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Abstract: Our midterm purpose is to develop 2-level Schwarz solution algorithms
for solving the compressible Navier-Stokes equations. Before this we consider the
introduction of an algebraic coarse grid based on deflation or balancing method on
diffusion-convection models. We study the issue of the consistency of the coarse grid
and its influence on scalability.
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1 Introduction

The solution of steady and unsteady compressible Navier-Stokes equations is produced rather efficiently
by applying an additive Schwarz algorithm combined with an ILU local preconditioner, see [1]. This al-
gorithm is of rather good numerical scalability, i.e. a computation with 2n processors and 2N unknowns
is run in about the same time as a computation with n processors and N unknowns. But with the avail-
ability of a large number of cores, it appears necessary to improve this scalability towards a quasi perfect
one. Historically, the additive Schwarz method was early identified as a no-scalable method for elliptic
problems, and S. Brenner shown [2] that adding a coarse finite element grid in the preconditioner can
help recovering a perfect scalability. This idea is inspired by the Multigrid method and the control of
the convergence of both grids to a common continuous limit. In fact, for Domain Decomposition Meth-
ods, building the coarse grid in such a way that it approximates the continuous solution is not always
mandatory for scalability. Further, consistent coarse grids are difficult to build. An attempt is refered as
smoothed aggregation methods.

The proposed study examines the influence of the coarse grid consistency on convergence and scal-
ability for Poisson and convection-diffusion problems.

2 Model problems and baseline Schwarz method

The two test problem we concentrate on are the following ones. The first is inspired by a pressure-
correction phase in Navier-Stokes, and expresses as a Neumann problem with strongly discontinuous
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coefficient and writes:

−∇ · 1
ρ

∇u = RHS in Ω
∂u
∂n

= 0 on ∂Ω u(0) = 0.

in which the well-posedness is fixed with a Dirichlet condition on one cell.
The second is a classical diffusion-convection problem:

−ν∇ ·∇u+
∂u
∂x

= RHS in Ω
∂u
∂n

= 0 for x = 0,x = 10 u = 0 for y = 0,y = 1.

The third model (study in progress) is the compressible Navier-Stokes system.

Our discrete model relies on a vertex-centered formulation expressed on a triangulation. Let us
assume that the computational domain Ω is split into two sub-domains, Ω1 and Ω2 , with an intersection
Ω1∩Ω2 with a thickness of at least one layer of elements. The Additive Schwarz algorithm is written in
terms of preconditioning, as M−1 = ∑

2
i=1 A−1

|Ωi
where A−1

|Ωi
holds for the Dirichlet problem on sub-domain

Ωi. The preconditioner M−1 can be used in a Krylov subspace method. In this paper, in order to keep
some generality in our algorithms, we use a conjugate gradient for the symmetric cases and a GMRES
for non-symmetric ones. In the Additive Schwarz-ILU version, the exact solution of the Dirichlet on
each sub-domain is replaced by the less costly Incomplete Lower Upper (ILU) approximate solution.

3 Coarse grid system

We consider a fine-grid approximation space Vn of dimension n with basis functions (φi)i, giving a
convergent approximation of the exact PDE solution uexact , in short:

Au = b ⇒ ∑uiφi→ uexact as n→ ∞.

We assume we have a coarse basis (Φi)i defining a coarse approximation space VN = [Φ1 · · ·ΦN ]. The
operator Z the column of which are the component of Φi in Vn is an extension operator from V0 in V and
ZT a restriction operator from V in V0. Then the so-called Galerkin-MG coarsening gives the following
coarse system:

ZT AZ U = ZT b.

An interesting question is the convergence of the coarse system: we assume that a constant ratio between
n and N is maintained as n→ ∞. Does the coarse grid approximation produces or not a convergent
approximation of the exact solution in the following sense:

∑(ZU)iφi→ uexact as n→ ∞.

3.1 Smooth and non-smooth coarse grid

The coarse grid is then defined by set of basis functions. A central question is the smoothness of
these functions. According to Galerkin-MG, smooth enough functions provide consistent coarse-grid
solutions. Conversely, DDM methods preferably use the characteristic functions of the sub-domains,
Φi(x j) = 1 si x j ∈ Ωi. In the case of P1 finite-elements, for example, the typical characteristic basis
function corresponds to setting to 1 all degrees of freedom in sub-domain. According to [6], the resulting
coarse system

UH(x) = ΣiUiΦi(x) ;
Z

∇UH
∇Φi =

Z
f Φi ∀i



Figure 1: Left: characteristic coarse grid basis function. Right: smooth coarse grid basis function.

Figure 2: Accuracy of the coarse grid approximation for a Poisson problem with a sin function (of
amplitude 2.) as exact solution. Left: coarse grid solution with the characteristic basis (amplitude is
0.06). Right: coarse grid solution with a smooth basis (amplitude is 1.8).

produces a solution UH
charac which does not converge towards the continous solution U when H tends to

0.
In order to build a better basis, we need to introduce a hierarchical coarsening process from the fine

grid to a coarse grid which will support the preconditioner. Level j is made of N j macro-cells C jk, i.e.
G j = ∪N j

k=1C jk. Transfer operators are defined between successive levels (from coarse to fine):

P j
i : G j→ Gi P j

i (u)(Ck′i) = u(Ck j) with Ck′i ⊂Ck j

Following [6] we introduce the smoothing operator:

(Lku)i = ∑
j∈N (i)∪{i}

meas( j) u j/{ ∑
j∈N (i)∪{i}

meas( j)}

where N (i) holds for the set of cells which are direct neigbors of cell i. The smoothing is applied at
each level between the coarse level k defining the characteristic basis and the finest level.

Ψk = (L1P2
1 L2 · · ·Pp−1

p−2 Lp−1Pp
p−1)Φk.

The resulting smooth basis function is compared with the characteristic one in Figure 2. The incon-
sistency of the characteristic basis and the convergence of this new smooth basis is illustrated by the
solution of a Poisson equation with a sin function as exact solution, Figure 3.

Conversely, first-order hyperbolic problems, like advection, allow both types of basis. This is il-
lustrated by the solution of the diffusion convection problem with a Peclet of 100, and an upwind fine
approximation. For the fine approximation the mesh numerical Peclet is 1/2 and the approximation so-
lution is free of oscillation, Fig.3a. The characteristic basis produces a not so bad approximation (Fig.3b)
We force the smooth coarse basis to satisfy the Dirichlet boundary conditions. Since the mesh numerical



Figure 3: Accuracy of the coarse grid approximation for an advection-diffusion problem: (a) fine grid
solution, (b) coarse solution with characteristic basis, (c) coarse solution with smooth basis,(d) coarse
solution with smooth basis and numerical viscosity.

Peclet is now much larger, the solution oscillates (Fig.3c). We have tried to moderate the oscillation by
means of a coarse-grid numerical viscosity, built with the difference between the coarse mass matrix and
its lumped version (sum of each line concentrated on the diagonal term)(Fig.3d).

4 Introduction of coarse grid

There are many ways to introduce the coarse grid system for accelerating a Schwarz algorithm, see
for example [4]. The deflation method [7] splits the problem into a coarse one solved once for all and
an (ill-posed) complementary one. In the Balancing Decomposition (BD) as in [5, 3], the coarse and
complementary problem are resolved iteratively, with some extra cost with respect to deflation. In the
present paper we use the BD approach of [8]. Further, a coarse grid can be introduced accelerating the
solution in each subdomain.

5 Some preliminary outputs

The smooth-coarse grid has been compared with the characteristic one inside a BD preconditioner.
The smooth-coarse option is faster and more scalable (Tab.1) than the characteristic one for the elliptic
model. The difference is not clear for the Peclet-100 advection-diffusion model. One difficulty is the
insufficient local resolution by ILU which induces a plateau in the convergence. The introduction of
coarse-grid dissipation did not carry any improvement.

The smooth-coarse grid has been introduced at the same time as (1) a coarse grid and (2) a domain-
by domain medium grid. Only elliptic cases have been run yet. The improvement is important and
compares well with the case of a two-level Schwarz with exact solution in subdomains (Tab.2). Further
results are in progress, in particular with an Euler model, and will be presented at the conference.
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Table 1: Scalability of the two-level Additive-Schwarz-ILU method

# Cells 10K 20K 47K 94K

Domains 12 28 66 142
# Cells/domain 833 714 712 661
Char. basis (# it.) 480 546 750 810
Smooth basis (# it.) 400 391 444 491

Table 2: Scalability for the Schwarz, two-level Schwarz and three level Schwarz-ILU
Method # cells # sub-domains # medium basis funct Iterations

Schwarz 40,000 4 320
Schwarz 160,000 16 451
Two-level Schwarz 40,000 4 130
Two-level Schwarz 160,000 16 212
Three level ILU-Schwarz 40,000 4 64 164
Three level ILU-Schwarz 160,000 16 256 176
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