10/04-15 - INRIA - Sophia-Antipolis

Journées Alain Dervieux - INRIA

Modélisation et simulation de la turbulence par Marianna BRAZA

Directrice de Recherche CNRS Institut de Mécanique des Fluides de Toulouse UMR-CNRS-5502

Contribution:

G. Harran, D. Szubert, F. Grossi, T. Deloze, Y. Hoarau, I. Asproulias, E. Deri, H. Ouvrard

Turbulence modelling and simulation involving Fluid Structure Interaction **Applications in:**

Aeronautics Marine hydrodynamics, Nuclear Eng., Gas & Oil Eng.

National Projects: **ANR-***ECINADS**

Ecoulements instationnaires turbulents et adjoints par Simulation Numérique de Haute Performance

EU Projects in aeronautics

Exemples : génie nucléaire

Dans les réacteurs à eau préssurisé, une grappe de tube (contenant des pastilles de combustibles) est utilisé pour contrôler la vitesse de la récation en chaîne et donc la puissane dégagée : tubes déformables dans un écoulement mulphasique très perturbé.

ANR programme BARESAFE « Simulation of Safety Barrier Reliability coordinated by EDF : partners: CEA, AREVA, IMFT, ICUBE

Fluid-Structure interaction in an array of cylinders. Cooling system - heat exchanger - nuclear reactor. IMFT collaboration with EDF, CEA and AREVA - ANR BARESAFE. Inter-tube Reynolds N° ~60 000

Steam generator : bundle of tubes

Exemple of tube break

Movie : Courtesy of CEA: Commisariat d'Etudes Atomiques, Experiment 'DIVA'

Tandem Cylinders for landing gear IMFT participation in EU program ATAAC*

- Generic configuration of the two cylinders of a **landing gear**
- Movement Induced Vibrations
 Unsteady vortex structures
 Aerodynamic noise
- Usefulness: future strategies for <u>noise reduction</u> and <u>stability</u> of a landing gear

*Advanced Turbulence simulations for Aerodynamics Applications Challenges

Applications in aerodynamics

High-Reynolds number flows with thin interfaces rotational/irrotational region

- Wall flows: Turbulence onset from near-wall
- Near-wake modeling : Decisive for reliability of the overall simulation and for accurate prediction of forces

Improved statistical (URANS) and Hybrid (URANS-LES) Turbulence modelling accounting for non - equilibrium turbulence in strongly detached flow regions

Comparison DES – PIV-3C - movie

Isosurfaces of λ_2 , shaded with streamwise velocity

'The IMFT's circular cylinder' test-case

FLOMANIA and DESIDER –EU research programmes

Detailed data base from: simultaneous use of 3C-PIV and of time-resolved TRPIV - R.Perrin PhD '02-05 8

TR-PIV - Re=140,000

S1 and S4 wind tunnels - IMFT 9

The OES Organised Eddy Simulation Capturing the organised coherent motion and the random turbulence

FLOMANIA EU Program : « The IMFT Circular cylinder » Vertical velocity spectrum in a cylinder wake, Re=140 000

Spectrum from originals signals

Spectrum from phase-averaged signals

Experimental data from PIV (M. Braza, R. Perrin, Y. Hoarau, Journal of Fluids and Structure 2006, Exp. Fluids 2007) and LDV (Djeridi, Perrin, Braza, Cid, Cazin, JFTAC 2003)

DESIDER EU Program : « The IMFT Circular cylinder »

Organized Eddy Simulation:

Energy spectrum splitting for

Distinction between the structures to be resolved from those to be modeled

based on their organized coherent character

Dervieux, Braza, Dussauge, Notes on Num. Fluid Mech., Vol. 65, 1998 Braza, Perrin, Hoarau, J. Fluids Struct. 2006 Bourguet, Braza, J. Fluids & Struct. 2008 Haase, Braza, Revell, Notes on Num. Fluid Mech. And Multidisciplinary design, Vol. 109 Shinde, Hoarau, Longatte, Braza, J. Fluids & Struct., Vol. 47, 2014

Phase-averaged decomposition – Navier-Stokes equations

$$U_{i}(x_{k},t) = \langle U_{i}(x_{k},t) \rangle + u_{i}(x_{k},t)$$

$$\langle u_i(x_k,t)\rangle = 0$$
 $\langle \langle U_i(x_k,t)\rangle \rangle = \langle U_i(x_k,t)\rangle$

Navier-Stokes equations in phase-averaged decomposition Modification of modelling $\langle u_i u_j \rangle$ to take into account non-equilibrium

Experimental investigation of 3D stress-strain misalignment-The IMFT circular cylinder- DESIDER EU-pgm

Eigenvectors of turbulence stress anisotropy (-a) and of strain rate (S)

First principal directions of -a and S at phase angle (a) $\varphi = 50^{\circ}$ and (b) $\varphi = 140^{\circ}$, isocontour of Q criterion

Haase, Braza, Revell, 2009 Bourguet, Braza J. Fluids and Struct., 2008 Braza, Perrin, JFS (a) v_{3}^{a} $v_{3}^{v_{3}}$ (a) $v_{1}^{v_{1}}$ $v_{2}^{v_{1}}$ (b) $v_{1}^{v_{1}}$ (b) $v_{1}^{v_{1}}$ (b) $v_{1}^{v_{1}}$

Significant misalignment in coherent structures and in sheared regions

 \longrightarrow anisotropic modulation of the C_{μ} eddy-diffusion coefficient in Reynolds stress constitutive law

•OES- Tensorial eddy-viscosity modeling

Capturing near-wall turbulence stress anisotropy
Non-equilibrium turbulence – directional 3D stress-strain misalignment
Projection of the DRSM model on the principal directions of the strain-rate

$$(\nu_{tt})_{ij} = (\nu_{td})_k (v_k^S)_i (v_k^S)_j \text{ with } (\nu_{td})_i = \frac{C_{Vi}}{2\lambda_i^S} k , \ C_{\mu_i} = \frac{C_{Vi}}{2} \frac{\varepsilon}{k\lambda_i^S}$$

 Cv_i : directional angle between turbulence anisotropy tensor and strain rate λi : eigenvalues – projection angle between anisotropy and strain-rate tensors

Turbulence constitutive law
$$-\overline{u_i u_j} + \frac{2}{3} k \delta_{ij} = 2 S_{ik} (\nu_{tt})_{kj}$$

Momentum equations :

$$\frac{DU_i}{Dt} = \frac{\partial}{\partial x_j} \left(2\nu S_{ij} + 2(\nu_{tt})_{kj} S_{ik} - \frac{2}{3}k\delta_{ij} \right) - \frac{1}{\rho} \frac{\partial P}{\partial x_i}$$

 $\begin{aligned} C_{Vi}: 3 \text{ transport equations from DRSM projection on the principal directions of } Sij \\ \frac{Dk}{Dt} &= \frac{\partial}{\partial x_{\alpha}} \left(\left(\nu \delta_{\alpha\beta} + \frac{(\nu_{tt})_{\alpha\beta}}{\sigma_{k}} \right) \frac{\partial k}{\partial x_{\beta}} \right) + P_{k} - \varepsilon - \frac{2\nu k}{y_{n}^{2}}, \\ \frac{D\varepsilon}{Dt} &= \frac{\partial}{\partial x_{\alpha}} \left(\left(\nu \delta_{\alpha\beta} + \frac{(\nu_{tt})_{\alpha\beta}}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_{\beta}} \right) + c_{\varepsilon_{1}} f_{1} \frac{\varepsilon}{k} P_{k} - c_{\varepsilon_{2}} f_{2} \frac{\varepsilon^{2}}{k} - \frac{2\nu\varepsilon}{y_{n}^{2}} \exp\left(-0.5y^{+}\right). \end{aligned}$

•Transport equations for Cvi projection coefficients, for q = 1,2,3

$$\frac{DC_{Vq}}{Dt} = -\left(V_q\right)_{ij}\frac{Da_{ij}}{Dt} - a_{ij}\frac{D\left(V_q\right)_{ij}}{Dt} , \ \left(V_q\right)_{ij} = \left(v_q^S\right)_i \left(v_q^S\right)_j$$

•Projection of Speziale, Sarkar and Gatski second order closure scheme J. Fluid Mech., 227, 1991

$$\begin{aligned} \frac{DC_{Vq}}{Dt} &= \left(\frac{4}{3} + c_3^* II_a^{\frac{1}{2}} - c_3\right) (V_q)_{ij} S_{ij} + (2 - 2c_4) (V_q)_{ij} a_{ik} S_{jk} - \frac{c_2 \varepsilon}{k} (V_q)_{ij} a_{ik} a_{kj} \\ &+ (2 - 2c_5) (V_q)_{ij} a_{ik} \Omega_{jk} + (1 - c_1) \frac{\varepsilon}{k} C_{Vq} + (1 + c_1^*) C_{Vq} a_{ij} S_{ij} + \frac{c_2 II_a \varepsilon}{3k} \\ &+ \frac{2 (c_4 - 1)}{3} a_{ij} S_{ij} - a_{ij} \frac{D (V_q)_{ij}}{Dt} + D^{C_{Vq}} \end{aligned}$$

where c_i and c_i^* are SSG model constants

$$\hat{a}_{ij}\frac{D(V_q)_{ij}}{Dt} = -C_{V_r}V_r\frac{D(V_q)_{ij}}{Dt} = 0 \text{ and } D^{C_{V_q}} = \frac{\partial}{\partial x_i}\left(\left(\nu + \frac{(\nu_{tt})_{ij}}{\sigma_{C_{V_q}}}\right)\frac{\partial C_{V_q}}{\partial x_j}\right)$$

A tensorial eddy-diffusion coefficient $C_{\mu,i}$ can be derived. For faster computations, can be assumed scalar with equivalent optimum values of order 0.02-0.03 15

Tensorial eddy-viscosity modeling: Ability of capturing negative production of turbulence kinetic energy regions

 $\mathcal{P}_{ij} = - \langle u_i u_j \rangle \partial \langle U_i \rangle / \partial x_j$

Exp

Detached Eddy Simulation

Turbulent length scale: l_{l}

$$L_{DES} = \min \left(l_{RANS}, C_{DES} \times \Delta \right)$$
$$\Delta = \max \left(\Delta x, \Delta y, \Delta z \right)$$

- ► For Spalart-Allmaras* model: $l_{DES} = \min(d_w, C_{DES} \times \Delta)$
- Augmentation of the dissipation term in the eddy-viscosity transport equation:

$$\frac{D\widetilde{\nu}}{Dt} = c_{b1}(1 - f_{t2})\widetilde{S}\,\widetilde{\nu} + \frac{1}{\sigma} \Big[\nabla .((\nu + \widetilde{\nu})\nabla\widetilde{\nu}) + c_{b2}(\nabla\widetilde{\nu})^2\Big] - \left(C_{w1}f_w - \frac{C_{b1}}{\kappa^2}f_{t2}\right)\left(\frac{\widetilde{\nu}}{l_{DES}}\right)^2$$

$$\blacktriangleright \text{ For } \textit{k-}\omega^{**}\textit{ model: } l_{_{DES}} = \min\left(k^{^{1/2}} / \beta\omega, C_{_{DES}} \times \Delta\right)$$

 \rightarrow Augmentation of the dissipation term in the *k* transport equation:

$$\frac{D\rho k}{Dt} = \tau_{ij} \frac{\partial U_j}{\partial x_i} - \frac{\rho k^{3/2}}{l_{DES}} + \frac{\partial}{\partial x_j} \left[\left(\mu + \sigma^* \mu_t \right) \frac{\partial k}{\partial x_j} \right]$$

> Improvement of I_{RANS} adopted from equilibrium turbulence within DES using I_{OES} in inertial regions

→→DES/OES approach

$$l_{OES} = \frac{k^{1/2}}{C_{\mu}\omega}$$

DDES – avoid Modeled Stress Depletion

Hybrid Turbulence Modelling

Delayed Detached Eddy Simulation:
•URANS (near body surface)
•LES (shear layer, detached flow.

Turbulence length scale in URANS part : *loes* DDES-OES k-*ω*-version

k: turbulent kinetic energy 1/:: turbulence time scale
SST: Shear-Stress-Transport limiter of eddy viscosity
OES: Organised Eddy Simulation
DDES-OES

$$l_{DDES} = l_{RANS} - f_d \max(0, l_{RANS} - C_{DES} \times \Delta)$$

A = max($\Delta x, \Delta y, \Delta z$)

$$d = \max(\Delta x, \Delta y, \Delta z)$$

$$f_d = \begin{cases} 0, \text{ close to wall} \\ 1, \text{ far from wall} \end{cases}$$

$$r_d = \frac{\nu + \nu_t}{S_{ij}\kappa^2 d^2} \quad f_d = 1 - tanh[(8r_d^3)]$$

$$\frac{Dk}{Dt} = P_k - C_\mu k\omega + \text{div } [(\nu + \sigma_k \nu_t) \underline{\text{grad }} k]$$

$$\frac{D\omega}{Dt} = \gamma \frac{P_k \omega}{k} - \beta \omega^2 + \text{div } [(\nu + \sigma_\omega \nu_t) \underline{\text{grad }} \omega]$$

$$+2 (1 - F_1) \sigma_{\omega 2} \frac{1}{\omega} \underline{\text{grad }} k \cdot \underline{\text{grad }} \omega$$

$$\omega = \frac{\varepsilon}{\beta^* k} \qquad \nu_t = \frac{k}{\omega}$$

Spalart, Stelets, J. Flow Turb. Combust, 2000 (DES), (DDES) 2004- 2006 Menter, (SST) 1992, Menter & Kunz, (DDES) 2004

Braza, Hoarau (OES) 1998-2000 Braza, Bourguet, Hoarau 2008 - 2012

Stochastic forcing in turbulent transport equations

Upscale turbulence modelling - inverse turbulence casacade -Collaboration with J. Hunt - UCL and IMFT

Crucial to predict the instability modes in FSI and acoustics

Buffet instability capturing

Grossi, Braza et al, AIAA J, 2014

Proper Orthogonal Decomposition

Karhunen-Loève expansion (Karhunen 1946)

$$v(\mathbf{x},t) pprox \sum_{i=1}^{N_{pod}} a_i(t) \Phi_i(\mathbf{x})$$

Time/space separation : stationarity, neglecting correlations at non-zero time-lag

At IMFT : Faghani 1996, Borée 2000, Barthet 2003, Perrin 2005, Favier 2007, El Akoury 2007,... in incompressible case

Spatial modes Φ_i(x), iterative solutions of an optimisation problem

$$\Phi_{i+1}(\mathsf{x}) = \arg \max_{\phi \in L^2(\Omega)} \left\langle (v - \Pi_i v, \phi)^2 \right\rangle$$
 with $\|\phi\|^2 = 1$

 $<\cdot>$ ensemble average (time average, ergodicity), (\cdot, \cdot) spatial inner product, Π_i : projector on span $\{\Phi_1, ..., \Phi_i\}$

• Snapshot POD (Sirovich 1987) - if $N_x \gg N_t$, N_t , N_x : numbers of snapshots, space points

$$C_t(t,t') = \frac{1}{T} \int_{\Omega} v(\mathbf{x},t) v(\mathbf{x},t') d\mathbf{x} \rightarrow \text{eigenfunctions } \Psi_i$$

$$\Phi_i(\mathbf{x}) = \frac{1}{T\lambda_i^{1/2}} \int_T v(\mathbf{x}, t) \Psi_i(t) dt \text{ for } \lambda_i > 0$$

T : sampling time interval, $\lambda_1 \geq \lambda_2 \geq \ldots \geq 0$: C_x and C_t eigenvalues

Phase I: POD modes evaluation

Energy of the POD modes

Selection of the last 30 modes to reconstruct velocity fluctuations $u_i(\vec{x},t) = \sum a^{(n)} \phi_i^{(n)}(\vec{x},t)$

for the stochastic forcing :

 $\alpha^{(n)}(t)$: POD temporal coefficients functions

$$\Phi_i(x,t)$$
 : space

Structure of Modes from low order to high order

Modes 1-6 : are associated with the organised structures :

Low-energy POD modes :

Affect the shear-layers and interact with shock wave (buffet)

Can be used to produce small turbulent kinetic energy – forcing

That will act in the regions of interest and will not affect the irrotational

Modes 74 and 75 the filling of the shear-layer by smaller structures and the interaction within the shock

Modes 82 and 83

Stochastic forcing to keep thin the shear layer interfaces

Criterion 1

S

$$\frac{\mathrm{D}k}{\mathrm{D}t} = P - \varepsilon + \frac{\partial}{\partial x_i} \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_i} \right] + S_{\text{POD}}$$

$$\frac{\mathrm{D}\varepsilon}{\mathrm{D}t} = \frac{\varepsilon}{k} \left(C_{\varepsilon 1} P - C_{\varepsilon 2} \varepsilon \right) + \frac{\partial}{\partial x_i} \left[\left(\nu + \frac{\nu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_i} \right] + \frac{C_{\varepsilon 2} S_{\text{POD}}^2}{k_{\text{amb}}}$$

$$POD = \tilde{r} C_{\mu} \left(k_{\text{amb}}^2 + k_{\text{POD}}^2 \right) / \nu_{t\infty} \quad k_{\text{amb}} = k_{fs} U_{\infty}^2, \text{ and } k_{fs} = 3/2 \text{ Tu}^2,$$

FIGURE 4.4 – Visualisation instantanée de la divergence du champ de vitesse.

Influence of the forcing on the wall pressure averaged coefficient

Green line: without forcing: larger amplification of the shock motion

Comparison of the phase-averaged velocity profiles accross the TNT interface : with (red) and without forcing

with forcing

Comparison div(V): effect of the stochastic forcing in OES:

- Correct shock amplitude motion
- Thinner interface

Figure 5: Schlieren photograph of the shock-induced flow separation on (Courtesy of National Physical Laboratory, England; photo by D. W. Holder)

OES modelling: Capturing of buffet frequency, shear-layer and von Karman mode, Re= 3 Million

The present stochastic forcing is efficient to keep TNT interfaces thin.

The amplitudes of the low-frequency oscillations and the shock motion (buffet) become closer to the physical experiments

The approach is applicable in hybrid RANS-LES and LES

NSMB code - Navier-Stokes Multi-Block

The NSMB consortium

•<u>Research Institutes</u>:

KTH, CFS Eng., EPFL, ETH, Uni Karlsruhe, IMFT, IMFS, CERFACS

•<u>Industries</u>:

AIRBUS-FR, CFS Eng., Ruag Aerospace-Swiss, SMR Eng., SMARTFLOW-FR

- •Governing Equations and Numerical schemes
- •Compressible and incompressible flows
- •CHIMERA grids
- •ALE, Aritrary Lagrangian-Eulerian method for moving/deformable grids
- •Grid deformation
- •Interfacing with structural analysis
- •Numerical schemes : explicit, implicit (dual time-stepping), Mulltigrid
- •High-order temporal (Runge-Kutta) and spatial schemes (6th-order advective, W-ENO, etc..)
- •<u>Turbulence modelling:</u>

NSMB code - Navier-Stokes Multi-Block

• <u>Turbulence modelling:</u>

*LES, URANS (standard and advanced) *Hybrid approaches, especially DDES, (Delayed Detached Eddy Simulation)

*Stochastic forcing - inverse turbulence cascade - upstream turbulence modelling capturing thin turbulent/non-turbulent interfaces -collaboration with Prof. J. Hunt, Univ.Coll. Lond./IMFT

WP5: External Flows-Wing The V2C configuration by Dassault Aviation

Turbulence modelling and simulation by IMFT: D. Szubert, F. Grossi, I. Asproulias, Y. Hoarau^{*}, M. Braza

Institut de Mécanique des Fluides de Toulouse - IMFT UMR CNRS-INPT-UPS 5502

Introduction

V2C Laminar Transonic Airfoil

Designed by Dassault Aviation. Laminar boundary layer over a long distance upstream of the shock-BL-Interaction: Minimisation of drag Maximum Lift/Drag.

Objectives

Transition location effects

steady, unsteady shock shock position, shock strength flow separation Lift/Drag URANS-OES versus DDES

Buffet Dynamics

OES, DDES

No. cells		No	
Upper surface	234	1st ce	
Lower surface	192	y+ av	
Trailing edge	42	y+ ma	
Normal direction	192		
Wake direction	192		
Total in (x,y):	163 584 +128 cells spanwis		

Normal dista	inces
1st cell height	5e-7 c
y+ average	0.259
y+ maximum	0.535

Buffet Map

2D URANS SST

Transition Study-Steady

1 22	Г					
x _t /c	fully turb.	0.10	0.20	0.30	0.40	0.50
x _s /c	0.523	0.532	0.541	0.552	0.564	0.574
x _b /c	0.533	0.541	0.547	0.556	0.566	0.575
l _b /c	0.011	0.024	0.047	0.068	0.085	0.094
x,/c	0.911	0.925	0.946	0.965	0.566	-
C,	0.8873	0.9174	0.9556	0.9919	1.029	1.061
С _D х 100	2.080	2.069	2.102	2.171	2.268	2.365
L/D	42.7	44.3	45.5	45.7	45.4	44.9

Transition Study-Unsteady

Contours of RMS of pressure fluctuations

• Delay of transition: increased pressure fluctuation levels within the shock region and near the trailing edge, wider shock-motion range

OPTIMISATION OF THE TRANSITION LOCATION Collaboration INRIA (R. Duvigneau - J.A. Desideri) avec IMFT

Figure 1: Statistical model for the lift-to-drag ratio w.r.t. the tripping location (steady case), for iteration 0 (left) and iteration 2 (right)

Contribution R. Duvigneau - INRIA avec résultats de simulation IMFT

3D Transonic buffet by DDES

Instantaneous Q-criterion isosurfaces for $Q(c/U)^2 = 75$

Instantaneous contours of divU

t*=4.10

43

Buffet Fluctuations

URANS vs DDES (medium mesh)

3D Laminar Wing

Computations with k- ω and and γ -R θ

Prediction of the unsteady aerodynamic loads for the problem of acoustic noise

> in a generic configuration of a landing gear

'The tandem cylinders'

Reynolds number 165,000

A test-case of the European research program ATAAC:

Advanced Turbulence Simulations for Aerodynamic Application Challenges, April 2009- August 2012

coordinated by DLR - Germany

Experimental setup at Nasa Langley Rsearch Center

- Subcritical flow regime
- Experiments force transcritical flow with **transition strips** $q=50^{\circ} 60^{\circ}$

Experiments performed at <u>NASA-Langley Research</u> <u>Center</u>

L.N. Jenkins, M.R. Khorrami, M.M. Choudhari, C. B. McGinley 2005, 2006, AIAA Conf. Reno

Numerical Approach Pilot EU project PRACE – CINES - CEA

Computational domain

Code: NSMB -Navier Stokes Multi Block

Numerical Scheme: Time Steps: MPI-Architecture:

Number of CPUs:

Central- 2nd Order M. $\Delta t = 0.01$ and $\Delta t = 0.0005$ SGI ALTIX ICE 512, 1024, 4096

Grid size: 12,5 mio. points

Grid provided by **NTS** (New Technologies and Services), St. Petersburg, Russia-M. Strelets – M. Shur

Simulations performed in supercomputers JADE of the CINES Centre Informatique National de l'Enseignement Supérieur, Montpellier, France and on CURIE – CEA (PRACE MPI European initiative)

Zoom of the grid near the bodies

Mandatory grid provided by NTS - M. Strelets St - Petersbourg - partner in the ATAAC European program and coordinator of test-case

12

3

0 -3 -6 -9 -12 -15

source of aerodynamic noise. Tandem Cylinders - landing gear

Overview of the iso-velocity contours field and of velocity profiles and spectra

Results

- thin boundary layer dynamics
- turbulence wraps around 2nd cylinder
- high unsteadiness

Mean velocity streamlines in comparison with exp. field

Good agreement **PIV- CFD DDES-OES**

CPU-time: ~ 100.000 CPUh

"**Real" time:** ~ 1.5 weeks

DYNAMIC CASE : 2nd CYLINDER FREELY MOVING

FIGURE: ATAAC configuration : L = 3.7d and Re = 166000

FIGURE: Free vibration of the downstream cylinder

ALE approach for coupling

In NSMB code

$$m^* \ddot{y}^* + b^* \dot{y}^* + k^* y^* = c_y(t^*)$$

Equation de la dynamique

Pour 2 degrés de liberté :

$$m \ddot{x}(t) + c \dot{x}(t) + k x(t) = F_x(t) m \ddot{y}(t) + c \dot{y}(t) + k y(t) = F_y(t)$$
(6)

m la masse, c l'amortissement et k la raideur de la structure

$$F_{i}(t) = C_{i}(t) \frac{1}{2} \rho D u_{i}(t)^{2} \text{ avec } C_{i}(t) \text{ le coefficient de } \begin{cases} \text{ trainée} \\ \text{ portance} \end{cases}$$
(7)

Soit q(t) le vecteur position, sous forme matricielle :

$$[M] \ddot{q}(t) + [C] \dot{q}(t) + [K] q(t) = F(t)$$
(8)

m, mass, a, damping et r, stiffness of the tube of the bundle

PSD estimate as function of St on the monitor point 1 of the 1st cyliner, with St_{cri} =10

POD reconstruction -Reduced Order Modelling Vibratory motion of the second cylinder

Prediction of fluid-elastic instability at high Reynolds number in a cylinders bundle

National research program **ANR** 'BARESAFE': Simulation of Safety Barrier Reliability

ANR : « Agence Nationale de Recherche » - France

Tuble bundle

Results from the publication: Shinde, Braza, Longatte et al, JFS 2014, Vol. 47 - one of the most downloaded JFS articles

Characteristic

- 15 cylinders + 10 half-cylinders
- reduced step $P^* = 1,5$
- $Re_{\infty} = 20\ 000$, $Re_{it.} = 60\ 000$ (it=inter-tube)

 $OES-k-\epsilon - 2D$

Drag and Lift coefficient (experimental data in dashed line)

65

Iso-surface of vorticity (flow direction)

DDES-k-@-OES

Iso-surface of vorticity (spanwise direction)

Fig. 13. 1-DOF response of the central cylinder for different values of Scruton number (*Sc*) and reduced velocity (U^*). (a) Variation of Strouhal number (St) in different cases, (b) frequency spectra of the central cylinder displacement for *Sc*=0.0127, (c) frequency spectra of the cylinder displacement for Scruton number *Sc*=1 and (d) frequency spectra of the displacement for Scruton number *Sc*=5. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

2D versus 3D simulations regarding comparison with exps (DIVA configuration - CEA

Fig. 14. Comparison of the dynamic response PSD between the experiment and the 2-D simulations, k-ω-BL-OES model.

Fig. 15. Comparison between the 2D simulations carried out by the $k-\omega$ -OES model and 3D simulations carried out by the DDES- $k-\omega$ -OES model. (a) and (b) Time-histories of the cylinder displacement and of the lift coefficient respectively. (c) and (d) Spectra of the above time-histories. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Conclusions

•Reliable prediction of the unsteady loads and fluid-elastic instabilities

•Providing good estimation even in 2D (usefulness for pre-design)

•Accurate prediction of the fluid forces and of their fluctuations in static and moving configurations

• Improvement of URANS and of DDES by OES modeling including stochastic forcing

•Hybrid URANS-LES: DDES approaches recommendable for more refined design

•Reliable Reduced order Modelling based on POD reconstruction applied to moving/deformable structures
