
Anisotropic Goal-Oriented Mesh Adaptation
for Unsteady Viscous Compressible Flows

A. Belmeb, F. Alauzeta, A. Dervieuxb

aINRIA, Projet Gamma, Domaine de Voluceau, Rocquencourt, BP 105,
78153 Le Chesnay Cedex, France.

bINRIA, Projet Tropics, 2004 route des lucioles - BP 93,
06902 Sophia Antipolis Cedex, France

Abstract

Key words: Viscous compressible flow, goal-oriented mesh adaptation, anisotropic mesh adaptation, adjoint, metric

1. Introduction

Engineering problems frequently require computational fluid dynamics (CFD) solutions with functional outputs of specified
accuracy. The computational resources available for these solutions are often limited and errors in solutions and outputs are
difficult to control. CFD solutions may be computed with an unnecessarily large number of mesh vertices (and associated high
cost) to try to ensure that the outputs are computed within a required accuracy. One of the powerful methods for increasing the
accuracy and reducing the computational cost is anisotropic mesh adaptation, the purpose of which is to control the accuracy of
the numerical solution by changing the discretization of the computational domain according to mesh size and mesh directions
constraints. This technique allows (i) to automatically capture the anisotropy of the physical phenomena, (ii) to substantially
reduce the number of degrees of freedom, thus impacting favorably the CPU time, and (iii) to access to high order asymptotic
convergence.

The objective of this paper is to propose a time-accurate anisotropic mesh adaptation method for functional outputs of Navier-
Stokes calculations.

Pioneering works have shown a fertile development of Hessian-based or metric-based methods [17, 37, 35, 24, 38, 11, 15,
19, 22, 26] which rely on an ideal representation of the interpolation error and of the mesh. The “multiscale” version relies on
the optimization of the Lp norm of the interpolation error [29]. It allows to approximate discontinuous solutions with higher-
order convergence [33]. However, these methods are limited to the minimization of some interpolation errors for some solution
fields, the “sensors”, and do not take into account the PDE being solved. If for many applications, this simplifying standpoint
is an advantage, there are also many applications where Hessian-based mesh adaptation is far from optimal regarding the way
the degrees of freedom are distributed in the computational domain. Indeed, Hessian-based methods aim at controlling the
interpolation error but this purpose is not often so close to the objective that consists in obtaining the best solution of the PDE.
Further, in many engineering applications, a specific scalar output needs to be accurately evaluated, e.g. lift, drag, heat flux, and
Hessian-based adaptation does not address this issue.

In contrast, goal-oriented mesh adaptation does focus on deriving the best mesh to observe a given output functional. Goal-
oriented methods result from a series of papers dealing with a posteriori estimates (see e.g. [10, 39, 21, 38, 36, 40, 25]).
However, extracting informations concerning mesh anisotropy from an a posteriori estimate is a difficult task. Starting from a
priori estimates, Loseille et al. proposed in [32] a fully anisotropic goal-oriented mesh adaptation technique for steady problems.
This latter method combines goal-oriented rationale and the application of Hessian-based analysis to truncation error.

Mesh adaptation for unsteady flows is also an active field of research and brings an attracting increase in simulation efficiency.
Complexity of the algorithms is larger than for steady case: for most flows, the mesh should change during the time interval.
Meshes can be moved as in [9], pattern-split [14, 27], locally refined [7], or globally rebuild as in [2, 23]. Hessian-based
methods are essentially applied with a non-moving mesh system. In this paper, we do not account for time discretization error
but concentrate on spatial error in unsteady simulations. A mesh adaptation fixed-point method was proposed in [2]. The
Hessian criteria at the different time steps of a sub-interval are synthesized into a single criterion for these steps with the metric
intersection [2, 23]. A mesh-PDE solver iteration is applied on time sub-intervals. Extension to Lp error estimator [33] requires:
(i) space-time L∞ − Lp error analysis, (ii) a global fixed-point algorithm to converge the mesh adaptation. This extension has
been proposed in [7].In [12], we combine the fully anisotropic goal-oriented mesh adaptation method of [32] and the global
fixed-point advances of [7] for unsteady Euler flow.

Preprint submitted to Journal of Computational Physics March 28, 2012

The object of the present work is the extension of the [12] goal-oriented global fixed point to the Navier-Stokes system.
To this end, ...

We start this paper with...

2. Continuous mesh model

2.1. Mesh parametrization

We propose to work in the continuous mesh framework, introduced in [30, 31]. The main idea of this framework is to model
continuously discrete meshes by Riemannian metric spaces. It allows us to define proper differentiable optimization [1, 8], i.e.,
to use a calculus of variations on continuous meshes which cannot apply on the class of discrete meshes. This framework lies in
the class of metric-based methods.
A continuous mesh M of computational domain Ω is identified to a Riemannian metric field [13] M = (M(x))x∈Ω. For all x of Ω,
M(x) is a symmetric 3 × 3 matrix having (λi(x))i=1,3 as eigenvalues along the principal directions R(x) = (vi(x))i=1,3. Sizes along

these directions are denoted (hi(x))i=1,3 = (λ−
1
2

i (x))i=1,3 and the three anisotropy quotients ri are defined by: ri = h3
i (h1h2h3)−1.

The diagonalisation ofM(x) writes:

M(x) = d
2
3 (x)R(x)


r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

 tR(x), (1)

The node density d is equal to: d = (h1h2h3)−1 = (λ1λ2λ3)
1
2 =

√
det(M). By integrating the node density, we define the

complexity C of a continuous mesh which is the continuous counterpart of the total number of vertices:

C(M) =

∫
Ω

d(x) dx =

∫
Ω

√
det(M(x)) dx.

Given a continuous mesh M, we shall say, following [30, 31], that a discrete mesh H of the same domain Ω is a unit mesh
with respect to M, if each tetrahedron K ∈ H , defined by its list of edges (ei)i=1...6, verifies:

∀i ∈ [1, 6], `M(ei) ∈
[

1
√

2
,
√

2
]

and QM(K) ∈ [α, 1] with α > 0 ,

in which the length of an edge `M(ei) and the quality of an element QM(K) are defined as follows:

QM(K) =
36

3
1
3

|K|
2
3
M∑6

i=1 `
2
M

(ei)
∈ [0, 1], with |K|M =

∫
K

√
det(M(x)) dx,

and `M(ei) =

∫ 1

0

√
tabM(a + t ab) ab dt, with ei = ab.

We choose a tolerance α equal to 0.8.
We want to emphasize that the set of all the discrete meshes that are unit meshes with respect to a unique M contains an

infinite number of meshes.

2.2. Continuous interpolation error

Given a smooth function u, to each unit meshH with respect to M corresponds a local interpolation error |u−Πu|. In [30, 31],
it is shown that all these interpolation errors are well represented by the so-called continuous interpolation error related to M,
which is expressed locally in terms of the Hessian Hu of u as follows:

(u − πMu)(x, t) =
1
10

trace(M−
1
2 (x) |Hu(x, t)|M−

1
2 (x))

=
1
10

d(x)−
2
3

3∑
i=1

ri(x)
2
3 tvi(x) |Hu(x, t)| vi(x), (2)

where |Hu| is deduced from Hu by taking the absolute values of its eigenvalues and where time-dependency notations “, t)” have
been added for use in next sections.

2

2.3. Mesh convergence
Convergence analysis for unstructured meshes is generally made difficult by the poor assumptions that are made concerning

the sequence of meshes considered. In the present paper, we a family of meshes Mh described as refinements of a given one in a
unusual way. Indeed, this is formalised in terms of metrics. Any mesh Mh of this family is a unit mesh for a metricMh which is
proportional to a reference oneM1:

Mh =
1
h2M1 .

Further, we assume that h is large enough, in such a way that, as far as the normalized metric M1 is smooth enough, the
variation of mesh size between two neihboring cells can be made as small as we wish. At element scale, the mesh is a uniform
mesh. Lastly, for simplicity, we assume that we are able to build each unit mesh in such a way that it is made of isoscele triangles
with symmetry axes aligned with the stretching direction, in order to avoid obtuses angles, see Fig. 1.

3. A priori finite-element analysis

A priori estimates have been derived very earlier, in H1(Ω) (“projection property”), and in L2(Ω) (Aubin-Nitsche analysis),
but only by means of inequalities, and the leading term of the error is generally not exhibited (only bounds of it are proposed).
In this section, we try to go a little further than the standard a priori analysis. We concentrate on the usual Poisson problem, set
in a polyhedral n-dimensional domain Ω for the sake of simplicity:

− ∆u = f on Ω ; u = 0 on ∂Ω. (3)

Its variational form writes:

a(u, v) =

∫
Ω

∇u.∇v dx = (f , v) ∀ v ∈ V (4)

where V holds again for the Sobolev space V = H1
0(Ω) = {u ∈ L2(Ω),∇u ∈ (L2(Ω))n, u|∂Ω = 0}. In order to derive an a priori

estimate, we assume that the solution u has some extra regularity:

u ∈ V = V ∩ H2(Ω).

We observe that u is therefore the solution of:

a(u, v) = (f , v) ∀ v ∈ V.

Let Th be a mesh of Ω made of simplices, and let Vh be the subspace of V of continuous functions that are P1 on each element
of the mesh. The discrete variational problem is thus defined by:

a(uh, vh) = (f , vh) ∀ vh ∈ Vh (5)

Let us introduce the linear interpolation Πh from vertices values:

Πh : V → Vh ; v 7→ Πhv such that Πhv|T is affine ∀ element T and Πhv|i = v(xi)∀i vertex .

The approximation error in the sequel will be split into two components:

uh − u = uh − Πhu + Πhu − u (6)

where we recognize in the first difference Πhu − u the interpolation error, while we shall refer to the first difference Eh = uh −Πhu
as the implicit error. It is useful to remark that the discrete statement is equivalently written:

a(uh,Πhϕ) = (f , Πhϕ) ∀ ϕ ∈ V. (7)

Combining with continuous and discrete systems we get :

a(Πhu − uh,Πhϕ) = a(Πhu,Πhϕ) − a(uh,Πhϕ) = a(Πhu,Πhϕ) − (f ,Πhϕ) = a(Πhu,Πhϕ) − a(u,Πhϕ)

which gives:

a(Eh,Πhϕ) = a((u − Πhu), Πhϕ) ∀ ϕ ∈ V. (8)
3

3.1. 2D Truncation error analysis

We concentrate in this section on analysing the right-hand side of Estimation (8), that is:

< ∇(u − Πhu),∇Πhϕ > (9)

We assume we are in the limit conditions of mesh convergence described in Sec. 2.
In such a extremely regular mesh, the main part of an approximation error can show compensations between two neighboring

elements. For a smooth function u, the approximate gradient ∇Πhu can be of first order accuracy on a given isoscele triangle
T+ = ABC,CA = CB, while some of second order convergence can be obtained on the union of this triangle with the triangle T−
symmetric with respect to the basis AB (cf. Figure 1).

T_

T+

A

C

B

C'

Figure 1: Superconvergent molec In case of stretching, the basis is smaller that the other sides.ule for a vertical derivative

Decomposing the previous Estimate (8) into an integral on each element leads to:

< ∇(u − Πhu),∇Πhϕ > =

∫
Ω

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ

)
dx

=
∑

T,element

∫
T

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ

)
dx

where the sum Σ is taken over any element T of the mesh. Restricting to the integral over T for xIncaseo f stretching, thebasisissmallerthattheothersides.-
terms contribution and applying a Green formula we get:∫

T

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ

)
dx =∫

∂T
(u − Πhu)(

∂

∂x
Πhϕ) · nT

x dσ −
∫

T

(
(u − Πhu)

(
∂2

∂x2 Πhϕ

))
dx

where by nT
x we denoted the x component of the outward normal to the triangle T : nT = (nT

x , n
T
y). The same analysis holds for y

terms. We observe that since Πhϕ is P1 on T , the last integral in the right-hand side vanishes. Further, the derivative in the first
integral is constant, hence: ∫

∂T
(u − Πhu)(

∂

∂x
Πhϕ) · nT

x dσ =

(
∂

∂x
Πhϕ

)
|T

∫
∂T

(u − Πhu) · nT
x dσ.

Considering we are in the situation picturized in Figure 1, then the integral over ∂T applies to the two triangles T+ and T− with

4

Figure 2: Molecule for a vertical derivative

edge e as a common edge. We observe that the sum of integrals along e provided by the two triangles gives:(
∂

∂x
Πhϕ

)
|T+

∫
∂T+∩e

(u − Πhu) · nT+
x dσ +

(
∂

∂x
Πhϕ

)
|T−

∫
∂T−∩e

(u − Πhu) · nT−
x dσ

= (
∂

∂x
Πhϕ|T+

−
∂

∂x
Πhϕ|T−)

∫
∂T+∩e

(u − Πhu) · nT+
x dσ .

Remembering that Πhϕ is continuous along any edge e, we can write:

(
∂

∂x
Πhϕ|T+

−
∂

∂x
Πhϕ|T−) · n

T+
x

∫
∂T+∩e

(u − Πhu)dσ =

(
∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T−)
∫
∂T+∩e

(u − Πhu)dσ . (10)

In the case of a regular mesh as in Figure 1, the two terms of the difference (∂
∂nT+

Πhϕ|T+
− ∂

∂nT+
Πhϕ|T−) are derivatives evaluated

at mid-altitudes:

Lemma 3.1. For a regular enough mesh, the term η−1
(

∂
∂nT+

Πhϕ|T+
− ∂

∂nT+
Πhϕ|T−

)
is consistent with a second normal derivative

weighted by the inverse of mean altitude of the two triangles:

η−1
(
∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T−

)
= ...

�

Proof:
As explained in Sec.”Mesh Convergence”, we consider that the mesh is locally made of identical isoscele triangles, with an

altitude aligned with symmetry axis of length η and with basis (orthogonal to axis of symmetry) of length ξ. In case of stretching,
the basis is smaller that the other sides. A couple of neighboring triangles may have a common basis (Fig.1) or a common lateral
side (Fig.2).

5

We analyse the second case, remarking that it somewhat involves the first one.

We first analyse how behave our geometry when the stretching, which we can represent by the quotient ξ/η, is growing, i.e.
ξ/η→ +∞. Let us denote α the small angle between the two equal sides, which therefore tend to zero. Let us introduce:

θ = (xB − xC)/ξ = (xD − xA)/ξ

We observe that:

sinα = η/ξ

cosα = |AC′|/ξ = |BD′|/ξ = 1 − θ

which shows that when stretching ξ/η tend to infinity, we have:

θ =
η2

4ξ2 + O(
η4

ξ4)

where O(η
4

ξ4)/(η
4

ξ4) is bounded.

Let us come back to the derivatives under study. It is useful to assume that the origin of axes is the center O of AB, and that
the horizontal axis is AB. We have:

xC =
1
2

(1 − 2θ)ξ ; xD =
1
2

(2θ − 1)ξ.

For high stretching and case of Fig.2, θ is small. Conversely, the case of Fig.1 gives θ = 1/2. At nodes A, B,C,D, the interpolation
Πhϕ is identical to function ϕ:

ϕA = Πhϕ(A) = ϕ(0) −
1
2
ξϕx +

1
8
ξ2ϕxx + ...

ϕB = Πhϕ(B) = ϕ(0) +
1
2
ξϕx +

1
8
ξ2ϕxx + ...

ϕC = Πhϕ(C) = ϕ(0) +
1
2

(1 − 2θ)ξϕx + ηϕy +
1
2

(
1
4

(1 − 2θ)2ξ2ϕxx + 2
1
2

(1 − 2θ)ξηϕxy + η2ϕyy

)
+ ...

ϕD = Πhϕ(D) = ϕ(0) −
1
2

(1 − 2θ)ξϕx − ηϕy +
1
2

(
1
4

(1 − 2θ)2ξ2ϕxx + 2
1
2

(1 − 2θ)ξηϕxy + η2ϕyy

)
+ ...

Denoting by C′ and D′ the feet of altitudes from (resp.) C and D, we observe that:

ϕC′ = Πhϕ(C′) = θϕA + (1 − θ)ϕB = ϕ(0) −
1
2

(1 − 2θ)ξϕx + ξ2/8ϕxx + ...

ϕD′ = Πhϕ(D′) = θϕB + (1 − θ)ϕA = ϕ(0) +
1
2

(1 − 2θ)ξϕx + ξ2/8ϕxx + ...

The non-divided differences defining the normal derivatives write:

ϕC − ϕC′ = (1 − 2θ)ξϕx + ηϕy +

(
1
8

[(1 − 2θ)2 − 1]ξ2ϕxx +
1
2

(1 − 2θ)ξηϕxy +
1
2
η2ϕyy

)
+ ...

ϕD′ − ϕD = (1 − 2θ)ξϕx + ηϕy −

(
1
8

[(1 − 2θ)2 − 1]ξ2ϕxx +
1
2

(1 − 2θ)ξηϕxy +
1
2
η2ϕyy

)
+ ...

Remembering that
(

∂
∂nT+

Πhϕ|T+
− ∂

∂nT+
Πhϕ|T−

)
= 1

η
(ϕC − ϕC′ − ϕD′ + ϕD), we get:

η−1
(
∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T−

)
= η−2

(
1
4

[(1 − 2θ)2 − 1]ξ2ϕxx + (1 − 2θ)ξηϕxy + η2ϕyy

)
.

If we are in the case of Fig.2: then ξ/η→ +∞, but:

[(1 − 2θ)2 − 1] = 4θ + 4θ2 =
η2

ξ2 + O(
η4

ξ4)

(1 − 2θ) = 1 + O(
η2

ξ2)

6

|η−1
(
∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T−

)
| ≤

ξ

η
|ϕxy| +

1
4
|ϕxx| + |ϕyy| + O(

η2

ξ2).

If we are in the case of Fig.1: then η > ξ
√

3/2 or ξ2/η2 ≤ 4/3 and θ = 1/2:

|η−1
(
∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T−

)
| ≤ |η−2

(
−1
4
ξ2ϕxx + η2ϕyy

)
| ≤ η−2

(
1
3
|ϕxx| + |ϕyy|

)
.

Ancienne version

For the proof of this result we refer to Figure 1. Suppose we denote I the middle of segment [AB] (also denoted edge e), then
ϕ(I) = (ϕ(A) + ϕ(B)) /2. Next, the difference

(
∂

∂nT+
Πhϕ|T+

− ∂
∂nT+

Πhϕ|T−
)

can be expressed by divided difference as:

∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T− =
(yI − yC′) (ϕ(C) − ϕ(I)) + (yC − yI) (ϕ(C′) − ϕ(I))

(yC − yI)(yI − yC′)
.

By hypothesis the mesh is regular enough such that the two triangles (ABC) and (ABC’) can be considered as isosceles, thus we
assume that: yC − yI = yI − yC′ = h. Replacing with h where possible and after further computation we get for the right-hand side
of the previous relation:

(yI − yC′) (ϕ(C) − ϕ(I)) + (yC − yI) (ϕ(C′) − ϕ(I))
(yC − yI)(yI − yC′)

= h ·
ϕ(C) − 2ϕ(I) + ϕ(C′)

h2 ,

where we recognize an estimation of the second order derivative from finite difference theory.
To conclude, the following estimate holds: (

∂

∂nT+

Πhϕ|T+
−

∂

∂nT+

Πhϕ|T−

)
≈ h.

∂2ϕ

∂y2 (I)

In practice the jump for T+ and T− could differ, that is why we consider the mean jump h = a++a−
2 , where by a+ we denoted the

altitude of T + triangle and respectively a− the altitude of the T− triangle.

�

Regarding y-terms contribution, the previous estimate holds too.

To synthetize, we have shown until here that:∫
Ω

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ

)
dx =∑

e,edge
[∇Πhϕ · n]e

∫
e
(u − Πhu)e de (11)

where according to the previous Lemma 3.1 the jump [∇Πhϕ · n]e is identified as a second order derivative:∫
Ω

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ

)
dx ≈∑

e,edge
h · ∇2ϕ

∫
e
(u − Πhu)e de (12)

Transformation of Estimate (12) into an integral on Ω. Once we have identify a second derivative, we can examine its
weight. Indeed, it is multiplied by half the sum of the two altitudes of the triangles and integrated along the common edge (see
proof of previous Lemma 3.1). Let us denote by G+ (resp. G−) the centroid of triangle T+ (resp. T−), a+ (resp. a−) the altitude of
T+ (resp T−) orthogonal with respect to e. We shall refer in the sequel to the diamond-shaped surface De as the surface bounded

7

Figure 3: Diamont shape geometry : (AG+BG−)

by the segments joining either G+ or G− to an extremity of edge e (see Figure 3). The triangle formed by G+ and e (or ABG+),
denoted here K+, has an area of one third T+’s area 1:

|T+| =
1
2
· |e| · |a+| = 3 · |K+|.

Then, the sum of K+ and K− areas is equal to the area of the diamond-shaped surface De:

|De| = |K+| + |K−| = |e|
|a+| + |a−|

6
.

Let us approximate now the integral over edge e of the interpolation error u − Πhu from Estimate (12) with the integral over the
diamond De for the same expression :

1
|e|

∫
e
(u − Πhu) de ≈

1
|De|

∫
De

(u − Πhu) dx.

We observe that the union of diamond cells covers the whole computational domain Ω, i.e. |Ω| =
∑

K∈H |K| =
∑

De
|De|. This

allows to estimate the integral on Ω.∫
Ω

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ

)
dx ≈∑

De

3
∫

De

(u − Πhu)∇2ϕ(x) dx = 3
∫

Ω

(u − Πhu)∇2ϕ(x) dx (13)

A first estimate. If we try to write an estimate which does not depend too much on function ϕ, we can over-estimate the error as
follows:

Lemma 3.2. We have the following bound:

|

∫
Ω

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ)dx| �

3
∫

Ω

|ρ(H(ϕ)| |u − Πhu|dx (14)

where A � B holds for a majoration asymptotically valid, i.e. A ≤ B + O(A). Expression |ρ(H(ϕ))| holds for the largest (in
absolute value) eigenvalue of the Hessian H(ϕ).�

3.2. 3D Truncation error analysis
The previous steps from two dimensional analysis applies here too. Thus, we can skip the calculations and go directly to the

main result and say:

Lemma 3.3. For a regular enough mesh, the term (∂
∂nT+

Πhϕ|T+
− ∂

∂nT+
Πhϕ|T−) is consistent with a second normal derivative

weighted by the inverse of mean altitude of the two tetrahedra T+ and T−. �

To synthetize, as in two dimensional analysis, the following estimate holds:∫
Ω

(∇(u − Πhu)∇Πhϕ) dΩ ≈
∑

f ,face
[∇Πhϕ · n] f

∫
f
(u − Πhu) f dσ . (15)

where the jump ∇Πhϕ · n is estimated as a second order derivative, weighted by half the sum of corresponding altitudes of tetra-
hedras T+ and T−.

1 | · | holds for volume, area or length of geometrical objects
8

Transformation of Estimate (15) into an integral on Ω.
Let us denote by G+ (resp. G−) the centroid of tetrahedron T+ (resp. T−), a+ (resp. a−) the altitude of T+ (resp T−) with

respect to f . The volume of the tetrahedron K+ formed by G+ and f is equal to:

|K+| =
1
9
| f | · |a+|.

As for two dimensional case, we construct the diamond-shaped volume D f bounded by the triangular plans joining either G+ or
G− to a side of face f . Then, the volume of D f is :

|D f | = |K+| + |K−| = | f |
|a+| + |a−|

9
.

We shall approximate the integral over face f with the integral over the diamond D f . Then again, the union of diamond cells
covers the whole computational domain Ω, i.e. |Ω| =

∑
|D f |. This allows to estimate the integral on Ω as:

∫
Ω

(
∂

∂x
(u − Πhu)

∂

∂x
Πhϕ +

∂

∂y
(u − Πhu)

∂

∂y
Πhϕ

)
dx ≈∑

De

9
2

∫
De

(u − Πhu)∇2ϕ(x) dx =
9
2

∫
Ω

(u − Πhu)∇2ϕ(x) dx (16)

A first 3D estimate. If we go furthermore and search for an estimate of (16) which does not depend too much on the function ϕ,
we can over-estimate the error according to the following lemma:

Lemma 3.4. We have the following bound:

|

∫
Ω

(∇(u − Πhu)∇Πhϕ)dΩ| �
9
2

∫
Ω

|ρ(H(ϕ))| |u − Πhu|dΩ (17)

where A � B holds for a majoration asymptotically valid, i.e. A ≤ B + O(A). Expression |ρ(H(ϕ))| holds for the largest (in
absolute value) eigenvalue of the Hessian H(ϕ).�

Remark: In the case where u − Πhu does not vanish on the domain boundary denoted here Γ, then we get an extra term
equivalent to: ∫

Γ

(u − Πhu)∇ϕ · n dσ.

4. Unsteady Navier-Stokes Models

4.1. Continuous state system
Continuous state system. The 3D unsteady compressible Navier-Stokes system for a perfect gas is set for (x, t) in the computa-
tional space-time domain Q = Ω × [0,T], where T is the (positive) maximal time and Ω ⊂ R3 is the spatial domain. It writes
:

∂W
∂t

+ ∇ · F E + ∇ · F v = 0

In the above definition, W is the vector of conservative flow variables. The Euler fluxes are defined by: F E(W) = (F E
1 (W),F E

2 (W),F E
3 (W)).

The column vector W and flux tensor F E are given by

W =


ρ
ρu
ρv
ρw
ρE


; F E(W) =


ρu
ρuu + pex

ρuv + pey

ρuw + pez

ρuH


. (18)

Here ρ, p, and E represent the fluid density, thermodynamic pressure, and total energy per unit mass. u, v, and w are the Cartesian
components of the velocity vector u and H is the total enthalpy given by H = E +

p
ρ
.

Functions ϕ and W have 5 components, and therefore the product ϕW holds for
∑

k=1..5 ϕkWk. We have denoted by Γ the inviscid
9

subset of the boundary of the computational domain Ω, n is the outward normal to Γ, W(0)(x) = W(x, t)|t=0 for any x in Ω, W0 the
initial condition and the boundary flux F̂ E contains the different non-viscous boundary conditions, which involve inflow, outflow
and slip boundary conditions.
We describe in short the viscous fluxes as:

F v = [0, σ,−(q − u.σ)]T ,

where u = (u1, u2, u3) is the velocity vector and the viscous stress tensor σ is defined as:

σ = µ(∇u + ∇uT) −
2
3
µ∇.uI,

with µ representing the constant viscosity.
The heat flux q is given by Fourier’s law:

q = −λ∇T

where λ is the heat conduction (assumed here to be constant), and T the temperature defined hereafter:

T =
1
cv

(
E −

1
2ρ

((ρu1)2 + (ρu2)2 + (ρu3)2)
)
,

with cv also assumed to be constant.
The matrix expression of viscous fluxesV writes:

0 0 0
σxx σyx σzx
σxy σyy σzy
σxz σyz σzz

u.σxx + v.σxy + w.σxz + λ.∇T u.σyx + v.σyy + w.σyz + λ.∇T u.σzx + v.σzy + w.σzz + λ.∇T

 ,
And viscous stress σ has the following general matrix expression:

σ = µ




∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

︸ ︷︷ ︸
∇u

+


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

︸ ︷︷ ︸
∇uT


−

2
3
µ


∂u
∂x + ∂v

∂y + ∂w
∂z 0 0

0 ∂u
∂x + ∂v

∂y + ∂w
∂z 0

0 0 ∂u
∂x + ∂v

∂y + ∂w
∂z

︸ ︷︷ ︸
∇.uI

An essential ingredient of our discretization and of our analysis is the elementwise linear interpolation operator. In order to

use it easily, we define our working functional space as V =
[
H1(Ω) ∩ C(Ω̄)

]5
, that is the set of measurable functions that are

continuous with square integrable gradient. We formulate the Navier-Stokes model in a compact variational formulation in the
functional spaceV = H1{[0,T]; V} as follows:

Find W ∈ V such that ∀ϕ ∈ V, (Ψ(W) , ϕ) = 0
with Ψ = Ψt + ΨE + Ψv,(

Ψt(W) + ΦE(W) , ϕ
)

=

∫
Ω

ϕ(0)(W0 −W(0)) dΩ +

∫ T

0

∫
Ω

ϕWt dΩ dt

+

∫ T

0

∫
Ω

ϕ∇ · F E(W) dΩ dt −
∫ T

0

∫
Γ

ϕ F̂ E(W).n dΓ dt

(Ψv(W) , ϕ) =

∫ T

0

∫
Ω

ϕ∇ · F v(W) dΩ dt . (19)

Viscous fluxes provide seven new terms to which we apply the finite-element error-analysis of Section 3, that is based on
estimations of interpolation errors:

(ΨV, ψ) =

∫
Ω

ψ∇ · F v dΩ =

7∑
k=1

Ek .

10

The three first terms come from moment equations and depend only on ψ234 = (ψ2, ψ3, ψ4)T :

E1 =

∫
Ω

ψ234∇ · µ∇u dΩ

E2 =

∫
Ω

ψ234∇ · µ(∇u)T dΩ

E3 = −
2
3

∫
Ω

ψ234∇ · µ∇.uI dΩ.

The four last terms are derived from the energy equation:

E4 =

∫
Ω

ψ5∇ · λ∇TdΩ

E5 =

∫
Ω

ψ5∇ · (u.µ∇u) dΩ

E6 =

∫
Ω

ψ5∇ ·
(
u.µ(∇u)T

)
dΩ

E7 = −
2
3

∫
Ω

ψ5∇ · (u.µ∇.uI) dΩ .

4.2. Variational discrete formulation
As a spatially semi-discrete model, we consider the Mixed-Element-Volume formulation [16]. As in [32], we reformulate it

under the form of a finite element variational formulation, this time in the unsteady context. We assume that Ω is covered by a
finite-element partition in simplicial elements denoted K. The mesh, denoted by H is the set of the elements. Let us introduce
the following approximation space:

Vh =
{
ϕh ∈ V

∣∣∣ ϕh |K is affine ∀K ∈ H
}
,

Let Πh be the usual P1 projector:

Πh : V → Vh such that Πhϕ(xi) = ϕ(xi), ∀ xi vertex ofH .

We extend it to time-dependent functions:

Πh : H1{[0,T]; V} → H1{[0,T]; Vh} such that (Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0,T].

The weak discrete formulation writes:

Find Wh ∈ H1{[0,T]; Vh} such that ∀ϕh ∈ H1{[0,T]; Vh}, (Ψh(Wh) , ϕh) = 0,

with: (Ψh(Wh) , ϕh) =

∫
Ω

ϕh(0)(ΠhWh(0) −W0h) dΩ +

∫ T

0

∫
Ω

ϕh ΠhWh,t dΩ dt

+

∫ T

0

∫
Ω

ϕh∇ · Fh(Wh) dΩ dt −
∫ T

0

∫
Γ

ϕhF̂h(Wh).n dΓ dt +

∫ T

0

∫
Ω

ϕh Dh(Wh) dΩ dt

+

∫ T

0

∫
Ω

ϕh∇ · F
v

h (Wh) dΩ dt , (20)

In this system, the discretization of Euler terms are essentially applied by projecting the fluxes with the P1 interpolator: F E
h =

ΠhF
E and F̂ E

h = ΠhF̂
E .A numerical diffusion - term Dh- is added for numerical stability. In short, the Dh term involves the

difference between the Galerkin central-differences approximation and a second-order Godunov approximation defined as in
[16]. In the present study, we only need to know that for smooth fields, the Dh term is a third order term with respect to the mesh
size parameter h.

Notation F v
h (Wh) holds for a standard P1 finite element discretization of the viscous terms, in which only the numerical

quadrature of non-differentiated fields need be specified, which will be done for each term at the same time as we perform our
error analysis.

Since we do not address time discretization errors, we keep the time derivation not-discretized. In the numerical examples,
an explicit time stepping algorithm is used by means of a multi-stage, high-order strong-stability-preserving (SSP) Runge-Kutta
scheme. More details can be found in [5].

11

4.3. Mesh adaptation first problem statement

Let g be a function of L2{[0,T]; V}. We assume that the purpose of the simulation problem is to evaluate the functional:

j = (g,W) where W is the solution of (19).

The problem addressed in this paper is, given a number of nodes N, to find the mesh which minimizes the following functional
error:

δ j = (g,W −Wh) where W is the solution of (19) and Wh is the solution of (20).

In order to make this problem more precise we propose in this section an error analysis.

5. Linearised error system

Let ψ a smooth test function; we choose:

ϕ = Πhψ in (19) and ϕh = Πhψ in (20).

Then:
(Ψh(Wh) , Πhψ) − (Ψh(ΠhW) , Πhψ) = − (Ψh(ΠhW) , Πhψ) + (Ψ(W) , Πhψ)

Here we need to assume that Wh can be made close enough to ΠhW in such a way that we can identify the main term of the
left hand side as a Jacobian times the difference:(

∂Ψh

∂W
(Wh)(Wh − ΠhW) , Πhψ

)
≈ − (Ψh(ΠhW) , Πhψ) + (Ψ(W) , Πhψ) as h→ 0.

We are now interested by the right-hand term, made of Euler terms, a stabilization term which we neglect (due to smoothness of
functions W and ψ, and viscous terms.

6. Inviscid right-hand side

6.1. Interpolation errors

The right-hand inviscid side writes:

RHS =

∫
Ω

φh∇.(F (W) − ΠhF (W))dΩ −

∫
Γ

φh(F̄ out(W) − ΠhF̄
out(W)) · n dΓ

we recall that φh = Πhφ and next we add and substract a φ term:

RHS = RHS 1 + RHS 2

with:

RHS 1 =

∫
Ω

(Πhφ − φ)∇ · (F (W) − ΠhF (W))dΩ

−

∫
Γ

(Πhφ − φ)(F̄ out(W) − ΠhF̄
out(W)) · n dΓ .

Assuming smoothness of φ and F (W), we deduce that on Ω, interpolation errors are of order two and their gradients are of order
one, same on boundary, and RHS 1 is thus of order three:

RHS 1 ≤ const.h3.

The second term writes:

RHS 2 =

∫
Ω

φ∇ · (F (W) − ΠhF (W))dΩ −

∫
Γ

φ(F̄ out(W) − ΠhF̄
out(W)) · n dΓ

12

and we transform it as follows:

RHS 2 = −

∫
Ω

(∇φ) · (F (W) − ΠhF (W))dΩ

+

∫
Γ

φ(F (W) − ΠhF (W)) · n dΓ

−

∫
Γ

φ(F̄ out(W) − ΠhF̄
out(W)) · n dΓ.

The above estimates shows again the central role of the interpolation error on internal and boundary fluxes for the global
approximation error.

Remark: In RHS 2 we can apply the same asymptotic extension as in the elliptic case studied in previous section. The expression
of RHS 2 is in fact very good news. Indeed, due to the smoothness assumptions for φ and W, L2 estimates for interpolation error
on volume and on boundary apply, so that this term appears as a second-order one:

RHS 2 ≤ const.h2.

Further, using the same techniques as in [?], this term can be extended as follows:

RHS 2 = h2 (G(W,m), φ) + R

where the last parenthesis is to be understood as a distribution one. The term R is of higher order:

R = o(h2). �

6.2. Temporary conclusion
The above study shows that the implicit error Wh − ΠhW is essentially a function of the interpolation error W − ΠhW. In

the numerical applications we shall discard the boundary terms in order to simplify the mesh generation. In [28], it has been
observed that this simplification does not reduce much the quality of the results.

7. Viscous right-hand side

7.1. Notations
As noted below, viscous fluxes provide seven Ek terms to which we apply the finite-element error-analysis of Section 3, that

is based on estimations of interpolation errors:

(ΦV, ψ) =

∫
Ω

ψ∇ · V dΩ =

7∑
k=1

Ek .

The three first terms come from moment equations and depend only on ψ234 = (ψ2, ψ3, ψ4)T :

E1 =

∫
Ω

ψ234∇ · µ∇u dΩ

E2 =

∫
Ω

ψ234∇ · µ(∇u)T dΩ

E3 = −
2
3

∫
Ω

ψ234∇ · µ∇.uI dΩ.

The four last terms are derived from the energy equation:

E4 =

∫
Ω

ψ5∇ · λ∇TdΩ

E5 =

∫
Ω

ψ5∇ · (u.µ∇u) dΩ

E6 =

∫
Ω

ψ5∇ ·
(
u.µ(∇u)T

)
dΩ

E7 = −
2
3

∫
Ω

ψ5∇ · (u.µ∇.uI) dΩ .

In the sequel, for each of these seven terms, we derive an error estimator following the a priori finite-element analysis of
previous sections where we have shown how the implicit error is bounded by interpolation error weighted by some weights. The
main idea of the resolution is to retrieve Relation (9) for which Lemma 3.4 can be applied.

13

7.2. Study of truncation error terms
As for the Euler flows case we do not consider in the sequel the boundary error terms.

Study of E1, E2 and E3
. Let us concentrate first on the three terms summation derived from the momentum equation:

E1 = µ
∫

Ω
ψ234∇ · ∇udΩ = µ

∑3
i=1

∑3
j=1

∫
Ω
ψi+1

∂
∂x j

(
∂
∂x j

ui

)
dΩ,

E2 = µ
∫

Ω
ψ234∇ · (∇u)T dΩ = µ

∑3
i=1

∑3
j=1

∫
Ω
ψi+1

∂
∂x j

(
∂
∂xi

u j

)
dΩ,

E3 = −µ 2
3

∫
Ω
ψ234∇ · (∇.uI)dΩ = −µ 2

3
∑3

i=1
∑3

j=1

∫
Ω
ψi+1

∂
∂xi

(
∂
∂x j

u j

)
dΩ.

We remark that E2 and E3 expressions can be directly additioned with an exchange of i and j derivatives. Then the summation
of these terms writes:

E1 + E2 + E3 = µ

 3∑
i=1

3∑
j=1

∫
Ω

ψi+1
∂

∂x j

(
∂

∂x j
ui

)
dΩ +

1
3

3∑
i=1

3∑
j=1

∫
Ω

ψi+1
∂

∂xi

(
∂

∂x j
u j

)
dΩ

 .
It is sufficient to consider e123 :

e123 =

∫
Ω

Πhψi+1
∂2ul

∂xi∂x j
dΩ.

The other terms are depicted identically.
We are interested in the error term:

δe123 = e123 − eh
123 =

∫
Ω

Πhψi+1
∂2ul

∂xi∂x j
dΩ −

∫
Ω

Πhψi+1
∂2Πhul

∂xi∂x j
dΩ

=

∫
Ω

Πhψi+1
∂2

∂xi∂x j
(ul − Πhul)dΩ.

After a first integration by part and neglecting the boundary terms, the error term writes:

δe123 = −

∫
Ω

∂

∂xi
(Πhψi+1)

∂

∂x j
(ul − Πhul) dΩ.

Now, according to Lemma 3.4 from the elliptic error analysis these volumic contribution is overestimated as:

δe123 �
9
2

∫
Ω

ρ(H(ψi+1))|ul − Πhul|.

And finally, going back to our initial sommation the following a priori estimate holds for the first three terms of viscous flux
contribution:

δE1 + δE2 + δE3 �
9
2
µ

3∑
i=1

3 ρ(H(ψi+1)) +
1
3

3∑
j=1

ρ(H(ψi+1))

 |ui − Πhui|.

We recall that 9/2 constant comes from the three dimensional estimator, and since the first term of the summation is independent
on j, it is thus multiplied by 3.

Study of E4
. The first term from the energy equation is discussed now:

E4 =

∫
Ω

ψ5∇ · λ∇TdΩ.

We consider the following discretisation :

E4,h =

∫
Ω

Πhψ5∇ · λ∇ΠhTdΩ.

14

We focus on the error term:

δE4,h =

∫
Ω

Πhψ5∇ · λ∇TdΩ −

∫
Ω

Πhψ5∇ · λ∇ΠhTdΩ.

After a first integration by parts we get:

δE4,h =

∫
Ω

Πhψ5λ∇ · (∇(T − ΠhT)) dΩ

=

∫
Γ

λ Πhψ5∇(T − ΠhT) · n dΓ −

∫
Ω

λ∇(Πhψ5) (∇(T − ΠhT)) dΩ.

The boundary terms contribution is neglected as already mentioned. Then, the volume integral is equivalent to Estimation (9) for
which Lemma 3.4 can be applied.
We obtain thus the final estimate:

δE4,h �
9
2

∫
Ω

|λ|ρ(H(Ψ5)) |ΠhT − T |dΩ. (21)

For the next three remaining terms, E5, E6 and E7, because of their non-linearity, a slightly different algorithm of resolution
is employed, by some mathematical artifice.

Study of E5
. We start from the following developpement:

E5 = µ

3∑
i=1

3∑
j=1

∫
Ω

ψ5
∂

∂x j

(
ui
∂ui

∂x j

)
dΩ.

We resume next to the integral formulation and analyse the error term:

δe5 = e5 − eh
5 =

∫
Ω

Πhψ5
∂

∂x j

(
ui
∂ui

∂x j

)
dΩ −

∫
Ω

Πhψ5
∂

∂x j

(
Πhui

∂Πhui

∂x j

)
dΩ.

Because of the non-linearity of this term, we cannot directly add the two integrals and perform an integration by parts for this
summation. In order to obtain a relation equivalent to (9) we perform firstly an integration by part for each one of the two
integrals and discard the boundary terms.

δe5 = −

∫
Ω

∂

∂x j
(Πhψ5)

(
ui
∂ui

∂x j

)
dΩ +

∫
Ω

∂

∂x j
(Πhψ5)

(
Πhui

∂Πhui

∂x j

)
dΩ =

−

∫
Ω

∂

∂x j
(Πhψ5)

(
ui
∂(ui − Πhui)

∂x j

)
dΩ︸ ︷︷ ︸

I1

+

∫
Ω

∂

∂x j
(Πhψ5) (Πhui − ui)

∂Πhui

∂x j
dΩ︸ ︷︷ ︸

I2

.

Next, regarding integral I1, after an integration by parts we have:

I1 = −

∫
Ω

 ∂2

∂x2
j

(Πhψ5)

 ui (ui − Πhui)dΩ +∫
Ω

∂

∂x j
(Πhψ5)

∂ui

∂x j
(ui − Πhui)dΩ︸ ︷︷ ︸

T11

−

∫
Γ

ui

(
∂

∂x j
(Πhψ5)

)
· n j (ui − Πhui)dΓ︸ ︷︷ ︸

T12

.

We recognize in T12 the hypothesis of Lemma 3.4. Thus:

T12 �
9
2

∫
Ω

|ui|ρ(H(ψ5)) |ui − Πhui| dΩ

Regarding T11 terms, we observe they are (closed to) identical to I2, but opposite signs, thus we discard them.
Finally, the total contribution of E5 term writes then:

δE5 �
27
2
µ

3∑
i=1

∫
Ω

|ui|ρ(H(ψ5)) |ui − Πhui| dΩ. (22)

15

Study of E6
. In contrast with the previous term, the gradient of the velocity vector is transposed, thus the velocity components will be
crossed.
Let us write:

E6 = µ

3∑
i=1

3∑
i=1

∫
Ω

ψ5
∂

∂x j

(
ui
∂u j

∂xi

)
dΩ.

We analyse the error term:

δe6 =

∫
Ω

Πhψ5
∂

∂x j

(
ui
∂u j

∂xi

)
dΩ −

∫
Ω

Πhψ5
∂

∂x j

(
Πhui

∂Πhu j

∂xi

)
dΩ

After a first integration by parts applied on both integrals we obtain:

δe6 = −

∫
Ω

∂

∂x j
(Πhψ5)

(
ui
∂u j

∂xi

)
dΩ +

∫
Ω

∂

∂x j
(Πhψ5)

(
Πhui

∂Πhu j

∂xi

)
dΩ

= −

∫
Ω

∂

∂x j
(Πhψ5)

(
ui
∂(u j − Πhu j)

∂xi

)
dΩ︸ ︷︷ ︸

I1

+

∫
Ω

∂

∂x j
(Πhψ5) (Πhui − ui)

∂Πhu j

∂xi
dΩ︸ ︷︷ ︸

I2

.

As for the previous term, a second integration by parts is applied with the assumption that the boundary terms can be neglected:

I1 =

∫
Ω

∂Πhψ5

∂x j

∂ui

∂xi

(
u j − Πhu j

)
dΩ︸ ︷︷ ︸

T11

−

∫
Γ

ui

(
∂Πhψ5

∂x j

)
· n j (u j − Πhu j) dΓ.︸ ︷︷ ︸

T12

We recognize in T12 the estimation of Lemma 3.4, that is:

T12 �
9
2
µ

∫
Ω

|ui| ρ(H(ψ5)) |u j − Πhu j| dΩ.

For the T11 and I2 after further calculation we obtain the interpolation error on velocity vector weighted by a vector with, as
components, cross-products of gradient of the velocity with gradient of ψ5 . Suppose we denote this weight Vec, we have:

δE6 �
9
2
µ

3∑
i=1

3∑
j=1

∫
Ω

|ui| ρ(H(ψ5))|u j − Πhu j| dΩ + µ

∫
Ω

Vec |u − Πhu| dΩ.

with (for 3D problems):

Vec =

 (∇w × ∇ψ5)y − (∇v × ∇ψ5)z

(∇u × ∇ψ5)z − (∇w × ∇ψ5)x

(∇v × ∇ψ5)x − (∇u × ∇ψ5)y


and respectively Vec = (−∇v × ∇ψ5,∇u × ∇ψ5)T for two dimensional case.

To synthetize, the following estimation holds:

δE6 � µ

3∑
i=1

∫
Ω

 3∑
j=1

(
9
2
|u j| ρ(H(ψ5))) + Vec[i]

 |ui − Πhui| (23)

Study of E7
. The previous remark regarding the crossing of terms holds for the 7th term too, because of multiplication with indentity matrix.
This terms writes:

E7 = −
2
3
µ

3∑
k=1

3∑
i=1

3∑
j=1

∫
Ω

ψ5
∂

∂xk

(
ui

(
∂u j

∂x j

))
dΩ

And the error term to be analysed can be restricted to:

δe7 =

∫
Ω

Πhψ5
∂

∂xk

(
ui

(
∂u j

∂x j

))
dΩ −

∫
Ω

Πhψ5
∂

∂xk

(
Πhui

(
∂Πhu j

∂x j

))
dΩ

16

After a first integration by parts the previous error term writes:

δe7 = −

∫
Ω

∂

∂xk
(Πhψ5)

(
ui
∂u j

∂x j

)
dΩ +

∫
Ω

∂

∂xk
(Πhψ5)

(
Πhui

(
∂Πhu j

∂x j

))
dΩ =

−

∫
Ω

∂

∂xk
(Πhψ5)

(
ui
∂(u j − Πhu j)

∂x j

)
dΩ︸ ︷︷ ︸

I1

+

∫
Ω

∂

∂xk
(Πhψ5) (Πhui − ui)

(
∂Πhu j

∂x j

)
dΩ︸ ︷︷ ︸

I2

.

Furthermore, we apply a second integration by parts:

δe7 =

∫
Ω

∂

∂xk
(Πhψ5)

∂ui

∂x j

(
u j − Πhu j

)
dΩ︸ ︷︷ ︸

T11

−

∫
Γ

∂

∂xk
(Πhψ5) ui · ni (u jΠhu j)dΓ︸ ︷︷ ︸

T12

+I2.

We recognize in T12 the estimation from Lemma 3.4, thus the following estimation holds:

T12 �
9
2

∫
Ω

|ui| ρ(H(ψ5)) |u j − Πhu j|dΩ.

Regarding the integral I2 the following estimation holds:

I2 ≈

∫
Ω

∂

∂xk
(Πhψ5)

(
∂u j

∂x j

)
(Πhui − ui) dΩ

After summation we retrieve for this term the weight vector Vec from E5, that is, for two dimensional case:

T11 + I2 = − Vec (u − Πhu) + (vxψ5,x − vyψ5,y ; uyψ5,y − uxψ5,x)T (u − Πhu)

Thus, the total contribution of E7 term writes:

δE7 � −
2
3
µ

3∑
k=1

3∑
i=1

3∑
j=1

[
9
2

∫
Ω

|ui| ρ(H(ψ5)) |u j − Πhu j|dΩ + T11 + I2

]
. (24)

8. Continuous Adjoint system and discretization

Continuous adjoint system. The continuous adjoint system related to the objective functional writes:

W∗ ∈ V , ∀ψ ∈ V :
(
∂Ψ

∂W
(W)ψ,W∗

)
− (g, ψ) = 0. (25)

Replacing Ψ(W) by its Formulation (19) and integrating by parts, we get:(
∂Ψ

∂W
(W)ψ,W∗

)
=

∫
Ω

(ψ(0)W∗(0) − ψ(T)W∗(T)) dΩ +

∫ T

0

∫
Ω

ψ

(
−W∗t −

(
∂F

∂W

)∗
∇W∗

)
dΩ dt

+

∫ T

0

∫
Γ

ψ

(∂F
∂W

)∗
W∗.n −

∂F̂
∂W

∗W∗.n
 dΓ dt . (26)

Consequently, the continuous adjoint state W∗ must be such that:

−W∗t −
(
∂F

∂W

)∗
∇W∗ = gΩ in Ω (27)

with the associated adjoint boundary conditions:(
∂F

∂W

)∗
W∗.n −

∂F̂
∂W

∗W∗.n = gΓ on Γ

and the final adjoint state condition:
W∗(T) = gT .

The adjoint Euler equations is a system of advection equations, where the temporal integration goes backwards, i.e., in the
opposite direction of usual time. Thus, when solving the unsteady adjoint system, one starts at the end of the flow run and
progresses back until reaching the start time.

17

Discrete adjoint system. Although any consistent approximation of the continuous adjoint system could be built by discretizing
System (27), we choose the option to build the discrete adjoint system from the discrete state system defined by Relation (20) in
order to be closer to the true error from which the continuous model is derived.

Consider the following semi-discrete unsteady compressible Euler model (explicit RK1 time integration):

Ψn
h(Wn

h ,W
n−1
h) =

Wn
h −Wn−1

h

δtn + Φh(Wn−1
h) = 0 for n = 1, ...,N. (28)

The time-dependent functional is discretized as follows:

jh(Wh) =

N∑
n=1

δtn jn−1
h (Wn−1

h).

For the sake of simplicity, we restrict to the case gT = 0 for the functional output defined by Relation (??). The problem of
minimizing the error committed on the target functional j(Wh) = (g,Wh), subject to the Euler system (28), can be transformed
into an unconstrained problem for the following Lagrangian functional [20]:

L(Wh,W∗h) =

N∑
n=1

δtn jn−1
h (Wn−1

h) −
N∑

n=1

δtn(W∗,nh)T Ψn
h(Wn

h ,W
n−1
h) ,

where W∗,nh are the N vectors of the Lagrange multipliers (which are the time-dependent adjoint states). The conditions for an
extremum are:

∂L

∂W∗,n
h

= 0 and
∂L

∂Wn
h

= 0, for n = 1, ...,N.

The first condition is clearly verified from Relation (28). Thus the Lagrangian multipliers W∗,n
h must be chosen such that the

second condition of extrema is verified. This provides the unsteady discrete adjoint system:
W∗,Nh = 0

W∗,n−1
h = W∗,nh + δtn ∂ jn−1

h

∂Wn−1
h

(Wn−1
h) − δtn(W∗,nh)T ∂Φh

∂Wn−1
h

(Wn−1
h) ,

(29)

or equivalently, the semi-discrete unsteady adjoint model reads:

Ψ
∗,n
h (W∗,nh ,W∗,n−1

h ,Wn−1
h) =

W∗,n−1
h −W∗,nh

−δtn + Φ∗h(W∗,nh ,Wn−1
h) = 0 for n = 1, ...,N

with

Φ∗h(W∗,n
h ,Wn−1

h) =
∂ jn−1

h

∂Wn−1
h

(Wn−1
h) − (W∗,nh)T ∂Φh

∂Wn−1
h

(Wn−1
h) .

As the adjoint system runs in reverse time, the first expression in the adjoint System (29) is referred to as adjoint ”initializa-
tion”.

Solve adjoint state backward: Ψ∗(W, W ∗) = 0

Solve state foreward: Ψ(W) = 0

Computing W∗,n−1
h at time tn−1 requires the knowledge of state Wn−1

h and adjoint state W∗,nh . Therefore, the knowledge of all
states

{
Wn−1

h

}
n=1,N

is needed to compute backward the adjoint state from time T to 0 which involves large memory storage effort.
For instance, if we consider a 3D simulation with a mesh composed of one million vertices then we need to store at each iteration
five millions solution data (we have 5 conservative variables). If we perform 1000 iterations, then the memory effort to store
all states is 37.25 Gb for double-type data storage (or 18.62 for float-type data storage). Two strategies are employed to reduce
importantly this drawback: checkpoints and interpolation.

The memory effort can be reduced by out-of-core storage of checkpoints as shown in the picture below. First the state-
simulation is performed to store checkpoints. Second, when computing backward the adjoint, we first recompute all states from
the checkpoint and store them in memory and then we compute the unsteady adjoint until the checkpoint physical time. This
method implies a recomputing effort of the state W.

The other strategy consists in storing solution states in memory only each m solver iterations. When the unsteady adjoint is
solved, solution states between two savings are linearly interpolated. This method leads to a loss of accuracy for the unsteady
adjoint computation.

18

Solve state once to get checkpoints Ψ(W) = 0

Ψ∗(W, W ∗) = 0

Ψ(W) = 0

Solve state and backward adjoint state from checkpoints

9. Optimal unsteady adjoint-based metric

9.1. Error analysis (N.B. applied to unsteady Euler model)
We replace in Estimation (??) operators Ψ and Ψh by their expressions given by Relations (19) and (20). In [32], it was

observed that even for shocked flows, it is interesting to neglect the numerical viscosity term. We follow again this option. We
also discard the error committed when imposing the initial condition. We finally get the following simplified error model:

δ j ≈

∫ T

0

∫
Ω

W∗
(
W − ΠhW

)
t dΩ dt +

∫ T

0

∫
Ω

W∗ ∇.
(
F (W) − ΠhF (W)

)
dΩ dt

−

∫ T

0

∫
Γ

W∗
(
F̂ (W) − ΠhF̂ (W))

)
.n dΓ dt . (30)

Integrating by parts leads to:

δ j ≈

∫ T

0

∫
Ω

W∗ (W − ΠhW
)
t dΩ dt −

∫ T

0

∫
Ω

∇W∗
(
F (W) − ΠhF (W)

)
dΩ dt

−

∫ T

0

∫
Γ

W∗
(
F̄ (W) − ΠhF̄ (W))

)
.n dΓ dt . (31)

with F̄ = F̂ − F . We observe that this estimate of δ j is expressed in terms of interpolation errors of the Euler fluxes and of the
time derivative weighted by continuous functions W∗ and ∇W∗.

Error bound with a safety principle. The integrands in Error Estimation (31) contain positive and negative parts which can
compensate for some particular meshes. In our strategy, we prefer to not rely on these parasitic effects and to slightly over-
estimate the error. To this end, all integrands are bounded by their absolute values:

(g,Wh −W) ≤

∫ T

0

∫
Ω

|W∗| |
(
W − ΠhW

)
t | dΩ dt +

∫ T

0

∫
Ω

|∇W∗| |F (W) − ΠhF (W)| dΩ dt

+

∫ T

0

∫
Γ

|W∗| |(F̄ (W) − ΠhF̄ (W)).n| dΓ dt . (32)

9.2. Continuous error model

Working in this framework enables us to write Estimate (32) in a continuous form:

|(g,Wh −W)| ≈ E(M) =

∫ T

0

∫
Ω

|W∗| |
(
W − πMW

)
t | dΩ dt +

∫ T

0

∫
Ω

|∇W∗| |F (W) − πMF (W)| dΩ dt

+

∫ T

0

∫
Γ

|W∗| |(F̄ (W) − πMF̄ (W)).n| dΓ dt. (33)

We observe that the third term introduce a dependency of the error with respect to the boundary surface mesh. In the present
paper, we discard this term and refer to [32] for a discussion of the influence of it. Then, introducing the continuous interpolation
error, we can write the simplified error model as follows:

E(M) =

∫ T

0

∫
Ω

trace
(
M−

1
2 (x, t) H(x, t)M−

1
2 (x, t)

)
dΩ dt

19

with H(x, t) =

5∑
j=1

(
[∆t] j(x, t) + [∆x] j(x, t) + [∆y] j(x, t) + [∆z] j(x, t)

)
, (34)

in which

[∆t] j(x, t) =
∣∣∣W∗

j (x, t)
∣∣∣ · ∣∣∣H(W j,t)(x, t)

∣∣∣ , [∆x] j(x, t) =

∣∣∣∣∣∣∂W∗j
∂x

(x, t)
∣∣∣∣∣∣ · ∣∣∣H(F1(W j))(x, t)

∣∣∣ ,
[∆y] j(x, t) =

∣∣∣∣∣∣∂W∗j
∂y

(x, t)
∣∣∣∣∣∣ · ∣∣∣H(F2(W j))(x, t)

∣∣∣, [∆z] j(x, t) =

∣∣∣∣∣∣∂W∗j
∂z

(x, t)
∣∣∣∣∣∣ · ∣∣∣H(F3(W j))(x, t)

∣∣∣ .
Here, W∗j denotes the jth component of the adjoint vector W∗, H(Fi(W j)) the Hessian of the jth component of the vector Fi(W),
and H(W j,t) the Hessian of the jth component of the time derivative of W. The mesh optimization problem writes:

Find Mopt = ArgminM E(M), (35)

under the constraint of bounded mesh fineness:

Cst(M) = Nst, (36)

where Nst is a specified total number of nodes. Since we consider an unsteady problem, the space-time (st) complexity used to
compute the solution takes into account the time discretization. The above constraint then imposes the total number of nodes in
the time integral, that is:

Cst(M) =

∫ T

0
τ(t)−1

(∫
Ω

dM(x, t)dx
)

dt (37)

where τ(t) is the time step used at time t of interval [0,T].

9.3. Spatial minimization for a fixed t
Let us assume that at time t, we seek for the optimal continuous mesh Mgo(t) which minimizes the instantaneous error, i.e.,

the spatial error for a fixed time t:

Ẽ(M(t)) =

∫
Ω

trace
(
M−

1
2 (x, t) H(x, t)M−

1
2 (x, t)

)
dx

under the constraint that the number of vertices is prescribed to

C(M(t)) =

∫
Ω

dM(t)(x, t) dx = N(t). (38)

Similarly to [32], solving the optimality conditions provides the optimal goal-oriented (“go”) instantaneous continuous mesh
Mgo(t) = (Mgo(x, t))x∈Ω at time t defined by:

Mgo(x, t) = N(t)
2
3 Mgo,1(x, t) , (39)

whereMgo,1 is the optimum for C(M(t)) = 1:

Mgo,1(x, t) =

(∫
Ω

(det H(x̄, t))
1
5 dx̄

)− 2
3

(det H(x, t))−
1
5 H(x, t). (40)

The corresponding optimal instantaneous error at time t writes:

Ẽ(Mgo(t)) = 3 N(t)−
2
3

(∫
Ω

(det H(x, t))
1
5 dx

) 5
3

= 3 N(t)−
2
3 K(t) . (41)

For the sequel of this paper we denote: K(t) =
(∫

Ω
(det H(x, t)) 1

5 dx
) 5

3 .

9.4. Temporal minimization
To complete the resolution of optimization Problem (35-36), we perform a temporal minimization in order to get the optimal

space-time continuous mesh. In other words, we need to find the optimal time law t → N(t) for the instantaneous mesh size. We
consider the simpler case where the time step τ is specified by the user as a function of time t → τ(t).

20

Temporal minimization for specified τ. Let us consider the case where the time step τ is specified by a function of time t → τ(t).
After the spatial optimization, the space-time error writes:

E(Mgo) =

∫ T

0
Ẽ(Mgo(t)) dt = 3

∫ T

0
N(t)−

2
3 K(t) dt (42)

and we aim at minimizing it under the following space-time complexity constraint:∫ T

0
N(t)τ(t)−1 dt = Nst. (43)

In other words, we concentrate on seeking for the optimal distribution of N(t) when the space-time total number of nodes Nst is
prescribed. Let us apply the one-to-one change of variables:

Ñ(t) = N(t)τ(t)−1 and K̃(t) = τ(t)−
2
3 K(t) .

Then, our temporal optimization problem becomes:

min
M

E(M) =

∫ T

0
Ñ(t)−

2
3 K̃(t) dt under constraint

∫ T

0
Ñ(t) dt = Nst .

The solution of this problem is given by:

Ñopt(t)−
5
3 K̃(t) = const ⇒ Nopt(t) = C(Nst) (τ(t)K(t))

3
5 .

Here, constant C(Nst) can be obtained by introducing the above expression in space-time complexity Constraint (43), leading to:

C(Nst) =

(∫ T

0
τ(t)−

2
5 K(t)

3
5 dt

)−1

Nst ,

which completes the description of the optimal space-time metric for a prescribed time step. Using Relation (39), the analytic
expression of the optimal space-time goal-oriented metric Mgo writes:

Mgo(x, t) = N
2
3
st

(∫ T

0
τ(t)−

2
5

(∫
Ω

(det H(x̄, t))
1
5 dx̄

)
dt

)− 2
3

τ(t)
2
5 (det H(x, t))−

1
5 H(x, t) . (44)

We get the following optimal error:

E(Mgo) = 3 N
− 2

3
st

(∫ T

0
τ(t)−

2
5

(∫
Ω

(det H(x, t))
1
5 dx

)
dt

) 5
3

. (45)

9.5. Temporal minimization for time sub-intervals

The previous analysis provides the optimal size of the adapted meshes for each time level. Hence, this analysis requires the
mesh to be adapted at each flow solver time step. But, in practice this approach involves a very large number of remeshing which
is CPU consuming and spoils solution accuracy due to many solution transfers from one mesh to a new one. In consequence,
a new adaptive strategy has been proposed in [2, 7] where the number of remeshing is controlled (thus drastically reduced) by
generating adapted meshes for several solver time steps. The idea is to split the simulation time interval into nadap sub-intervals
[ti−1, ti] for i = 1, .., nadap. Each spatial mesh Mi is then kept constant during each sub-interval [ti−1, ti]. We could consider this
partition as a time discretization of the mesh adaptation problem. In other words, the number of nodes N i of the ith adapted mesh
Mi on sub-interval [ti−1, ti] should for example be taken equal to:

N i =

∫ ti
ti−1

Nopt(t)τ(t)−1dt∫ ti
ti−1
τ(t)−1dt

.

Here, we propose a different option in which we get an optimal discrete answer.

21

Spatial minimization on a sub-interval. Given the continuous mesh complexity N i for the single adapted mesh used during time
sub-interval [ti−1, ti], we seek for the optimal continuous mesh Mi

go solution of the following problem:

min
Mi

Ei(Mi) =

∫
Ω

trace
(
(Mi)−

1
2 (x) Hi(x) (Mi)−

1
2 (x)

)
dx such that C(Mi) = N i ,

where matrix Hi on the sub-interval can be defined by either using an L1 or an L∞ norm:

Hi
L1 (x) =

∫ ti

ti−1

H(x, t) dt or Hi
L∞ (x) = ∆ti max

t∈[ti−1,ti]
H(x, t) ,

with ∆ti = ti − ti−1. Processing as previously, we get the spatial optimality condition:

Mi
go(x) = (N i)

2
3 Mi

go,1(x) withMi
go,1(x) =

(∫
Ω

(det Hi(x̄))
1
5 dx̄

)− 2
3

(det Hi(x))−
1
5 Hi(x).

The corresponding optimal error Ei(Mi
go) writes:

Ei(Mi
go) = 3 (N i)−

2
3

(∫
Ω

(det Hi(x))
1
5 dx

) 5
3

= 3 (N i)−
2
3 K i .

To complete our analysis, we shall perform a temporal minimization. Again, we consider the case where the time step τ is
specified by a function of time.

Temporal minimization for specified τ. After the spatial minimization, the temporal optimization problem reads:

min
M

E(M) =

nadap∑
i=1

Ei(Mi
go) = 3

nadap∑
i=1

(N i)−
2
3 K i such that

nadap∑
i=1

N i
(∫ ti

ti−1

τ(t)−1dt
)

= Nst .

We set the one-to-one mapping:

Ñ i = N i
(∫ ti

ti−1

τ(t)−1dt
)

and K̃ i = K i
(∫ ti

ti−1

τ(t)−1dt
) 2

3

,

then the optimization problem reduces to:

min
M

nadap∑
i=1

(Ñ i)−
2
3 K̃ i such that

nadap∑
i=1

Ñ i = Nst .

The solution is:

Ñ i
opt = C(Nst) (K̃ i)

3
5 with C(Nst) = Nst

nadap∑
i=1

(K̃ i)
3
5

−1

⇒ N i = Nst

nadap∑
i=1

(K i)
3
5

(∫ ti

ti−1

τ(t)−1dt
) 2

5

−1

(K i)
3
5

(∫ ti

ti−1

τ(t)−1dt
)− 3

5

.

and we deduce the following optimal continuous mesh Mgo = {Mi
go}i=1,..,nadap and error:

Mi
go(x) = N

2
3
st

(nadap∑
i=1

(K i)
3
5

(∫ ti

ti−1

τ(t)−1dt
) 2

5
)− 2

3 (∫ ti

ti−1

τ(t)−1dt
)− 2

5 (det Hi(x))−
1
5 Hi(x) (46)

E(Mgo) = 3 N
− 2

3
st

(nadap∑
i=1

(K i)
3
5

(∫ ti

ti−1

τ(t)−1dt
) 2

5
) 5

3

, (47)

with (K i)
3
5 =

∫
Ω

(det Hi(x))
1
5 dx.

22

Remark 1: The choice of the time sub-intervals {[ti−1, ti]}i=1,nadap for a given nadap is a mesh adaptation problem: what is the
subdivision of interval [0,T] in nadap sub-intervals which will minimize the error on optimal mesh/metricM? Since we take a
constant metric in the sub-interval, the error main term in approximatingM is the following integral of the absolute value of the
time-derivative ofM:

nadap∑
i=1

∫ ti

ti−1

∣∣∣∣∣∂M(t)
∂t

∣∣∣∣∣ dt.

which can be minimized for instance by isodistribution of the error by sub-interval.
Remark 2: The parameter nadap, number of time sub-intervals is important for the efficiency of the adaptation algorithm. When
a too large value is prescribed for nadap, the error in mesh-to-mesh interpolation may increase. A compromise needs to be found
by the user.

10. Theoretical Mesh Convergence Analysis

Our motivation in developing mesh adaptation algorithms is to get approximation algorithms with better convergence to
continuous target data. By better, we mean that we want to reach the asymptotic high order convergence with a lower number
of nodes and also for solutions involving discontinuities. Both improvements have been previously obtained in the context of
steady inviscid flows [5]. The present paper focuses on mesh adaptation only controlling the spatial approximation error in the
context of unsteady flows. From this standpoint, we just forget about time approximation error by specifying a time step or by
considering an explicit time advancing context close to the one of references [2, 7, 23]. We assume that accuracy of the time
advancing scheme is second-order at least. Then it can be derived from basic arguments that the time approximation error is
essentially smaller than or equal to the spatial approximation error, controlled by the metric-based method, which justifies to
adapt the mesh only to spatial error [2, 7, 23].

In order to measure the theoretical convergence order of the mesh adaptation algorithm, we need to compare the global mesh
effort -the complexity Nst- with the corresponding error level. We recall that an adaptative or an uniform discretisation approach
both using N degrees of freedom has a convergence of order α if the approximation error |u − uN | satisfies:

|u − uN | ≤ const. N−
α
d

where d is the computational domain Euclidian dimension.

In the following, the convergence order of numerical solutions computed with the presented adaptive platform is addressed
for the case of smooth flows.

10.1. Smooth flow fields

For some Hessian-based methods, i.e., the L∞ − Lp approach of [23], an analysis is proposed for predicting the order of
convergence to the continuous solution. In the goal-oriented method discussed in this paper, the adaptive state solution Wh

generally does not converge to the continuous one W. However, in the case of regular solutions, the expression of the optimal
error model indicates that the functional output indeed converges, and with a predictable order.

Smooth context with specified time step. Here, we are adapting the mesh with the purpose of reducing the spatial error. The
space dimension is 3. Now, in this case, we have established the following estimate:

E(Mgo) = O(N−
2
3

st) as Nst → ∞.

for the case of an adaptation at each time step (45) and also for the case of an adaptation with a fixed mesh at each sub-interval
(47), therefore:

Lemma 10.1. The modeled spatial error on functional for a specified time-step converges at second-order rate.

Smooth context with Courant-based time step. According to the argument recalled above, we are adapting the mesh M(t) in
order to, by the magic of Courant condition, reduce both space and time error. The space-time dimension is 4. Now, in this case,
we have established the following estimate:

E(Mgo) = O(N−
1
2

st) as Nst → ∞.

for the case of an adaptation at each time step, (??), and also for the case of an adaptation with a fixed mesh at each sub-interval,
(??), therefore:.

23

Lemma 10.2. The space-time modeled error on functional for Courant-based time step converges at second-order rate.

Remark 4: Adapting for a time sub-interval instead of adapting at each time steps does not degrade the asymptotic convergence
order which is a very good news. Nevertheless, such a series of adapted meshes is only space-time sub-optimal as the constant
in the error term is larger than the adaptation at each time step.

Remark 5: Between sub-intervals, transfers of the solution fields from the previous mesh to the new one are necessary. The
choice of the transfer operator has certainly some impact on the global accuracy (see for example [6]) together with how fre-
quently it is applied. Reference [6] suggests to consider conservative interpolation for compressible flows.

11. From theory to practice

The continuous mesh adaptation problem takes the form of the following continuous optimality conditions:

W ∈ V , ∀ϕ ∈ V , (Ψ(M,W), ϕ) = 0 “Navier-Stokes system”

W∗ ∈ V , ∀ψ ∈ V ,

(
∂Ψ

∂W
(M,W)ψ,W∗

)
= (g, ψ) “adjoint system”

M(x, t) =Mgo(x, t) “adapted mesh”. (48)

In practice, it remains to approximate the above three-field coupled system by a discrete one and then solve it. For discretising
the state and adjoint PDE’s, we take the spatial schemes introduced previously which are explicit Runge-Kutta time advancing
schemes. Such time discretization methods have non-linear stability properties like TVD which are particularly suitable for the
integration of system of hyperbolic conservation laws where discontinuities appear. Discretising the last equation consists in
specifying the mesh according to a discrete metric deduced from the discrete states.

In order to remedy all the problematics relative to mesh adaptation for time-dependent simulations stated in the introduction,
an innovative strategy based on a fixed-point algorithm has been initiated in [3] and fully developed in [2]. The fixed-point
algorithm aims at avoiding the generation of a new mesh at each solver iteration which would imply serious degradation of the
CPU time and of the solution accuracy due to the large number of mesh modifications. It is also an answer to the lag problem
occurring when, from the solution at tn, a new adapted mesh is generated at level tn to compute next solution at level tn+1. In that
latter case, since the mesh is not adapted to the solution evolution between time levels tn and tn+1, the mesh is always late with
respect to the physics. The fixed point approach has been successfully applied to bi-fluids three-dimensional problems [23], to
a blast simulation in a three-dimensional city [2] and to moving bodies simulations [7]. The basic idea consists in splitting the
simulation time frame [0, T] into nadap adaptation sub-intervals:

[0, T] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap] ,

and to keep the same adapted mesh for each sub-interval. Consequently, the time-dependent simulation is performed with only
nadap different adapted meshes. The mesh used on each sub-interval is adapted to control the solution accuracy from ti−1 to ti. We
examine now how to apply this program.

11.1. Choice of the goal-oriented metric
The optimal adapted meshes for each sub-interval are generated according to analysis of Section 9.5. In this work, the

following particular choice has been made:

• the Hessian metric for sub-interval i is based on a control of the temporal error in L∞ norm:

Hi
L∞ (x) = ∆ti max

t∈[ti,ti+1]
H(x, t) = ∆ti Hi

max(x) ,

• function τ : t → τ(t) is constant and equal to 1,

• all sub-intervals have the same time length ∆t.

The optimal goal-oriented metric Mgo = {Mi
go}i=1,..,nadap then simplifies to:

Mi
go(x) = N

2
3
st

nadap∑
i=1

(
∫

Ω

(det Hi
max(x))

1
5 dx)

−
2
3

(∆t)
1
3

(
det Hi

max(x)
)− 1

5 Hi
max(x) .

Remark 7: We notice that we obtain a similar expression of the optimal metric to the one proposed in [7], but it is presently
obtained in a goal-oriented context and by means of a space-time error minimization.

24

11.2. Global fixed-point mesh adaptation algorithm
To converge the non-linear mesh adaptation problem, i.e., converging the couple mesh-solution, we propose a fixed-point

mesh adaptation algorithm. The parameter Nst representing the total computational effort is prescribed by the user and will
influence the size of all the meshes defined during the time interval. That is, to compute any metric fields Mi

go, we have to
evaluate a global normalization factor which requires the knowledge of all Hi

max. Thus, the whole simulation from 0 to T must
be performed to be able to evaluate all metrics Mi

go. Similarly to [7], a global fixed point strategy covering the whole time-frame
[0,T], called Global adjoint fixed-point mesh adaptation algorithm, is considered:

//- Fixed-point loop to converge global space-time mesh adaptation

For j=1,nnpt f x

//- Solve state once to get checkpoints

For i=1,nadap

• W
j
0,i = ConservativeSolutionTransfer(H j

i−1,W
j
i−1,H

j
i)

• W
j
i = SolveStateForward(W j

0,i,H
j

i)

End for

//- Solve state and adjoint backward and store samples

For i=nadap, 1

• (W∗) j
i = AdjointStateTransfer(H j

i+1, (W
∗
0) j

i+1,H
j

i)

• {W
j
i (k), (W∗) j

i (k)}k=1,nk = SolveStateAndAdjointBackward(W j
0,i, (W

∗) j
i ,H

j
i)

• |Hmax|
j
i = ComputeGoalOrientedHessianMetric(H j

i , {W
j
i (k), (W∗) j

i (k)}k=1,nk)

End for

• C j = ComputeSpaceTimeComplexity({|Hmax|
j
i }i=1,nadap)

• {M
j
i }i=1,nadap = ComputeUnsteadyGoalOrientedMetrics(C j, {|Hmax|

j
i }i=1,nadap)

• {H
j+1

i }i=1,nadap = GenerateAdaptedMeshes({H j
i }i=1,nadap , {M

j
i }i=1,nadap)

End for

Let us describe this algorithm sketched in Figure 4. It consists in splitting the time interval [0,T] into the nadap mesh-
adaptation time sub-intervals: {[ti−1, ti]}i=1,..,nadap

with t0 = 0 and tnadap = T . On each sub-interval a different mesh is used. A
time-forward computation of the state solution is first performed with a out-of-core storage of all checkpoints, which are taken to
be {Wh(ti)}i=1,..,nadap

. Between each sub-interval, the solution is interpolated on the new mesh using the conservative interpolation
of [6]. Then, starting from the last sub-interval and proceeding until the first one, we recompute and store in memory all solution
states of the sub-interval from the previously stored checkpoint in order to evaluate time-backward the adjoint state throughout
the sub-interval. At the same time, we evaluate the Hessian metrics Hi

max required to generate new adapted meshes for each
sub-interval. To this end, nk Hessian metric sample are computed on each sub-interval and intersected [2] to obtain Hi

max. At
the end of the computation, the global space-time mesh complexity is evaluated, producing weights for the goal-oriented metric
fields for each sub-interval. Finally, all new adapted meshes are generated according to the prescribed metrics. The time-forward,
time-backward and mesh update steps are repeated into the j = 1, .., npt f x global fixed-point loop. Convergence of the fixed-point
is obtained in typically 5 global iterations.

This mesh adaptation loop has been fully parallelized. The solution transfer, the solver and the Hessians computation have
been parallelized using a p-thread paradigm at the element loop level [4]. As regards the computation of the metrics and the
generation of the adapted meshes, we observe that they can be achieved in a decoupled manner once the complete simulation
has been performed, leading to an easy parallelization of these stages. Indeed, if nadap processors are available, each metric and
mesh can be done on one processor.

11.3. Computing the goal-oriented metric
The optimal goal-oriented metric is a function of the adjoint state, the adjoint state gradient, the state time derivative Hessian

and the Euler fluxes Hessians. In practice, these continuous states are approximated by the discrete states and derivative recovery
is applied to get gradients and Hessians. The discrete adjoint state W∗h is taken to represent the adjoint state W∗. The gradient
of the adjoint state ∇W∗ is replaced by ∇RW∗h and the Hessian of each component of the flux vector H(Fi(W)) is obtained from
HR(Fi(Wh)). ∇R (resp. HR) stands for the operator that recovers numerically the first (resp. second) order derivatives of an initial
piecewise linear solution field. In this paper, the recovery method is based on the L2-projection formula. Its formulation along
with some comparisons to other methods is available in [5].

25

0 ∆titi ti+1 T = tnadap

ti,k

t

nadap = 5
nk = 11

Fixed-point loop j

Solve state once to get checkpoints

Solution state and adjoint state sampling

Ψ̃(W) = 0

Ψ̃∗ (W, W ∗) = 0

HGO
i,j,k︸ ︷︷ ︸

|HGO
i,j,max|=

nkT
k=1

|HGO
i,j,k|

Figure 4: Global Fixed-Point algorithm for unsteady goal-oriented anisotropic mesh adaptation

12. Numerical Experiments

The adaptation algorithms described in this paper have been implemented the CFD code Wolf. As regards meshing, goal-
oriented mesh adaptation requires to update the surface mesh of Γ on which the functional is observed. This standpoint is needed
in order to ensure a valid coupling between the volume mesh and the surface mesh. This implies to consider a more complex
re-meshing phase. In our case, a local remeshing strategy has been considered. We use Yams [18] for the adaptation in 2D and
Feflo.a [34] in 3D.

13. Conclusion

We have designed a new mesh adaptation algorithm which prescribes the spatial mesh of an unsteady simulation as the
optimum of a goal-oriented error analysis. This method specifies both mesh density and mesh anisotropy by variational calculus.
Accounting for unsteadiness is applied in a time-implicit mesh-solution coupling which needs a non-linear iteration, the fixed
point. In contrast to the Hessian-based fixed-point of [2, 23] which iterates on each sub-interval, the new iteration covers the
whole time interval, including forward steps for evaluating the state and backward ones for the adjoint. This algorithm has been
successful applied to 2D and 3D blast wave Euler test cases and to the calculation of a 2D acoustic wave. Results demonstrate
the favorable behavior expected from an adjoint-based method, which gives an automatic selection of the mesh regions necessary
for the target output.

Several important issues for fully space-time computation have been addressed in this paper. Among them, the strategies for
choosing the splitting in time sub-intervals and the accurate integration of time errors in the mesh adaptation process have been
proposed, together with a more general formulation of the mesh optimization problem.

Time discretization error is not considered in this study. Solving this question is not so important for the type of calculation
that are shown in this paper, but can be of paramount impact in many other cases, in particular when implicit time advancing is
considered. In a future work, the authors plan to consider a space-time error analysis in the context of the proposed method.

14. Acknowledgements

This work has been supported by French National Research Agency (ANR) through COSINUS program (project ECINADS
no ANR-09-COSI-003). HPC resources from GENCI-[CINES] (Grant 2010-x2010026386 and 2010-c2009025067) are also
gratefully acknowledged.

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton, NJ, 2008.
[2] F. Alauzet, P.J. Frey, P.L. George, and B. Mohammadi. 3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD

simulations. J. Comp. Phys., 222:592–623, 2007.

26

[3] F. Alauzet, P.L. George, B. Mohammadi, P.J. Frey, and H. Borouchaki. Transient fixed point based unstructured mesh adaptation. Int. J. Numer. Meth.
Fluids, 43(6-7):729–745, 2003.

[4] F. Alauzet and A. Loseille. On the use of space filling curves for parallel anisotropic mesh adaptation. In Proceedings of the 18th International Meshing
Roundtable, pages 337–357. Springer, 2009.

[5] F. Alauzet and A. Loseille. High order sonic boom modeling by adaptive methods. J. Comp. Phys., 229:561–593, 2010.
[6] F. Alauzet and M. Mehrenberger. P1-conservative solution interpolation on unstructured triangular meshes. Int. J. Numer. Meth. Engng, 84(13):1552–1588,

2010.
[7] F. Alauzet and G. Olivier. Extension of metric-based anisotropic mesh adaptation to time-dependent problems involving moving geometries. In 49th AIAA

Aerospace Sciences Meeting and Exhibit, AIAA-2011-0896, Orlando, FL, USA, Jan 2011.
[8] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med., 56(2):411–

421, 2006.
[9] M.J. Baines. Moving finite elements. Oxford University Press, Inc., New York, NY, 1994.

[10] R. Becker and R. Rannacher. A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math.,
4:237–264, 1996.

[11] Y. Belhamadia, A. Fortin, and E. Chamberland. Three-dimensional anisotropic mesh adaptation for phase change problems. J. Comp. Phys., 201:753–770,
2004.

[12] A. Belme, A. Dervieux, and F. Alauzet. Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows. J. Comp. Phys., submitted, 2012.
[13] M. Berger. A panoramic view of Riemannian geometry. Springer Verlag, Berlin, 2003.
[14] M. Berger and P. Colella P. Local adaptive mesh refinement for shock hydrodynamics. J. Comp. Phys., 82(1):67–84, 1989.
[15] C.L. Bottasso. Anisotropic mesh adaption by metric-driven optimization. Int. J. Numer. Meth. Engng, 60:597–639, 2004.
[16] P.-H. Cournède, B. Koobus, and A. Dervieux. Positivity statements for a Mixed-Element-Volume scheme on fixed and moving grids. European Journal of

Computational Mechanics, 15(7-8):767–798, 2006.
[17] J. Dompierre, M.G. Vallet, M. Fortin, Y. Bourgault, and W.G. Habashi. Anisotropic mesh adaptation: towards a solver and user independent CFD. In AIAA

35th Aerospace Sciences Meeting and Exhibit, AIAA-1997-0861, Reno, NV, USA, Jan 1997.
[18] P.J. Frey. Yams, a fully automatic adaptive isotropic surface remeshing procedure. RT-0252, INRIA, November 2001.
[19] P.J. Frey and F. Alauzet. Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Engrg., 194(48-49):5068–5082, 2005.
[20] M.B. Giles and N.A. Pierce. An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65:393–415, 2000.
[21] M.B. Giles and E. Suli. Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, pages 145–236. Cambridge University Press,

2002.
[22] C. Gruau and T. Coupez. 3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput.

Methods Appl. Mech. Engrg., 194(48-49):4951–4976, 2005.
[23] D. Guégan, O. Allain, A. Dervieux, and F. Alauzet. An l∞-lp mesh adaptive method for computing unsteady bi-fluid flows. Int. J. Numer. Meth. Engng,

84(11):1376–1406, 2010.
[24] F. Hecht and B. Mohammadi. Mesh adaptation by metric control for multi-scale phenomena and turbulence. In 35th AIAA Aerospace Sciences Meeting

and Exhibit, AIAA-1997-0859, Reno, NV, USA, Jan 1997.
[25] T. Leicht and R. Hartmann. Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations. J. Comp. Phys., 229(19):7344–

7360, 2010.
[26] X. Li, M.S. Shephard, and M.W. Beal. 3D anisotropic mesh adaptation by mesh modification. Comput. Methods Appl. Mech. Engrg., 194(48-49):4915–

4950, 2005.
[27] R. Löhner. Adaptive remeshing for transient problems. Comput. Methods Appl. Mech. Engrg., 75:195–214, 1989.
[28] A. Loseille and F. Alauzet. Continuous mesh model and well-posed continuous interpolation error estimation. RR-6846, INRIA, March 2009.
[29] A. Loseille and F. Alauzet. Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In Proceedings of the 18th

International Meshing Roundtable, pages 575–594. Springer, 2009.
[30] A. Loseille and F. Alauzet. Continuous mesh framework. Part I: well-posed continuous interpolation error. SIAM J. Numer. Anal., 49(1):38–60, 2011.
[31] A. Loseille and F. Alauzet. Continuous mesh framework. Part II: validations and applications. SIAM J. Numer. Anal., 49(1):61–86, 2011.
[32] A. Loseille, A. Dervieux, and F. Alauzet. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J. Comp. Phys., 229:2866–2897,

2010.
[33] A. Loseille, A. Dervieux, P.J. Frey, and F. Alauzet. Achievement of global second-order mesh convergence for discontinuous flows with adapted unstruc-

tured meshes. In 37th AIAA Fluid Dynamics Conference and Exhibit, AIAA-2007-4186, Miami, FL, USA, Jun 2007.
[34] A. Loseille and R. Löhner. Adaptive anisotropic simulations in aerodynamics. In 48th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2010-169,

Orlando, FL, USA, Jan 2010.
[35] C.C Pain, A.P. Humpleby, C.R.E. de Oliveira, and A.J.H. Goddard. Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite

element calculations. Comput. Methods Appl. Mech. Engrg., 190:3771–3796, 2001.
[36] P.W. Power, C.C. Pain, M.D. Piggott, F. Fang, G.J. Gorman, A.P. Umpleby, and A.J.H. Goddard. Adjoint a posteriori error measures for anisotropic mesh

optimization. Comput. Math. Appl., 52:1213–1242, 2006.
[37] A. Tam, D. Ait-Ali-Yahia, M.P. Robichaud, M. Moore, V. Kozel, and W.G. Habashi. Anisotropic mesh adaptation for 3D flows on structured and unstruc-

tured grids. Comput. Methods Appl. Mech. Engrg., 189:1205–1230, 2000.
[38] D.A. Venditti and D.L. Darmofal. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows. J. Comp. Phys.,

187(1):22–46, 2003.
[39] R. Verfürth. A review of A Posteriori Error Estimation and Adaptative Mesh-Refinement techniques. Wiley Teubner Mathematics, New York, 1996.
[40] M. Wintzer, M. Nemec, and M.J. Aftosmis. Adjoint-based adaptive mesh refinement for sonic boom prediction. In AIAA 26th Applied Aerodynamics

Conference, AIAA-2008-6593, Honolulu, HI, USA, Aug 2008.

27

