

- Monolithic approach (formulation view point)
- **Partitioned** approach (implementation view point)
- Possible to use *state of the art* different solvers

April 2015

jeudi 30 avril 15
Monolithic or partitioned approach?

Domain decomposition technique

- Monolithic approach (formulation view point)
- **Partitioned** approach (implementation view point)
- Possible to use *state of the art* different solvers

Monolithic or partitioned approach?

Domain decomposition technique

- Monolithic approach (formulation view point)
- **Partitioned** approach (implementation view point)
- Possible to use *state of the art* different solvers

Scientific limitations:

Software limitations:

- Domain decomposition: a solution method

April 2015

Scientific limitations:

- **pertinence** of the models used
- efficiency and reliability of the numerical methods
- how to validate ?

Software limitations:

Scientific limitations:

- **pertinence** of the models used
- efficiency and reliability of the numerical methods
- how to validate ?

Software limitations:

• **large** number of software components: mesh generation, fluid solver, solid solver, coupling algorithm

• limitations due to the state of the art

Scientific limitations:

- pertinence of the models used
- efficiency and reliability of the numerical methods
- how to validate ?

Software limitations:

- **large** number of software components: mesh generation, fluid solver, solid solver, coupling algorithm
- limitations due to the state of the art

Old example: the reliable elements in the discretization of the solid problems are quadrangles, automatic mesh generator produces triangles

Domain decomposition: a solution method

Innia

Scientific limitations:

- pertinence of the models used easy to change with partitioned approach
- efficiency and reliability of the numerical methods
- how to validate ?

Software limitations:

- **large** number of software components: mesh generation, fluid solver, solid solver, coupling algorithm
- limitations due to the state of the art

Old example: the reliable elements in the discretization of the solid problems are quadrangles, automatic mesh generator produces triangles

Scientific limitations:

- pertinence of the models used <---- easy to change with partitioned approach
- efficiency and reliability of the numerical methods explicit stable and accurate alg
- how to validate ?

Software limitations:

- **large** number of software components: mesh generation, fluid solver, solid solver, coupling algorithm
- limitations due to the state of the art

Old example: the reliable elements in the discretization of the solid problems are quadrangles, automatic mesh generator produces triangles

Scientific limitations:

- pertinence of the models used <---- easy to change with partitioned approach
- efficiency and reliability of the numerical methods explicit stable and accurate alg
- how to validate ? use benchmarks from literature

Software limitations:

• **large** number of software components: mesh generation, fluid solver, solid solver, coupling algorithm

• limitations due to the state of the art

Old example: the reliable elements in the discretization of the solid problems are quadrangles, automatic mesh generator produces triangles

Standard 3D Model of Blood Flow in Arteries

Structure: non-linear elastodynamics

$$\begin{cases} \begin{pmatrix} \rho^{\mathrm{s}} \epsilon \partial_t \dot{\boldsymbol{d}} \\ 0 \end{pmatrix} + \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}, \boldsymbol{\theta})) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{\mathrm{e}}((\boldsymbol{d}, \boldsymbol{\theta})) \end{pmatrix} = \begin{pmatrix} -J \boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{F}^{-\mathrm{T}} \boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \boldsymbol{\Sigma} \\ \dot{\boldsymbol{d}} = \partial_t \boldsymbol{d} \quad \text{on} \quad \boldsymbol{\Sigma} \end{cases}$$

Fluid: Navier-Stokes (*ALE formalism*)

$$\rho^{\mathrm{f}} \partial_t \boldsymbol{u}|_{\boldsymbol{\mathcal{A}}} + \rho^{\mathrm{f}}(\boldsymbol{u} - \boldsymbol{w}) \cdot \boldsymbol{\nabla} \boldsymbol{u} - \operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u}, p) = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}}(t)$$
$$\operatorname{div} \boldsymbol{u} = 0 \quad \text{in} \quad \Omega^{\mathrm{f}}(t)$$
$$\boldsymbol{d}^{\mathrm{f}} = \operatorname{Ext} (\boldsymbol{d}|_{\Sigma}), \quad \boldsymbol{w} = \partial_t \boldsymbol{d}^{\mathrm{f}} \quad \text{in} \quad \Omega^{\mathrm{f}}$$
$$\boldsymbol{u} = \partial_t \boldsymbol{d} \quad \text{on} \quad \Sigma$$

April 2015

Domain decomposition: a solution method

jeudi 30 avril 15

Ínría

Standard 3D Model of Blood Flow in Arteries

Structure: non-linear elastodynamics

$$\begin{cases} \begin{pmatrix} \rho^{s} \epsilon \partial_{t} \dot{d} \\ 0 \end{pmatrix} + \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{e}((\boldsymbol{d}, \boldsymbol{\theta})) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{e}((\boldsymbol{d}, \boldsymbol{\theta})) \end{pmatrix} = \begin{pmatrix} -J\boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{F}^{-T}\boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \Sigma \quad \boldsymbol{\leftarrow} \quad \text{kinetic continuity} \\ \dot{\boldsymbol{d}} = \partial_{t}\boldsymbol{d} \quad \text{on} \quad \Sigma \end{cases}$$

Fluid: Navier-Stokes (*ALE formalism*)

April 2015

Inría

Standard 3D Model of Blood Flow in Arteries

Structure: non-linear elastodynamics

$$\begin{cases} \begin{pmatrix} \rho^{s} \epsilon \partial_{t} \dot{d} \\ 0 \end{pmatrix} + \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{e}((\boldsymbol{d}, \boldsymbol{\theta})) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{e}((\boldsymbol{d}, \boldsymbol{\theta})) \end{pmatrix} = \begin{pmatrix} -J\boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{F}^{-T}\boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \Sigma \quad \boldsymbol{\leftarrow} \quad \text{kinetic continuity} \\ \dot{\boldsymbol{d}} = \partial_{t}\boldsymbol{d} \quad \text{on} \quad \Sigma \end{cases}$$

Fluid: Navier-Stokes (*ALE formalism*)

See Explicit treatment of the geometric and kinematic compatibility:

$$\boldsymbol{d}^{\mathrm{f},n} = \mathrm{Ext}(\boldsymbol{d}^{n-1}|_{\Sigma}), \quad \boldsymbol{w}^{n} = \partial_{\tau}\boldsymbol{d}^{\mathrm{f},n} \quad \text{in} \quad \Omega^{\mathrm{f}}$$
$$\boldsymbol{u}^{n} = \dot{\boldsymbol{d}}^{n-1} \quad \text{on} \quad \Sigma$$
$$\mathbf{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{n},\boldsymbol{\theta})) = -J^{n}\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})(\boldsymbol{F}^{n})^{-\mathrm{T}}\boldsymbol{n} \quad \text{on} \quad \Sigma$$

Notation: backward difference

$$\partial_{\tau} x^n \stackrel{\text{def}}{=} \frac{x^n - x^{n-1}}{\tau}$$

See Explicit treatment of the geometric and kinematic compatibility:

$$\begin{cases} \boldsymbol{d}^{\mathrm{f},n} = \mathrm{Ext}(\boldsymbol{d}^{n-1}|_{\Sigma}), \quad \boldsymbol{w}^{n} = \partial_{\tau}\boldsymbol{d}^{\mathrm{f},n} & \text{in} \quad \Omega^{\mathrm{f}} \\ \boldsymbol{u}^{n} = \boldsymbol{\dot{d}}^{n-1} & \text{on} \quad \Sigma \\ \rho^{\mathrm{s}}\epsilon\partial_{\tau}\boldsymbol{\dot{d}}^{n} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{n},\boldsymbol{\theta})) = -\boldsymbol{J}^{n}\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})(\boldsymbol{F}^{n})^{-\mathrm{T}}\boldsymbol{n} & \text{on} \quad \Sigma \end{cases}$$

Low computational cost: uncoupled fluid-solid time-marching

See Explicit treatment of the geometric and kinematic compatibility:

$$\begin{pmatrix} \boldsymbol{d}^{\mathrm{f},n} = \mathrm{Ext}(\boldsymbol{d}^{n-1}|_{\Sigma}), & \boldsymbol{w}^{n} = \partial_{\tau}\boldsymbol{d}^{\mathrm{f},n} & \text{in} & \Omega^{\mathrm{f}} \\ \boldsymbol{u}^{n} = \dot{\boldsymbol{d}}^{n-1} & \text{on} & \Sigma \\ \rho^{\mathrm{s}}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{n},\boldsymbol{\theta})) = -J^{n}\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})(\boldsymbol{F}^{n})^{-\mathrm{T}}\boldsymbol{n} & \text{on} & \Sigma \end{cases}$$

- Solutional cost: uncoupled fluid-solid time-marching
- Unconditionally unstable:

reference solution

Innía

See Explicit treatment of the geometric and kinematic compatibility:

$$\begin{cases} \boldsymbol{d}^{\mathrm{f},n} = \mathrm{Ext}(\boldsymbol{d}^{n-1}|_{\Sigma}), \quad \boldsymbol{w}^{n} = \partial_{\tau}\boldsymbol{d}^{\mathrm{f},n} & \text{in} \quad \Omega^{\mathrm{f}} \\ \boldsymbol{u}^{n} = \boldsymbol{\dot{d}}^{n-1} & \text{on} \quad \Sigma \\ \rho^{\mathrm{s}}\epsilon\partial_{\tau}\boldsymbol{\dot{d}}^{n} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{n},\boldsymbol{\theta})) = -J^{n}\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})(\boldsymbol{F}^{n})^{-\mathrm{T}}\boldsymbol{n} & \text{on} \quad \Sigma \end{cases}$$

Low computational cost: uncoupled fluid-solid time-marching

Unconditionally unstable:

D-N loosely coupled scheme

reference solution

April 2015

Added-mass INStability condition (simplified model): $\frac{\rho^{s} \epsilon}{\rho^{f} \lambda_{add}} < 1$ (Causin, Gerbeau, Nobile '05)

Domain decomposition: a solution method

jeudi 30 avril 15

Innia

Explicit treatment of the geometric and kinematic compatibility:

$$\begin{pmatrix} \boldsymbol{d}^{\mathrm{f},n} = \mathrm{Ext}(\boldsymbol{d}^{n-1}|_{\Sigma}), & \boldsymbol{w}^{n} = \partial_{\tau}\boldsymbol{d}^{\mathrm{f},n} & \text{in} & \Omega^{\mathrm{f}} \\ \boldsymbol{u}^{n} = \dot{\boldsymbol{d}}^{n-1} & \text{on} & \Sigma \\ \rho^{\mathrm{s}}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} - \boldsymbol{L}^{\mathrm{e}}_{\boldsymbol{d}}((\boldsymbol{d}^{n},\boldsymbol{\theta})) = -J^{n}\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})(\boldsymbol{F}^{n})^{-\mathrm{T}}\boldsymbol{n} & \text{on} & \Sigma \end{cases}$$

- Solutional cost: uncoupled fluid-solid time-marching
- Unconditionally unstable:

reference solution

April 2015

 $\textbf{ Added-mass INStability condition (simplified model): } \frac{\rho^{s} \epsilon}{\rho^{f} \lambda_{add}} < 1 \textbf{ add } satisfied by blood flows}$

Implicit the coupling schemes:

- Unconditionally energy stable, but computationally demanding
- Vast literature (partitioned, monolithic,...)

(Mok et al. '01, Heil '04, Fernández, Moubachir '05, Dettmer, Peric '06, Badia et al. '08, Gee et al. '11,...)

Domain decomposition approach

Option 1 : decompose first then linearize

Dirichlet-Neumann

- Fixed-point Le Tallec-Mouro '99, Wall-Ramm '01....
- Newton Fernàndez-Moubachir '03....
- Inexact Newton Matthies-Steindorf '03, Gerbeau, MV. '03, Mischler-van Brummelen-de- Borst '05

April 2015

Sevent Meumann Deparis-Discacciati-Quarteroni '05

Series Robin-Neumann Badia-Nobile-Vergara '07

Option 2 : linearize first then decompose Fernàndez-Gerbeau-Cloria, MV

©Dirichlet-Neumann

Neumann-Neumann

- Does not work $M = \frac{1}{2}S_{f}^{-1} + \frac{1}{2}S_{s}^{-1}$
- Seams to work $M = \alpha_1 S_f^{-1} + \alpha_2 S_s^{-1}$ but $\alpha_1 \approx 0$

Domain decomposition: a solution method

Inría

Domain decomposition: a solution method

jeudi 30 avril 15

April 2015

Semi-implicit coupling schemes:

- Conditionally energy stable, but fractional-step scheme required and not fully explicit *(Fernández, Gerbeau, Grandmont '07, Quarteroni, Quaini '08,...)*

Semi-implicit coupling schemes:

- Conditionally energy stable, but fractional-step scheme required and not fully explicit *(Fernández, Gerbeau, Grandmont '07, Quarteroni, Quaini '08,...)*

Stable loose couple alternatives (added-mass free):

- Nitsche's based *stabilized explicit coupling* (Burman, Fernández'07, '09)

- For thin-structures, *kinematically coupled scheme* (Guidoboni, Glowinski, Cavallini, Canic '09)

jeudi 30 avril 15

Semi-implicit coupling schemes:

- Conditionally energy stable, but fractional-step scheme required and not fully explicit *(Fernández, Gerbeau, Grandmont '07, Quarteroni, Quaini '08,...)*

Stable loose couple alternatives (added-mass free):

- Nitsche's based *stabilized explicit coupling* (Burman, Fernández'07, '09)
- For thin-structures, *kinematically coupled scheme* (Guidoboni, Glowinski, Cavallini, Canic '09)

Domain decomposition: a solution method

optimal accuracy demands restrictive CFL $\tau = \mathcal{O}(h^2)$

Semi-implicit coupling schemes:

- Conditionally energy stable, but fractional-step scheme required and not fully explicit *(Fernández, Gerbeau, Grandmont '07, Quarteroni, Quaini '08,...)*

Stable loose couple alternatives (added-mass free):

- Nitsche's based *stabilized explicit coupling* (Burman, Fernández'07, '09)
- For thin-structures, *kinematically coupled scheme* (Guidoboni, Glowinski, Cavallini, Canic '09)

optimal accuracy demands restrictive CFL $\tau = \mathcal{O}(h^2)$

April 2015

Main issue:

Stable and optimally accurate loosely coupled schemes (& mathematically sound)

Linear Model Problem with thin-structure

Fluid: Stokes flow

$$\begin{cases} \rho^{\mathrm{f}} \partial_t \boldsymbol{u} - \operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u}, p) = \boldsymbol{0} & \text{in} & \Omega^{\mathrm{f}} \\ \operatorname{div} \boldsymbol{u} = 0 & \operatorname{in} & \Omega^{\mathrm{f}} \\ \boldsymbol{u} = \dot{\boldsymbol{d}} & \text{on} & \Sigma \end{cases}$$

Solid: Shell

$$\begin{cases} \begin{pmatrix} \rho^{s} \epsilon \partial_{t} \dot{\boldsymbol{d}} \\ 0 \end{pmatrix} - \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{e}(\boldsymbol{d}, \boldsymbol{\theta}) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{e}(\boldsymbol{d}, \boldsymbol{\theta}) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \boldsymbol{\Sigma} \\ \dot{\boldsymbol{d}} = \partial_{t}\boldsymbol{d} \quad \text{on} \quad \boldsymbol{\Sigma} \end{cases}$$

Domain decomposition: a solution method

Ínría

April 2015

Key Feature: Interface Robin Coupling

Seluid:

$$\begin{cases} \rho^{\mathrm{f}} \partial_t \boldsymbol{u} - \operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u}, p) = \boldsymbol{0} & \text{in} \quad \Omega^{\mathrm{f}} \\ \operatorname{div} \boldsymbol{u} = \boldsymbol{0} & \operatorname{in} \quad \Omega^{\mathrm{f}} \\ \boldsymbol{u} = \dot{\boldsymbol{d}} & \text{on} \quad \Sigma \end{cases}$$

W Thin-solid:

$$\begin{cases} \begin{pmatrix} \rho^{s} \epsilon \partial_{t} \dot{d} \\ 0 \end{pmatrix} - \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{e}(\boldsymbol{d}, \boldsymbol{\theta}) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{e}(\boldsymbol{d}, \boldsymbol{\theta}) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{\sigma}(\boldsymbol{u}, p)\boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \boldsymbol{\Sigma} \\ \dot{\boldsymbol{d}} = \partial_{t}\boldsymbol{d} \quad \text{on} \quad \boldsymbol{\Sigma} \end{cases}$$

Key Feature: Interface Robin Coupling

Seluid:

$$egin{array}{ll} eta^{\mathrm{f}}\partial_toldsymbol{u} - \operatorname{f div}oldsymbol{\sigma}(oldsymbol{u},p) = oldsymbol{0} & \mathrm{in} & \Omega^{\mathrm{f}} \ \mathrm{div}\,oldsymbol{u} = oldsymbol{0} & \mathrm{in} & \Omega^{\mathrm{f}} \ oldsymbol{u} = oldsymbol{d} & \mathrm{on} & \Sigma \end{array}$$

W Thin-solid:

$$egin{aligned} & \left(egin{aligned} &
ho^{\mathrm{s}}\epsilon\partial_{t}\dot{d} \\ & 0 \end{array}
ight) - \left(egin{aligned} & L_{d}^{\mathrm{e}}(d, heta) \\ & L_{ heta}^{\mathrm{e}}(d, heta) \end{array}
ight) = \left(egin{aligned} & -\sigma(u,p)n \\ & 0 \end{array}
ight) & ext{on} & \Sigma \\ & \dot{d} = \partial_{t}d & ext{on} & \Sigma \\ & \dot{\sigma}(u,p)n +
ho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(d, heta) & ext{on} & \Sigma \end{array}$$

(Nobile, Vergara '08, Badia et al. '08, Guidoboni et al. '09,...)

Domain decomposition: a solution method

Inría

Key Feature: Interface Robin Coupling

General Series Fluid:

$$\left\{egin{array}{ll}
ho^{\mathrm{f}}\partial_{t}oldsymbol{u}-\operatorname{\mathbf{div}}oldsymbol{\sigma}(oldsymbol{u},p)=oldsymbol{0} & \mathrm{in} & \Omega^{\mathrm{f}}\ & \ & \mathrm{div}\,oldsymbol{u}=0 & \mathrm{in} & \Omega^{\mathrm{f}}\ & \ & oldsymbol{u}=\dot{oldsymbol{d}} & \mathrm{on} & \Sigma\end{array}
ight.$$

W Thin-solid:

$$egin{pmatrix} \left(egin{array}{c}
ho^{\mathrm{s}}\epsilon\partial_{t}\dot{d}\ 0 \end{pmatrix} - \left(egin{array}{c} L_{d}^{\mathrm{e}}(d,m{ heta})\ L_{ heta}^{\mathrm{e}}(d,m{ heta}) \end{pmatrix} = \left(egin{array}{c} -\sigma(u,p)n\ 0 \end{pmatrix} & ext{on} & \Sigma\ d = \partial_{t}d & ext{on} & \Sigma\ d = \partial_{t}d & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n +
ho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(d,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n +
ho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(d,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(d,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(d,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(d,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,m{ heta}) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,b) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,b) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,b) & ext{on} & \Sigma\ \mathbf{\sigma}(u,p)n + \rho^{\mathrm{s}}\epsilon\partial_{t}u = -L_{d}^{\mathrm{e}}(u,b) & ext{on} & \Sigma\ \mathbf{\sigma}(u,b) & ext{on} & \mathbb{O}(u,b) & ext{on} & \Sigma\ \mathbf{\sigma}(u,b) & ext{on} & \mathbb{O}(u,b) & ext{on} & \mathbb{O}(u,b) & ext{on} & \mathbb{O}(u,b) & ext{on} & \mathbb{O}(u,b) & ext{on$$

April 2015

(Nobile, Vergara '08, Badia et al. '08, Guidoboni et al. '09,...)

$$\mathbf{\nabla} \text{ Splitting via displacement extrapolation:}$$
$$\boldsymbol{\sigma}(\boldsymbol{u}^n, p^n)\boldsymbol{n} + \frac{\rho^{\mathrm{s}} \epsilon}{\tau} \boldsymbol{u}^n = \frac{\rho^{\mathrm{s}} \epsilon}{\tau} \dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}(\boldsymbol{d}^{\star}, \boldsymbol{\theta}^{\star}) \quad \text{on} \quad \boldsymbol{\Sigma} \ , \quad \boldsymbol{d}^{\star} = \begin{cases} \boldsymbol{d}^{n-1} \\ \boldsymbol{d}^{n-1} + \tau \dot{\boldsymbol{d}}^{n-1} \end{cases}$$

Innia UPIC Domain decomposition: a solution method

Robin-Neumann Loosely Coupled Schemes

1) Solve fluid:

$$\begin{cases} \rho^{\mathrm{f}} \partial_{\tau} \boldsymbol{u}^{n} - \operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n}) = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}} \\ \operatorname{div} \boldsymbol{u}^{n} = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}} \\ \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{\mathrm{s}} \epsilon}{\tau} \boldsymbol{u}^{n} = \frac{\rho^{\mathrm{s}} \epsilon}{\tau} \dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}(\boldsymbol{d}^{\star}, \boldsymbol{\theta}^{\star}) \quad \text{on} \quad \Sigma \end{cases}$$

Domain decomposition: a solution method

April 2015

Robin-Neumann Loosely Coupled Schemes

1) Solve fluid:

$$\begin{cases} \rho^{\mathrm{f}}\partial_{\tau}\boldsymbol{u}^{n} - \operatorname{div}\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n}) = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}} \\ \operatorname{div}\boldsymbol{u}^{n} = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}} \\ \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{\mathrm{s}}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{\mathrm{s}}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}(\boldsymbol{d}^{\star}, \boldsymbol{\theta}^{\star}) \quad \text{on} \quad \Sigma \end{cases}$$

2) Solve solid:

$$\begin{cases} \begin{pmatrix} \rho^{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} \\ 0 \end{pmatrix} - \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{e}(\boldsymbol{d}^{n}, \boldsymbol{\theta}^{n}) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{e}(\boldsymbol{d}^{n}, \boldsymbol{\theta}^{n}) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \Sigma \\ \dot{\boldsymbol{d}}^{n} = \partial_{\tau} \boldsymbol{d}^{n} \quad \text{on} \quad \Sigma \end{cases}$$

Corría Domain decomposition: a solution method

April 2015

Robin-Neumann Loosely Coupled Schemes

1) Solve fluid:

$$\begin{cases} \rho^{\mathrm{f}}\partial_{\tau}\boldsymbol{u}^{n} - \operatorname{div}\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n}) = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}} \\ \operatorname{div}\boldsymbol{u}^{n} = \boldsymbol{0} \quad \text{in} \quad \Omega^{\mathrm{f}} \\ \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{\mathrm{s}}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{\mathrm{s}}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}(\boldsymbol{d}^{\star}, \boldsymbol{\theta}^{\star}) \quad \text{on} \quad \Sigma \end{cases}$$

2) Solve solid:

$$\begin{cases} \begin{pmatrix} \rho^{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} \\ 0 \end{pmatrix} - \begin{pmatrix} \boldsymbol{L}_{\boldsymbol{d}}^{e}(\boldsymbol{d}^{n}, \boldsymbol{\theta}^{n}) \\ \boldsymbol{L}_{\boldsymbol{\theta}}^{e}(\boldsymbol{d}^{n}, \boldsymbol{\theta}^{n}) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \\ \boldsymbol{0} \end{pmatrix} \quad \text{on} \quad \Sigma \\ \dot{\boldsymbol{d}}^{n} = \partial_{\tau} \boldsymbol{d}^{n} \quad \text{on} \quad \Sigma \end{cases}$$

Remarks:

• Semi-implicit coupling scheme which becomes explicit (thin-solid model)

April 2015

jeudi 30 avril 15

Ínría

See Explicit Robin-Neumann coupling:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{\dot{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{\star} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\boldsymbol{\dot{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Domain decomposition: a solution method

Section Explicit Robin-Neumann coupling:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{\star} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Domain decomposition: a solution method

April 2015

See Explicit Robin-Neumann coupling:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{\dot{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{\star} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\boldsymbol{\dot{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Domain decomposition: a solution method

See Explicit Robin-Neumann coupling:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{\star} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Solution: Robin based kinematic relaxation:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s} \epsilon}{\tau} \boldsymbol{u}^{n} = \frac{\rho^{s} \epsilon}{\tau} \left(\dot{\boldsymbol{d}}^{n-1} + \tau \partial_{\tau} \dot{\boldsymbol{d}}^{\star} \right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

See Explicit Robin-Neumann coupling:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{\star} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

W Robin based kinematic relaxation:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\left(\dot{\boldsymbol{d}}^{n-1} + \tau\partial_{\tau}\dot{\boldsymbol{d}}^{\star}\right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Incremental displacement-correction:

$$\frac{\rho^{\mathrm{s}}\epsilon}{\tau} (\dot{\boldsymbol{d}}^{n} - \boldsymbol{u}^{n}) + \boldsymbol{L}^{\mathrm{e}} (\boldsymbol{d}^{n} - \boldsymbol{d}^{\star}) = 0 \quad \mathrm{on} \quad \boldsymbol{\Sigma}$$

Domain decomposition: a solution method

Inría

Service Explicit Robin-Neumann coupling:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{\star} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Robin based kinematic relaxation:

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s} \epsilon}{\tau} \boldsymbol{u}^{n} = \frac{\rho^{s} \epsilon}{\tau} \left(\dot{\boldsymbol{d}}^{n-1} + \tau \partial_{\tau} \dot{\boldsymbol{d}}^{\star} \right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

Incremental displacement-correction:

$$\frac{\rho^{s} \epsilon}{\tau} (\dot{\boldsymbol{d}}^{n} - \boldsymbol{u}^{n}) + \boldsymbol{L}^{e} (\boldsymbol{d}^{n} - \boldsymbol{d}^{\star}) = 0 \quad \text{on} \quad \boldsymbol{\Sigma}$$

Remark:

For $d^* = 0$ (*non-incremetal* displacement-correction) and membrane we retrieve the kinematically coupled scheme (*Guidoboni et al. '09*)

April 2015

Domain decomposition: a solution method

Innía
(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

$$\begin{cases} \rho^{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e} \boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma\\ \frac{\rho^{s} \epsilon}{\tau} (\dot{\boldsymbol{d}}^{n} - \boldsymbol{u}^{n}) + \boldsymbol{L}^{e} (\boldsymbol{d}^{n} - \boldsymbol{d}^{\star}) = 0 \quad \text{on} \quad \Sigma \end{cases}$$

(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

$$\left\{\begin{array}{ll}\rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma \end{array}\right\} \text{ implicit kinetic coupling}\\ \left\{\frac{\rho^{s}\epsilon}{\tau}\left(\dot{\boldsymbol{d}}^{n} - \boldsymbol{u}^{n}\right) + \boldsymbol{L}^{e}\left(\boldsymbol{d}^{n} - \boldsymbol{d}^{\star}\right) = 0 \quad \text{on} \quad \Sigma \end{array}\right\}$$

(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

April 2015

jeudi 30 avril 15

(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

April 2015

jeudi 30 avril 15

(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

$$\rho^{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e} \boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma \left. \right\} \text{ implicit kinetic coupling}$$
$$\boldsymbol{u}^{n} = \dot{\boldsymbol{d}}^{n} + \frac{\tau}{\rho^{s} \epsilon} \boldsymbol{L}^{e} (\boldsymbol{d}^{n} - \boldsymbol{d}^{\star}) \quad \text{on} \quad \Sigma \left. \right\} \begin{array}{l} \text{kinematic perturbation of} \\ \text{ implicit coupling} \end{array}$$

(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

$$\rho^{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e} \boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma \left. \right\} \text{ implicit kinetic coupling}$$
$$\boldsymbol{u}^{n} = \dot{\boldsymbol{d}}^{n} + \frac{\tau}{\rho^{s} \epsilon} \boldsymbol{L}^{e} \left(\boldsymbol{d}^{n} - \boldsymbol{d}^{\star} \right) \quad \text{on} \quad \Sigma \left. \right\} \begin{array}{l} \text{kinematic perturbation of} \\ \text{implicit coupling} \end{array}$$

Wey issue: how does this kinematic perturbation affect the stability and accuracy of the 'underlying' implicit coupling scheme?

(M. Fernández '11, '12)

Solution These loosely coupled schemes enforce:

$$\rho^{s} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e} \boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma \left. \right\} \text{ implicit kinetic coupling}$$
$$\boldsymbol{u}^{n} = \dot{\boldsymbol{d}}^{n} + \frac{\tau}{\rho^{s} \epsilon} \boldsymbol{L}^{e} \left(\boldsymbol{d}^{n} - \boldsymbol{d}^{\star} \right) \quad \text{on} \quad \Sigma \left. \right\} \begin{array}{l} \text{kinematic perturbation of} \\ \text{implicit coupling} \end{array}$$

Wey issue: how does this kinematic perturbation affect the stability and accuracy of the 'underlying' implicit coupling scheme?

Remark:

The size of the perturbation depends on the displacement extrapolation

$$d^{\star} = \mathbf{0} \qquad \text{(sub-optimal?)}$$
$$d^{\star} = \begin{cases} d^{n-1} \\ d^{n-1} + \tau \dot{d}^{n-1} \end{cases} \text{(optimal?)}$$

Domain decomposition: a solution method

Stability: A Priori Energy Estimates

Senergy-norm:

$$E^n \stackrel{\text{def}}{=} \frac{\rho^{\text{f}}}{2} \|\boldsymbol{u}^n\|_{0,\Omega^{\text{f}}}^2 + \frac{\rho^{\text{s}}\epsilon}{2} \|\dot{\boldsymbol{d}}^n\|_{0,\Sigma}^2 + \frac{1}{2} \|\boldsymbol{d}^n\|_{\text{e}}^2$$

Proposition:

For $n \geq 1$, there holds

$$E^n \lesssim E^0 \quad \left\{ egin{array}{ll} ext{if} & oldsymbol{d}^\star = oldsymbol{0} \ ext{if} & oldsymbol{d}^\star = oldsymbol{d}^{n-1} \ & oldsymbol{d}^\star = oldsymbol{d}^{n-1} + au \dot{oldsymbol{d}}^{n-1} \ & ext{if} & oldsymbol{d}^\star = oldsymbol{\mathcal{O}}(h^{rac{6}{5}}) \end{array}
ight.$$

with $\omega_{\rm e} \stackrel{\rm def}{=} \sqrt{\beta_{\rm e}/(\rho^{\rm s}\epsilon)}$.

Inia UPIC Domain decomposition: a solution method

Stability: A Priori Energy Estimates

Section Energy-norm:

$$E^{n} \stackrel{\text{def}}{=} \frac{\rho^{\text{f}}}{2} \|\boldsymbol{u}^{n}\|_{0,\Omega^{\text{f}}}^{2} + \frac{\rho^{\text{s}}\epsilon}{2} \|\dot{\boldsymbol{d}}^{n}\|_{0,\Sigma}^{2} + \frac{1}{2} \|\boldsymbol{d}^{n}\|_{\text{e}}^{2}$$

Proposition:

For $n \geq 1$, there holds

$$E^n \lesssim E^0 \quad \left\{ egin{array}{ll} ext{if} & oldsymbol{d}^{\star} = oldsymbol{0} \ ext{if} & oldsymbol{d}^{\star} = oldsymbol{d}^{n-1} \ & oldsymbol{d}^{\star} = oldsymbol{d}^{n-1} + au \dot{oldsymbol{d}}^{n-1} \ & ext{if} & oldsymbol{d}^{\star} = \mathcal{O}ig(h^{rac{6}{5}}ig) \end{array}
ight.$$

with $\omega_{\rm e} \stackrel{\rm def}{=} \sqrt{\beta_{\rm e}/(\rho^{\rm s}\epsilon)}$.

Remarks:

- Incremental 1st-order extrap. unconditionnally stable
- Incremental 2nd-order extrap. stable under 6/5-CFL condition

April 2015

• Stability independent of the added-mass effect

Domain decomposition: a solution method

Innía

Convergence: A Priori Error Estimates

Section Energy-norm error:

$$e^{n} \stackrel{\text{def}}{=} \sqrt{\frac{\rho^{\text{f}}}{2}} \|\boldsymbol{u}^{n} - \boldsymbol{u}(t_{n})\|_{0,\Omega^{\text{f}}}^{2} + \frac{\rho^{\text{s}}\epsilon}{2} \|\dot{\boldsymbol{d}}^{n} - \dot{\boldsymbol{d}}(t_{n})\|_{0,\Sigma}^{2} + \frac{1}{2} \|\boldsymbol{d}^{n} - \boldsymbol{d}(t_{n})\|_{\text{e}}^{2}$$

Proposition:

For smooth enough solutions and $n \ge 1$, there holds:

$$e^n \lesssim h^k + au + rac{eta_{ ext{e}}}{\sqrt{
ho^{ ext{s}}\epsilon}} \cdot egin{cases} au^{rac{1}{2}} & ext{if} \quad extbf{d}^\star = \mathbf{0} \ au & ext{if} \quad extbf{d}^\star = extbf{d}^{n-1} \ au^2 & ext{if} \quad extbf{d}^\star = extbf{d}^{n-1} + au \dot{ extbf{d}}^{n-1} \end{cases}$$

with $k \ge 1$ the convergence order of the Stokes-projection.

jeudi 30 avril 15

Convergence: A Priori Error Estimates

Senergy-norm error:

$$e^{n} \stackrel{\text{def}}{=} \sqrt{\frac{\rho^{\text{f}}}{2}} \|\boldsymbol{u}^{n} - \boldsymbol{u}(t_{n})\|_{0,\Omega^{\text{f}}}^{2} + \frac{\rho^{\text{s}}\epsilon}{2} \|\dot{\boldsymbol{d}}^{n} - \dot{\boldsymbol{d}}(t_{n})\|_{0,\Sigma}^{2} + \frac{1}{2} \|\boldsymbol{d}^{n} - \boldsymbol{d}(t_{n})\|_{\text{e}}^{2}$$

Proposition:

For smooth enough solutions and $n \ge 1$, there holds:

$$e^n \lesssim h^k + au + rac{eta_{ ext{e}}}{\sqrt{
ho^{ ext{s}}\epsilon}} \cdot egin{cases} au^{rac{1}{2}} & ext{if} \quad extbf{d}^\star = \mathbf{0} \ au & ext{if} \quad extbf{d}^\star = extbf{d}^{n-1} \ au^2 & ext{if} \quad extbf{d}^\star = extbf{d}^{n-1} + au \dot{ extbf{d}}^{n-1} \end{cases}$$

with $k \geq 1$ the convergence order of the Stokes-projection.

Remarks:

- Non-incremental: expected sub-optimal time accuracy
- Incremental: overall optimal accuracy
- Splitting error constant depends on physical parameters

Domain decomposition: a solution method

jeudi 30 avril 15

Innía

Generalization to non-linear

Fluid: Navier-Stokes (ALE formalism)Solid: non-linear shell (complete strain tensor)

Ambiguity in the computation of the second order extrapolation

$$d^{\star} = d^{n-1} + \tau \dot{d}^{n-1} = 2d^{n-1} - d^{n-2}$$

$$\theta^{\star} = 2\theta^{n-1} - \theta^{n-2}$$

$$\boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{\star},\boldsymbol{\theta}^{\star})) = \begin{cases} \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((2\boldsymbol{d}^{n-1} - \boldsymbol{d}^{n-2}, 2\boldsymbol{\theta}^{n-1} - \boldsymbol{\theta}^{n-2})) \\ 2\boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{n-1}, \boldsymbol{\theta}^{n-1})) - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}\boldsymbol{d}((\boldsymbol{d}^{n-2}, \boldsymbol{\theta}^{n-2})) \end{cases}$$

Domain decomposition: a solution method

Generalization to non-linear

Fluid: Navier-Stokes (ALE formalism)Solid: non-linear shell (complete strain tensor)

Ambiguity in the computation of the second order extrapolation

$$d^{\star} = d^{n-1} + \tau \dot{d}^{n-1} = 2d^{n-1} - d^{n-2}$$

$$\theta^{\star} = 2\theta^{n-1} - \theta^{n-2}$$

$$\boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{\star},\boldsymbol{\theta}^{\star})) = \begin{cases} \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((2\boldsymbol{d}^{n-1} - \boldsymbol{d}^{n-2}, 2\boldsymbol{\theta}^{n-1} - \boldsymbol{\theta}^{n-2})) & \longleftarrow \text{ does not work} \\ 2\boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}((\boldsymbol{d}^{n-1}, \boldsymbol{\theta}^{n-1})) - \boldsymbol{L}_{\boldsymbol{d}}^{\mathrm{e}}\boldsymbol{d}((\boldsymbol{d}^{n-2}, \boldsymbol{\theta}^{n-2})) \end{cases}$$

Domain decomposition: a solution method

Generalization to non-linear

Fluid: Navier-Stokes (ALE formalism)Solid: non-linear shell (complete strain tensor)

Ambiguity in the computation of the second order extrapolation

$$d^{\star} = d^{n-1} + \tau \dot{d}^{n-1} = 2d^{n-1} - d^{n-2}$$

$$\theta^{\star} = 2\theta^{n-1} - \theta^{n-2}$$

$$L_{d}^{e}((\boldsymbol{d}^{\star},\boldsymbol{\theta}^{\star})) = \begin{cases} L_{d}^{e}((2\boldsymbol{d}^{n-1} - \boldsymbol{d}^{n-2}, 2\boldsymbol{\theta}^{n-1} - \boldsymbol{\theta}^{n-2})) & \longleftarrow \text{ does not work} \\ 2L_{d}^{e}((\boldsymbol{d}^{n-1}, \boldsymbol{\theta}^{n-1})) - L_{d}^{e}\boldsymbol{d}((\boldsymbol{d}^{n-2}, \boldsymbol{\theta}^{n-2})) & \bigcirc \text{ Our choice} \end{cases}$$

April 2015

Domain decomposition: a solution method

ALE Navier-Stokes/Linear-Shell: In-vitro Abdominal Aortic Aneuvrism

In-vitro abdominal aortic aneurysm:

$$\rho^{s} = 1.2 \text{ g/cm}^{3} \qquad \mu = 0.035 \text{ P}$$

$$E = 6 \times 10^{6} \text{ dyne/cm}^{2} \qquad R_{out} = 300 \text{ dyne s/cm}^{5}$$

$$\nu = 0.3$$

Space discretization: MITC4 for the solid, $\mathbb{Q}_1/\mathbb{Q}_1$ stabilized for the fluid

Domain decomposition: a solution method

Ínría

ALE Navier-Stokes/Linear-Shell (cont.)

Domain decomposition: a solution method

Ínría

April 2015

Accuracy

 $\Theta \ \tau = 4.2 \times 10^{-4}$

Domain decomposition: a solution method

Inría

April 2015

ALE Navier-Stokes/Non-Linear Shell: Inflating balloon

Inflating balloon problem (incompressible 'dilemma'):

ALE Navier-Stokes/Non-Linear Shell (cont.)

Domain decomposition: a solution method

jeudi 30 avril 15

April 2015

ALE Navier-Stokes/Non-Linear Shell (cont.)

Domain decomposition: a solution method

April 2015

jeudi 30 avril 15

Accuracy

Domain decomposition: a solution method

Inría

 $\rho^{s} \epsilon \partial_{t} \dot{\boldsymbol{d}} + \boldsymbol{L}^{e} \boldsymbol{d} + \boldsymbol{L}^{v} \dot{\boldsymbol{d}} = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \text{ on } \Sigma$

Domain decomposition: a solution method

April 2015

jeudi 30 avril 15

 $\rho^{\mathrm{s}} \epsilon \partial_t \dot{\boldsymbol{d}} + \boldsymbol{L}^{\mathrm{e}} \boldsymbol{d} + \boldsymbol{L}^{\mathrm{v}} \dot{\boldsymbol{d}} = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \quad \text{on} \quad \Sigma$

See Explicit Robin-Neumann coupling (incremental 1st-order extrap):

$$(\boldsymbol{\sigma}(\boldsymbol{u}^n,p^n)\boldsymbol{n}+rac{
ho^{\mathrm{s}}\epsilon}{ au}\boldsymbol{u}^n=rac{
ho^{\mathrm{s}}\epsilon}{ au}\dot{\boldsymbol{d}}^{n-1}-\boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^{n-1}$$
 on Σ

$$ho^{\mathrm{s}}\epsilon\partial_{ au}\dot{\boldsymbol{d}}^n+\boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^n \qquad \qquad =-\boldsymbol{\sigma}(\boldsymbol{u}^n,p^n)\boldsymbol{n} \quad \mathrm{on} \quad \Sigma$$

 $\rho^{\mathrm{s}} \epsilon \partial_t \dot{\boldsymbol{d}} + \boldsymbol{L}^{\mathrm{e}} \boldsymbol{d} + \boldsymbol{L}^{\mathrm{v}} \dot{\boldsymbol{d}} = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \quad \text{on} \quad \Sigma$

See Explicit Robin-Neumann coupling (incremental 1st-order extrap):

$$(\boldsymbol{\sigma}(\boldsymbol{u}^n,p^n)\boldsymbol{n}+rac{
ho^{\mathrm{s}}\epsilon}{ au}\boldsymbol{u}^n=rac{
ho^{\mathrm{s}}\epsilon}{ au}\dot{\boldsymbol{d}}^{n-1}-\boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^{n-1}-\boldsymbol{L}^{\mathrm{v}}\dot{\boldsymbol{d}}^{n-1}$$
 on Σ

$$ho^{\mathrm{s}}\epsilon\partial_{ au}\dot{\boldsymbol{d}}^n+\boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^n \qquad \qquad =-\boldsymbol{\sigma}(\boldsymbol{u}^n,p^n)\boldsymbol{n} \quad \mathrm{on} \quad \Sigma$$

 $\rho^{\mathrm{s}} \epsilon \partial_t \dot{\boldsymbol{d}} + \boldsymbol{L}^{\mathrm{e}} \boldsymbol{d} + \boldsymbol{L}^{\mathrm{v}} \dot{\boldsymbol{d}} = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \quad \mathrm{on} \quad \Sigma$

Explicit Robin-Neumann coupling (incremental 1st-order extrap): 6

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{n-1} - \boldsymbol{L}^{v}\dot{\boldsymbol{d}}^{n-1} \quad \text{on} \quad \boldsymbol{\Sigma}$$
$$\rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} + \boldsymbol{L}^{v}\dot{\boldsymbol{d}}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma}$$

$$ho^{\mathrm{s}}\epsilon\partial_{ au}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^{n} + \boldsymbol{L}^{\mathrm{v}}\dot{\boldsymbol{d}}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n},p^{n})\boldsymbol{n} \quad \mathrm{on} \quad \Sigma$$

 $\rho^{\mathrm{s}} \epsilon \partial_t \dot{\boldsymbol{d}} + \boldsymbol{L}^{\mathrm{e}} \boldsymbol{d} + \boldsymbol{L}^{\mathrm{v}} \dot{\boldsymbol{d}} = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \quad \text{on} \quad \Sigma$

See Explicit Robin-Neumann coupling (incremental 1st-order extrap):

$$\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s} \epsilon}{\tau} \boldsymbol{u}^{n} = \frac{\rho^{s} \epsilon}{\tau} \dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e} \boldsymbol{d}^{n-1} - \boldsymbol{L}^{v} \dot{\boldsymbol{d}}^{n-1} \quad \text{on} \quad \boldsymbol{\Sigma}$$

$$\rho^{\mathrm{s}} \epsilon \partial_{\tau} \dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{\mathrm{e}} \boldsymbol{d}^{n} + \boldsymbol{L}^{\mathrm{v}} \dot{\boldsymbol{d}}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \mathrm{on} \quad \Sigma$$

Proposition: (Fernández, Mullaert, MV '13) For $n \ge 1$, there holds

$$E^n \lesssim E^0 + au^2 \|\dot{\boldsymbol{d}}^0\|_{ ext{e}}^2 + rac{ au^2}{
ho^{ ext{s}}\epsilon} \|\boldsymbol{L}^{ ext{e}}\boldsymbol{d}^0 + \boldsymbol{L}^{ ext{v}}\dot{\boldsymbol{d}}^0\|_{0,\Sigma}^2.$$

 $\rho^{s} \epsilon \partial_{t} \dot{\boldsymbol{d}} + \boldsymbol{L}^{e} \boldsymbol{d} + \boldsymbol{L}^{v} \dot{\boldsymbol{d}} = -\boldsymbol{\sigma}(\boldsymbol{u}, p) \boldsymbol{n} \text{ on } \Sigma$

See Explicit Robin-Neumann coupling (incremental 1st-order extrap):

$$\begin{aligned} \mathbf{\hat{\sigma}}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} &= \frac{\rho^{s}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{e}\boldsymbol{d}^{n-1} - \boldsymbol{L}^{v}\dot{\boldsymbol{d}}^{n-1} \quad \text{on} \quad \boldsymbol{\Sigma} \\ \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} + \boldsymbol{L}^{v}\dot{\boldsymbol{d}}^{n} &= -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma} \end{aligned}$$

Proposition: (Fernández, Mullaert, MV '13) For $n \ge 1$, there holds

$$E^n \lesssim E^0 + \tau^2 \|\dot{\boldsymbol{d}}^0\|_{\mathrm{e}}^2 + \frac{\tau^2}{
ho^{\mathrm{s}}\epsilon} \|\boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^0 + \boldsymbol{L}^{\mathrm{v}}\dot{\boldsymbol{d}}^0\|_{0,\Sigma}^2.$$

Remarks:

• Explicit treatment of damping does not compromise unconditional stability

April 2015

 $\rho^{s} \epsilon \partial_{t} \dot{d} + L^{e} d + L^{v} \dot{d} = -\sigma(u, p) n \text{ on } \Sigma$

Explicit Robin-Neumann coupling (incremental 1st-order extrap):

$$\begin{split} \tilde{\boldsymbol{\sigma}}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{\mathrm{s}}\epsilon}{\tau}\boldsymbol{u}^{n} &= \frac{\rho^{\mathrm{s}}\epsilon}{\tau}\dot{\boldsymbol{d}}^{n-1} - \boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^{n-1} - \boldsymbol{L}^{\mathrm{v}}\dot{\boldsymbol{d}}^{n-1} \quad \text{on} \quad \boldsymbol{\Sigma} \\ \rho^{\mathrm{s}}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^{n} + \boldsymbol{L}^{\mathrm{v}}\dot{\boldsymbol{d}}^{n} &= -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \boldsymbol{\Sigma} \end{split}$$

Proposition: (Fernández, Mullaert, MV '13) For $n \ge 1$, there holds

$$E^n \lesssim E^0 + \tau^2 \|\dot{\boldsymbol{d}}^0\|_{\mathrm{e}}^2 + \frac{\tau^2}{
ho^{\mathrm{s}}\epsilon} \|\boldsymbol{L}^{\mathrm{e}}\boldsymbol{d}^0 + \boldsymbol{L}^{\mathrm{v}}\dot{\boldsymbol{d}}^0\|_{0,\Sigma}^2.$$

Remarks:

- Explicit treatment of damping does not compromise unconditional stability
- Implicit treatment of damping (kinematically coupled scheme)

$$\sigma(\boldsymbol{u}^n,p^n)\boldsymbol{n}+rac{
ho^{\mathrm{s}}\epsilon}{ au}\boldsymbol{u}^n+L^{\mathrm{v}}\boldsymbol{u}^n=rac{
ho^{\mathrm{s}}\epsilon}{ au}\dot{\boldsymbol{d}}^{n-1}\quad ext{on}\quad\Sigma^{\mathrm{s}}$$

yields a non-standard Robin condition (Guidoboni et al. '09)

Domain decomposition: a solution method

Innía

Parallelization of the solid and fluid solvers

Design algorithms well suited for parallel computing : use domain decomposition

Additive Schwarz for the fluid (PETSCI) BDD Balanced domain decomposition method for the solid solver

Alternatives for the solid solver

FETI (finite element tearing and interconnect) *Farhat, Roux*

BDDC (balancing domain decomposition by constraints) C. R. Dohrmann

April 2015

Domain decomposition: a solution method

jeudi 30 avril 15

Revisit domain decomposition (linear elasticity)

Solve by an iterative method the primal Shur complement (interface problem)

$$S\frac{\bar{X}}{S} = \bar{F}$$
$$S = \sum_{i} \mathbf{R}^{i^{t}} \mathbf{S}^{i} \mathbf{R}^{i}$$

Neumann-Neumann preconditioner (Bourgat, Glowinski, Le Tallec, De Roeck, MV)

$$\mathbf{M}^{-1} = (\sum_{i} \mathbf{D}^{i} \tilde{\mathbf{S}}_{i}^{-1} \mathbf{D}^{i^{t}})$$

Balanced domain decomposition brilliant idea J. Mandel '92 '93

Instead of tacking **arbitrary rigid bodies** in the solution of the Neumann problems choose them in order **to minimize residual of the next iteration**

April 2015

Domain decomposition: a solution method

jeudi 30 avril 15

Inría

Balanced Domain Decomposition Method

Particular case of the additive Schwarz method applied to interface problem

$$(\sum_i \mathbf{R}^{i\,t} \mathbf{S}^i \mathbf{R}^i) \overline{\mathbf{X}} = \overline{F}$$

Define:

We he space of global interface values V = {v̄ = Tr v|_Γ, v ∈ H(Ω)}
a partition of unity Dⁱ: TrV_{|Γi} → V
an approximate local operator Šⁱ st Š = ∑ R^{i^t}ŠⁱRⁱ.
a Šⁱ orthogonal decomposition TrV_{|Γi} = V_i ⊕ Z_i.

Neumann-Neumann : additive Schwarz (solving S on V)

i)
$$\mathbf{V}_0 = \sum_{i=1}^N \mathbf{D}^i \mathbf{Z}_i \subset \mathbf{V}$$
, (scalar product $\tilde{\mathbf{S}}$), coarse space

ii)
$$\mathbf{V}_i$$
 (scalar product $\mathbf{B}_i = \tilde{\mathbf{S}}^i$) local spaces

iii) $I_i = (I - \mathbf{P})\mathbf{D}^i \mathbf{P}$ the $\mathbf{\tilde{S}}$ orth projection of $\mathbf{V} \to \mathbf{V}_0$. (extensions)

Balanced Domain Decomposition Method

Particular case of the additive Schwarz method applied to interface problem

$$(\sum_i \mathbf{R}^{i\,t} \mathbf{S}^i \mathbf{R}^i) \overline{\mathbf{X}} = \overline{F}$$

Define:

We he space of global interface values V = {v̄ = Tr v|_Γ, v ∈ H(Ω)}
a partition of unity Dⁱ: TrV_{|Γi} → V
an approximate local operator Šⁱ st Š = ∑R^{it}ŠⁱRⁱ.
a Šⁱ orthogonal decomposition TrV_{|Γi} = V_i ⊕ Z_i.

Neumann-Neumann : additive Schwarz (solving S on V)

i)
$$\mathbf{V}_0 = \sum_{i=1}^N \mathbf{D}^i \mathbf{Z}_i \subset \mathbf{V}$$
, (scalar product $\mathbf{\tilde{S}}$), coarse space

ii)
$$\mathbf{V}_i$$
 (scalar product $\mathbf{B}_i = \tilde{\mathbf{S}}^i$) local spaces

iii) $I_i = (I - \mathbf{P})\mathbf{D}^i \mathbf{P}$ the $\mathbf{\tilde{S}}$ orth projection of $\mathbf{V} \to \mathbf{V}_0$. (extensions)

April 2015

The BDD preconditioner

$$\mathbf{M}^{-1}\mathbf{S}\bar{u} = \mathbf{P}\bar{u} + (\mathbf{I} - \mathbf{P})(\sum_{i} \mathbf{D}^{i}\tilde{\mathbf{S}}_{i}^{-1}\mathbf{D}^{i^{t}})(\mathbf{I} - \mathbf{P})^{t}\mathbf{S}\bar{u}$$

Remarks :

Seconse space contains local singularities (rigid bodies....)

Standard N-N : S exact Schur interface operator $(\mathbf{I} - \mathbf{P})^t \mathbf{S} \bar{u} = \mathbf{S} \bar{u}$

interest to use an **approximate local operator** easy to generalize the method

The BDD preconditioner

$$\mathbf{M}^{-1}\mathbf{S}\bar{u} = \mathbf{P}\bar{u} + (\mathbf{I} - \mathbf{P})(\sum_{i} \mathbf{D}^{i}\tilde{\mathbf{S}}_{i}^{-1}\mathbf{D}^{i^{t}})(\mathbf{I} - \mathbf{P})^{t}\mathbf{S}\bar{u}$$

Remarks :

Source contains local singularities (rigid bodies....)

- \mathbf{G} standard N-N : S exact Schur interface operator $(\mathbf{I} \mathbf{P})^t \mathbf{S} \bar{u} = \mathbf{S} \bar{u}$
- interest to use an **approximate local operator** easy to generalize the method

Nonlinear elasticity

use a Newton Algorithm
 use domain decomposition for each linearized problem
 construct the preconditioner once for the first linearised problem and reuse it

Time dependent problems

use a Newmark or Euler time discretisation
 solve by domain decomposition at each time step
 construct the preconditioner using the rigid bodies of the linearized stiffness

Time dependent problem (cont)

After discretization in space, at each time step solve the non-linear problem

$$\frac{\rho M}{\Delta t^2} \mathbf{u} + \mathcal{G}(\mathbf{u}) = rhs$$

Use Newton algorithm, at each iteration solve

$$(\frac{\rho M}{\Delta t^2} + K^n)\mathbf{u} = rhs$$

Remarks :

the presence of the mass-matrix regularize the linear system
thus the size of the coarse space based on rigid bodies is zero
more robust approach coarse space based on the stiffness matrix only

Coarctated Aorta Blood Flow

Simulation by M. Landajuela

Domain decomposition: a solution method

jeudi 30 avril 15

Inría

April 2015
Coarctated Aorta Blood Flow

Simulation by M. Landajuela

Domain decomposition: a solution method

jeudi 30 avril 15

Ínría

April 2015

See Explicit Robin-Neumann coupling:

$$\begin{cases} \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\left(\dot{\boldsymbol{d}}^{n-1} + \tau\partial_{\tau}\dot{\boldsymbol{d}}^{\star}\right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \Sigma\\ \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma \end{cases}$$

Domain decomposition: a solution method

April 2015

Service Explicit Robin-Neumann coupling:

$$\int \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\left(\dot{\boldsymbol{d}}^{n-1} + \tau\partial_{\tau}\dot{\boldsymbol{d}}^{\star}\right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \Sigma$$

$$\sum \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma$$

Single iteration of a Robin-Neumann implicit solution algorithm (Badia, Nobile, Vergara '08):

$$\begin{cases} \boldsymbol{\sigma}(\boldsymbol{u}_{k}, p_{k})\boldsymbol{n} + \boldsymbol{\alpha}\boldsymbol{u}_{k} = \boldsymbol{\alpha}\dot{\boldsymbol{d}}_{k-1} + \boldsymbol{\sigma}(\boldsymbol{u}_{k-1}, p_{k-1})\boldsymbol{n} \quad \text{on} \quad \Sigma \\ \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}_{k} + \boldsymbol{L}^{e}\boldsymbol{d}_{k} = -\boldsymbol{\sigma}(\boldsymbol{u}_{k}, p_{k})\boldsymbol{n} \quad \text{on} \quad \Sigma \\ \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}_{k} + \boldsymbol{L}^{e}\boldsymbol{d}_{k} = -\boldsymbol{\sigma}(\boldsymbol{u}_{k}, p_{k})\boldsymbol{n} \quad \text{on} \quad \Sigma \end{cases} \quad \mathbf{Robin parameter}$$

Service Explicit Robin-Neumann coupling:

$$\int \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\left(\dot{\boldsymbol{d}}^{n-1} + \tau\partial_{\tau}\dot{\boldsymbol{d}}^{\star}\right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \Sigma$$

$$\sum \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma$$

Single iteration of a Robin-Neumann implicit solution algorithm (Badia, Nobile, Vergara '08):

$$\begin{cases} \boldsymbol{\sigma}(\boldsymbol{u}_{k}, p_{k})\boldsymbol{n} + \boldsymbol{\alpha}\boldsymbol{u}_{k} = \boldsymbol{\alpha}\dot{\boldsymbol{d}}_{k-1} + \boldsymbol{\sigma}(\boldsymbol{u}_{k-1}, p_{k-1})\boldsymbol{n} \quad \text{on} \quad \Sigma \\ \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}_{k} + \boldsymbol{L}^{e}\boldsymbol{d}_{k} = -\boldsymbol{\sigma}(\boldsymbol{u}_{k}, p_{k})\boldsymbol{n} \quad \text{on} \quad \Sigma \end{cases} \quad \text{Robin parameter} \quad \boldsymbol{\alpha} \stackrel{\text{def}}{=} \frac{\rho^{s}\epsilon}{\tau}$$

Solution \mathbf{W} Energy norm error at iteration k:

$$e_k \stackrel{\text{def}}{=} \rho^{\text{f}} \|\boldsymbol{u}_k - \boldsymbol{u}_{\text{imp}}^n\|_{0,\Omega^{\text{f}}}^2 + \rho^{\text{s}} \epsilon \|\dot{\boldsymbol{d}}_k - \dot{\boldsymbol{d}}_{\text{imp}}^n\|_{0,\Sigma}^2 + \|\boldsymbol{d}_k - \boldsymbol{d}_{\text{imp}}^n\|_{\text{e}}^2$$

Domain decomposition: a solution method

Innía

Service Explicit Robin-Neumann coupling:

$$\int \boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} + \frac{\rho^{s}\epsilon}{\tau}\boldsymbol{u}^{n} = \frac{\rho^{s}\epsilon}{\tau}\left(\dot{\boldsymbol{d}}^{n-1} + \tau\partial_{\tau}\dot{\boldsymbol{d}}^{\star}\right) + \boldsymbol{\sigma}(\boldsymbol{u}^{\star}, p^{\star})\boldsymbol{n} \quad \text{on} \quad \Sigma$$

$$\sum \rho^{s}\epsilon\partial_{\tau}\dot{\boldsymbol{d}}^{n} + \boldsymbol{L}^{e}\boldsymbol{d}^{n} = -\boldsymbol{\sigma}(\boldsymbol{u}^{n}, p^{n})\boldsymbol{n} \quad \text{on} \quad \Sigma$$

Single iteration of a Robin-Neumann implicit solution algorithm (Badia, Nobile, Vergara '08):

Solution \mathbf{W} Energy norm error at iteration k:

P

$$e_k \stackrel{\text{def}}{=} \rho^{\text{f}} \|\boldsymbol{u}_k - \boldsymbol{u}_{\text{imp}}^n\|_{0,\Omega^{\text{f}}}^2 + \rho^{\text{s}} \epsilon \|\dot{\boldsymbol{d}}_k - \dot{\boldsymbol{d}}_{\text{imp}}^n\|_{0,\Sigma}^2 + \|\boldsymbol{d}_k - \boldsymbol{d}_{\text{imp}}^n\|_{\text{e}}^2$$

roposition: (Fernández, Mullaert, MV '13)
$$\sum_{k=1}^{\infty} e_k \leq \tau \|\boldsymbol{d}_0 - \boldsymbol{d}_{imp}^n\|_e^2 + \frac{\tau^2}{\rho^s \epsilon} \|\boldsymbol{L}^e(\boldsymbol{d}_0 - \boldsymbol{d}_{imp}^n)\|_{0,\Sigma}^2$$

Domain decomposition: a solution method

Inría

Concluding Remarks

- **Model** Domain Decomposition is a powerful tool to solve large multi-scale problems
 - Heterogenous methods adapted to be design *parallel scalable algorithms*
 - Heterogenous methods well suited for FSI
- Stable explicit coupling schemes based on a built-in Robin interface consistency
 - Only solid-inertia needs to be implicitly coupled with the fluid
 - Elastic, viscous (and incompressible) solid contributions treated explicitly

Concluding Remarks

- **Model** Domain Decomposition is a powerful tool to solve large multi-scale problems
 - Heterogenous methods adapted to be design *parallel scalable algorithms*
 - Heterogenous methods well suited for FSI
- Stable explicit coupling schemes based on a built-in Robin interface consistency
 - Only solid-inertia needs to be implicitly coupled with the fluid
 - Elastic, viscous (and incompressible) solid contributions treated explicitly
- **Mathematical Robin-Neumann** schemes with interesting features:
 - Stability (added-mass free)
 - Optimally first-order accurate (coupling with thin-solid)
 - Kinematic perturbations of implicit coupling (fundamental for the analysis)
 - Single iteration of a strong coupling solution procedure
 - Parameter free

Domain decomposition: a solution method

April 2015

April 2015

April 2015

April 2015

Le travail c'est la santé

Bonne chance dans ta nouvelle vie!

Domain decomposition: a solution method