
Services and Application Layer

Instructor: Dr. Eng. Abdulhalim Dandoush

Adandoush at gmail.com
Adandoush.com

Tishreen University & Arab Academy for Science
and Technologyand Technology

A special acknowledge goes to Joanna
Moulierac, from the INRIA of Sophia Antipolis and

IUT de Nice.
Some of the slides used in this lecture are

adapted from their original slides
An other Ref: “Computer Networking, A Top-Down

Approach”

Application Layer

Our goals:

conceptual,
implementation
aspects of network
application protocols

transport-layer

learn about protocols
by examining popular
application-level
protocols

HTTP

Application Layer

� transport-layer
service models

� client-server
paradigm

� peer-to-peer
paradigm

� HTTP

� FTP

� SMTP / POP3 / IMAP

� DNS

� File Sharing

� Terminal Service

� LDAP

Some network apps

• e-mail

• web

• instant messaging

• remote login

• social networks

• voice over IP

• real-time video
conferencing• remote login

• P2P file sharing

• multi-user network
games

• streaming stored
video clips

conferencing

• cloud computing

Creating a network app
Write programs that

� run on (different) end
systems

� communicate over network

� e.g., web server software
communicates with browser

application
transport
network
data link
physical

communicates with browser
software

No need to write software for
network-core devices

� Network-core devices do not
run user applications

� applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

Application architectures

Client-server

� Including data centers / cloud computing

Peer-to-peer (P2P)

Hybrid of client-server and P2PHybrid of client-server and P2P

Client-server architecture
server:

� always-on host

� permanent IP address

� server farms for scaling

clients:clients:

� communicate with server

� may be intermittently
connected

� may have dynamic IP
addresses

� do not communicate directly
with each other

client/server

Google Data Centers

Estimated cost of data center: $600M

Google spent $2.4B in 2007 on new data centers

Each data center uses 50-100 megawatts of power

Pure P2P architecture

no always-on server

arbitrary end systems
directly communicate

peers are intermittently
connected and change IP

peer-peer

connected and change IP
addresses

Highly scalable but difficult
to manage

Hybrid of client-server and P2P
Skype

� voice-over-IP P2P application
� centralized server to find address of remote party
� client-client connection direct (not through server)

Instant messaging
� chatting between two users is P2P� chatting between two users is P2P
� centralized service: client presence

detection/location
� user registers its IP address with central server

when it comes online
� user contacts central server for buddy IP

addresses

Processes communicating

Process: program running
within a host.

• within same host, two
processes communicate
using inter-process

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

using inter-process
communication (defined
by OS).

• processes in different
hosts communicate by
exchanging messages

contacted

Note: applications with P2P
architectures also have
client processes & server
processes

Addressing processes

to receive messages,
process must have
identifier

host device has unique 32-
bit IP address

Exercise: use ipconfig

Q: does IP address of
host on which process
runs suffice for identifying
the process?

A: No, many processes
Exercise: use ipconfig
(Windows) or ifconfig

(Mac & Linux) from
command prompt to get
your IP address

A: No, many processes
can be running on
same

Identifierincludes both IP
address and port numbers
associated with process
on host.

Example port numbers:

� HTTP server: 80

� Mail server: 25

Sockets

process sends/receives
messages to/from its
socket

socket analogous to door

� sending process shoves

process

socket

host or

server

process

socket

host or

server

controlled by

app developer

� sending process shoves
message out door

� sending process relies on
transport infrastructure on
other side of door which
brings message to socket at
receiving process

TCP with

buffers,

variables

TCP with

buffers,

variables

Internet

controlled

by OS

API: (1) choice of transport protocol;

(2) ability to fix a few parameters

App-layer protocol defines

Types of messages
exchanged,

� e.g., request, response

Message syntax:

� what fields in messages &

Public-domain protocols:

• defined in RFCs

• allows for
interoperability

• e.g., HTTP, SMTP, � what fields in messages &
how fields are delineated

Message semantics

� meaning of information in
fields

Rules for when and how
processes send &
respond to messages

• e.g., HTTP, SMTP,
BitTorrent

Proprietary protocols:

• e.g., Skype, PPLive

What transport service does an app need?

Data loss

• some apps (e.g., audio) can
tolerate some loss

• other apps (e.g., file
transfer, telnet) require
100% reliable data transfer

Throughput

• some apps (e.g.,
multimedia) require
minimum amount of
throughput to be “effective”

• other apps (“elastic apps”)
100% reliable data transfer

Timing

• some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”

• other apps (“elastic apps”)
make use of whatever
throughput they get

Security

• Encryption, data integrity,
…

Internet transport protocols services

TCP service:

• connection-oriented: setup
required between client and
server processes

• reliable transport between
sending and receiving process

UDP service:

• unreliable data transfer
between sending and
receiving process

• does not provide:
connection setup, sending and receiving process

• flow control: sender won’t
overwhelm receiver

• congestion control: throttle
sender when network
overloaded

• does not provide: timing,
minimum throughput
guarantees, security

connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is there
a UDP?

Services and applications designServices and applications design

portsports
• 65536 ports (16 bits) :

– from 0 to 1023 : («Well Known Ports»).

• 21 : FTP

• 22 : SSH

• 23 : Telnet

25 :• 25 : SMTP

• 53 : Domain Name System

• 68 : DHCP

• 80 : HTTP

• 110 : POP3

• …

FTP (FTP (File Transfer ProtocolFile Transfer Protocol))

• Retrieve stored files by Net users

server
ftp

CommandsCommands

• get, mget

• put, mput

• lcd, cd

• bin, ascii

• quit, bye• quit, bye

• ls

• help

• …

Functionality modelFunctionality model

interfaceuser

Connection of control:
Commands and return codes

(ASCII code)

client
Commands

Transfer
of data

Commands
server

Transfer
of data

File system:
FAT, NTFS,

EXT3, SWAP,...
File system

Data
connection:
Contents of

Functionality modelFunctionality model

Client Server

commands of control

Return codes

Client Server

Commands of controls
Access : OPEN, USER, PASS, CWD, QUIT

Transfer : PORT, PASSV, MODE
Service : STOR, RETR, LIST

each transfer :
new TCP connection

adandoush@Ubuntuadandoush@Ubuntu--serverserver:~$ ftp:~$ ftp
ftp> helpftp> help
Commands may be abbreviated. Commands are:Commands may be abbreviated. Commands are:

!! debugdebug mdirmdir qcqc sendsend
$$ dirdir mgetmget sendportsendport sitesite
accountaccount disconnectdisconnect mkdirmkdir putput sizesize
appendappend exitexit mlsmls pwdpwd statusstatus
asciiascii formform modemode quitquit structstruct
bellbell getget modtimemodtime quotequote systemsystem
binarybinary globglob mputmput recvrecv suniquesuniquebinarybinary globglob mputmput recvrecv suniquesunique
byebye hashhash newernewer regetreget tenextenex
casecase helphelp nmapnmap rstatusrstatus ticktick
cdcd idleidle nlistnlist rhelprhelp tracetrace
cdupcdup imageimage ntransntrans renamerename typetype
chmodchmod lcdlcd openopen resetreset useruser
closeclose lsls promptprompt restartrestart umaskumask
crcr macdefmacdef passivepassive rmdirrmdir verboseverbose
deletedelete mdeletemdelete proxyproxy runiquerunique ??
ftp>ftp>

Example of FTP scenario

Server
Port = 21

client

ftp
>open server_name

User Interface (shell)
SYN

>open server_name ACK, SYN

ACK

ACK

Example of FTP scenario

serverclient

ftp
>open servername

User Interface

>open servername
welcome to the

FTP server…
>user jc1234

ACK

ACK

Example of FTP scenario

serverclient

ftp
>open servername

User Interface

>open servername
welcome to the
FTP server…
>user jc1234

Password: adsre24
Login successful.
>

ACK

ACK

Example of FTP scenario

serverclient

ftp
>open servername

User Interface

the client 82.122.178.21 listen on

port 19*256+137 = 5001

>open servername
welcome to the
FTP server…
>user jc1234

Password: adsre24
Login successful.
>ls

ACK

ACK

ACK

Example of FTP scenario

serveurclient

…

>ls

User Interface
SYN

ACK, SYN

ACK

ACK

ACK

ACK

Example of FTP scenario

serverclient

…

>bye

User Interface

>bye

ACK

ACK

ACK ; FIN

ACK
FIN

HTTP (HTTP (HyperText Transfer Protocol)HyperText Transfer Protocol)

• Standard communication protocol for the Web

• Port 80

• Two version:

– http 1.0

– http 1.1

• References :

– HTTP 1.0 : http://www.faqs.org/rfcs/rfc1945.html

– HTTP 1.1 : http://www.faqs.org/rfcs/rfc2616.html

Functionality ModelFunctionality Model

Client HTTP
(Web browser)

Server HTTP
(Web server)

request

response

Transport
(usually TCP)

HTTP 1.0 : one request/response per connection
HTTP 1.1 several ..

HTTP Request

Request line

Headers (meta-info) Text ASCII
Separated lines with: "\r\n"

New line(CRLF, "\r\n")

body

Separated lines with: "\r\n"

May be empty

HTTP request HTTP request –– general formatgeneral format

• The request message consists of the following:

• Request line, such as

– GET /images/logo.png HTTP/1.1, which requests a resource
called /images/logo.png from server

• Headers, such as Accept-Language: en

• An empty line

• An optional message body

• HTTP defines nine methods

Request methodsRequest methods
• GET Requests a representation of the specified

resource

• HEAD Asks for the response identical to the one that
would correspond to a GET request, but without the
response body “meta-information”

• POST Submits data to be processed (e.g., from an • POST Submits data to be processed (e.g., from an
HTML form) to the identified resource. The data is
included in the body of the request.

• CONNECT Converts the request connection to a
transparent TCP/IP tunnel, usually to facilitate SSL-
encrypted communication (HTTPS) through an
unencrypted HTTP proxy

• PUT, DELETE, TRACE, OPTIONS, PATCH

Status codesStatus codes

• In HTTP/1.0 and since, the first line of the HTTP
response is called the status line

• includes a numeric status code (such as "404")
and a textual reason phrase (such as "Not
Found"). Found").

• The way the user agent handles the response
primarily depends on the code and secondarily
on the response headers

• Ex:

– 426 Upgrade Required

– 200 OK

HTTP requestHTTP request-- exampleexample

GET /index.htm HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg,
image/pjpeg, application/x-shockwave-flash,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*

Accept-Language: frAccept-Language: fr

Accept-Encoding: gzip

User-Agent: Mozilla/4.0(compatible; MSIE 6.0; Windows NT
5.1; SV1; .NET CLR 1.1.4322; .NET CLR 1.0.3705)

Host: www.reuters.com

Connection: Keep-Alive

HTTP ResponseHTTP Response

Status line

Headers

empty line (<CR><LF>, "\r\n")

Content

HTTP Response HTTP Response -- exampleexample

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3e1cb03b"
Accept-Ranges: bytes
Content-Length: 438
Connection: close Connection: close
Content-Type: text/html; charset=UTF-8 …

ETag header is to determine if a cached version of the requested
resource is identical to the current version on the server
Content-Type specifies the Internet media type of the data conveyed
by the http message, while Content-Length indicates its length in
bytes
Connection: close, means that the web server will close the TCP
connection immediately after the transfer of this response.

HTTP Proxy HTTP Proxy

• Functionalities :
– facilitate communication when clients without a globally

routable address that are located in private networks.

– Cache most visited pages to improve response
time

– Filters– Filters

Client HTTP HTTP Serverproxy server HTTP

Proxy Caching
Algorithms

Web Caching

web caching provides an efficient remedy to the
latency problem and network traffic by bringing
documents closer to clients.

Web Caching BenefitsWeb Caching Benefits

There are many benefit of proxy caching. It
reduces network traffic, average latency of fetching
Web documents, and the load on busy Web
servers.

Web Caching Location

• effective use of caching, an informative
decision has to be made to evict
document from the cache in case of
cache saturation.

Web Caching Replacement Algorithm

cache saturation.

• key to the effectiveness of proxy caches
that can yield high hit ratio.

• differ to page replacement. Why?

• Web caching is variable-size caching

• The cost of retrieving missed Web
documents from their original servers
depends on many factors.

Characteristic

depends on many factors.

• Web documents are frequently
updated

• Zipf-like popularity of web documents

1. Frequency Information

There are four key parameters that most
proxy replacement policies considering in

design

Key Parameters

1. Frequency Information

2. Recency Information

3. Document size

4. Network cost

SMTP and POPSMTP and POP33

• Simple Mail Transfer Protocol (port 25)

– deliver email from our Email Client (send)

– RFC 5321 (2008) includes the extended SMTP (ESMTP) on port
587

• Post Office Protocol v3 (port 110)

– handle email between Email Server and our Local Email Client – handle email between Email Server and our Local Email Client
(like Outlook or Eudora)

– authenticate our credentials on the server and download emails

• Internet Message Access Protocol (IMAP) instead

• Very simple and general example shown in the next
figure:

John@JohnDomain.com to Betty@BettyDomain.com

SMTP and POPSMTP and POP33

• In details:

• John’s e-mail ID is John and he has account on
JohnDomain.com

• John wats to send email using e-mail client like
Outlook Express to Betty who has account on Outlook Express to Betty who has account on
BettyDomain.com and who uses

• mail server config for John is:
mail.JohnDomain.com

• When John compose a message and press the
Send button, here's what happens:

SMTP and POPSMTP and POP33

1. Outlook Express connects to the SMTP server
at mail.JohnDomain.com using port 25.

2. Outlook Express has a conversation with the
SMTP server, telling the SMTP server the
address of the sender and the address of the address of the sender and the address of the
recipient, as well as the body of the message.

3. The SMTP server takes the "to" address
(Betty@BettyDomain.com) and breaks it into
two parts: the recipient name (Betty) and the
domain name (BettyDomain.com).

SMTP and POPSMTP and POP33

• If the "to" address had been another user at
JohnDomain.com, the SMTP server would simply
hand the message to the POP3 server for
JohnDomain.com (using a little program called the
delivery agent).

• Since the recipient is at another domain, SMTP • Since the recipient is at another domain, SMTP
needs to communicate with that domain.

1. The SMTP server has a conversation with a DNS.

• It says, "Can you give me the IP address of the
SMTP server for BettyDomain.com?" The DNS
replies with the one or more IP addresses for the
SMTP server(s) that BettyDomain operates.

SMTP and POPSMTP and POP33

1. The SMTP server at JohnDomain.com connects
with the SMTP server at BettyDomain.com using
port 25 (through TCP session that starts with a
greeting by the server using “HELO CMD ”). It

has the same simple text conversation that John has the same simple text conversation that John
e-mail client had with the SMTP server for

JohnDomain, and gives the message to the
BettyDomain server. The BettyDomain server

recognizes that the domain name for Betty is at
BettyDomain, so it hands the message to

BettyDomain's POP3 server, which puts the
message in Betty's mailbox.

SMTP and POPSMTP and POP33

• If, for some reason, the SMTP server at
JohnDomain cannot connect with the SMTP
server at BettyDomain, then the message goes
into a queue. The SMTP server on most
machines uses a program called sendmail to do machines uses a program called sendmail to do
the actual sending, so this queue is called the
sendmail queue

• See the next figure

Electronic Mail

Three major components:

• user agents

• mail servers

• simple mail transfer protocol:
SMTP

user mailbox

outgoing
message queue

mail
server

user
agent

user

mail
server

user
agent

SMTP

User Agent

• “mail reader”

• composing, editing, reading
mail messages

• e.g., Eudora, Outlook, elm,
Mozilla Thunderbird

• outgoing, incoming messages
stored on server

server user
agent

user
agent

mail
server

user
agent

user
agent

SMTP

SMTP

Electronic Mail: mail servers

Mail Servers

mailbox contains incoming
messages for user

messagequeue of outgoing
(to be sent) mail messages

SMTP protocol between mail

mail
server

user
agent

user

mail
server

user
agent

SMTP

SMTP protocol between mail
servers to send email
messages

� client: sending mail server

� “server”: receiving mail
server

server user
agent

user
agent

mail
server

user
agent

user
agent

SMTP

SMTP

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from client to
server, port 25

direct transfer: sending server to receiving server

three phases of transfer

� handshaking (greeting)

transfer of messages� transfer of messages

� closure

command/response interaction

� commands: ASCII text

� response: status code and phrase

messages must be in 7-bit ASCII

SMTP and POPSMTP and POP33

• The most common commands are:

– HELO - introduce yourself

– EHLO - introduce yourself and request extended mode

– MAIL FROM: - specify the sender

– RCPT TO: - specify the recipient

– DATA - specify the body of the message (To, From and – DATA - specify the body of the message (To, From and
Subject should be the first three lines.)

– QUIT - quit the session

– VRFY - verify an address

• A typical example of sending a message via SMTP to two
mailboxes (alice and theboss) located in the same mail
domain (example.com) is reproduced in the following
session exchange.

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message to
her mail server; message
placed in message queue

3) Client side of SMTP opens

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent to
read message3) Client side of SMTP opens

TCP connection with Bob’s
mail server

read message

user
agent

mail
server

mail
server user

agent

1

2 3 4
5

6

Sample SMTP interaction
S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

Mail message format

SMTP: protocol for exchanging
email msgs

RFC 822: standard for text message
format:

header lines, e.g.,

� To:

header

body

blank
line

� To:

� From:

� Subject:

differentfrom SMTP commands!

body

� the “message”, ASCII characters
only

body

SMTP: final words

SMTP uses persistent
connections

SMTP requires message
(header & body) to be in 7-
bit ASCII

Comparison with HTTP:

• HTTP: pull

• SMTP: push

• both have ASCII bit ASCII

SMTP server uses
CRLF.CRLF to determine

end of message

• both have ASCII
command/response
interaction, status codes

• HTTP: each object
encapsulated in its own
response msg

• SMTP: multiple objects sent
in multipart msg

Mail access protocols

SMTP: delivery/storage to receiver’s server

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

SMTP: delivery/storage to receiver’s server

Mail access protocol: retrieval from server

� POP: Post Office Protocol [RFC 1939]

� authorization (agent <-->server) and download

� IMAP: Internet Mail Access Protocol [RFC 1730]

� more features (more complex)

� manipulation of stored msgs on server

� HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 protocol

authorization phase

client commands:

� user: declare username

� pass: password

server responses

+OK

C: list

S: 1 498

S: 2 912

S: .

S: +OK POP3 server ready

C: user bob

S: +OK

C: pass hungry

S: +OK user successfully logged on

� +OK

� -ERR

transaction phase, client:

• list: list message numbers

• retr: retrieve message by

number

• dele: delete

• quit

S: .

C: retr 1

S: <message 1 contents>

S: .

C: dele 1

C: retr 2

S: <message 1 contents>

S: .

C: dele 2

C: quit

S: +OK POP3 server signing off

POP3 (more) and IMAP

More about POP3

• Previous example uses
“download and delete”
mode.

• Bob cannot re-read e-
mail if he changes client

IMAP

Keep all messages in
one place: the server

Allows user to organize
messages in folders

mail if he changes client

• “Download-and-keep”:
copies of messages on
different clients

• POP3 is stateless across
sessions

IMAP keeps user state
across sessions:

� names of folders and
mappings between
message IDs and folder
name

Web-Based Mail Access
Comparison of webmail providers
� http://en.wikipedia.org/wiki/Comparison_of_webmail_providers

Mail
ClientAccess

Protocol
(POP3/IMAP)

Mail
Client

SMTP

Web
browser

mail
server

mail
server

SMTP

Web
server

HTTP
SMTP

Server
Side
script

Web
server

Server
Side
script

Web
browser

Access
Protocol

(POP3/IMAP) HTTP

(POP3/IMAP)
SMTP

Try SMTP interaction for yourself:

telnet servername 25

see 220 reply from server

enter HELO, MAIL FROM, RCPT TO, DATA, QUIT commands

above lets you send email without using email client (reader)

Check out the following link for a list of mail servers from
major email service providers

http://www.emailaddressmanager.com/tips/mail-
settings.html

DNS: Domain Name System

People: many identifiers:

� SSN, name, passport #

Internet hosts, routers:

� IP address (32 bit) - used for
addressing datagrams

Domain Name System:

distributed database
implemented in hierarchy of
many name servers

application-layer protocol host,
routers, name servers to

� “name”, e.g., ww.yahoo.com
- used by humans

Q: map between IP addresses
and name ?

routers, name servers to
communicate to resolvenames
(address/name translation)

� note: core Internet function,
implemented as application-
layer protocol

� complexity at network’s
“edge”

DNS

DNS services

hostname to IP address
translation

host aliasing

� Canonical, alias names

Why not centralize DNS?

• single point of failure

• traffic volume

• distant centralized
database� Canonical, alias names

mail server aliasing

load distribution

� replicated Web servers:
set of IP addresses for
one canonical name

database

• maintenance

doesn’t scale!

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

DNS servers DNS servers

Client wants IP for www.amazon.com; 1st approx:

• client queries a root server to find com DNS server

• client queries com DNS server to get amazon.com DNS
server

• client queries amazon.com DNS server to get IP
address for www.amazon.com

DNS: Root name servers

contacted by local name server that can not resolve name

root name server:

� contacts authoritative name server if name mapping not known

� gets mapping

� returns mapping to local name server

a Verisign, Dulles, VA

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,

CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD

g US DoD Vienna, VA
h ARL Aberdeen, MD

j Verisign, (21 locations)

TLD and Authoritative Servers

Top-level domain (TLD) servers:
� responsible for com, org, net, edu, etc, and all top-

level country domains uk, fr, ca, jp.

� Network Solutions maintains servers for com TLD

� Educause for edu TLD� Educause for edu TLD

Authoritative DNS servers:
� organization’s DNS servers, providing authoritative

hostname to IP mappings for organization’s servers
(e.g., Web, mail).

� can be maintained by organization or service provider

Local Name Server

does not strictly belong to hierarchy

each ISP (residential ISP, company, university) has
one.

� also called “default name server”

when host makes DNS query, query is sent to its
local DNS server

� acts as proxy, forwards query into hierarchy

root DNS server

local DNS server
dns.poly.edu

2
3

4

5

TLD DNS server

DNS name
resolution example

Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterative query:

requesting host
cis.poly.edu

gaia.cs.umass.edu

dns.poly.edu

1
6

authoritative DNS server
dns.cs.umass.edu

7
8

iterative query:

• contacted server
replies with name of
server to contact

• “I don’t know this
name, but ask this
server”

root DNS server

local DNS server

2

67

TLD DNS server

3recursive query:

• puts burden of name
resolution on contacted
name server

DNS name
resolution example

requesting host
cis.poly.edu

gaia.cs.umass.edu

local DNS server
dns.poly.edu

1

45

authoritative DNS server
dns.cs.umass.edu

8

DNS: caching and updating records

once (any) name server learns mapping, it caches
mapping

� cache entries timeout (disappear) after some
time

� TLD servers typically cached in local name � TLD servers typically cached in local name
servers

� Thus root name servers not often visited

update/notify mechanisms under design by IETF

� RFC 2136

� http://www.ietf.org/html.charters/dnsind-charter.html

DNS records
DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

• Type=A
• name is hostname

• Type=CNAME
• name is alias name for some

• Type=NS
� name is domain (e.g.

foo.com)

� value is hostname of
authoritative name server
for this domain

name

• value is IP address

• name is alias name for some

“canonical” (the real) name

• www.ibm.com is really
servereast.backup2.ibm.com

• value is canonical name

• Type=MX
• value is name of mailserver

associated with name

DNS protocol, messages
DNS protocol :queryand reply messages, both with same message format

• msg header

• identification: 16 bit # for
query, reply to query uses query, reply to query uses
same #

• flags:

• query or reply

• recursion desired

• recursion available

• reply is authoritative

DNS protocol, messages

Name, type fields
for a query

RRs in response
to queryto query

records for
authoritative servers

additional “helpful”
info that may be used

Inserting records into DNS

example: new startup “Network Utopia”
register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)
� provide names, IP addresses of authoritative name server

(primary and secondary)
� registrar inserts two RRs into com TLD server:� registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

From Principle to Practice

Examine the DNS cache on local machine

� On Windows, use command “ipcofigure /displaydns”

Flush the DNS cache “ipcofigure /flushdns”

From Principle to Practice
Use tool “nslookup” to query the DNS system

Checkout the DNS query and reply using Wireshark

TELNETTELNET

• TELNET = a Network protocol
• telnet = a program that uses the TELNET protocol
• TELNET

– Permit to connect a client (text mode) to a server
(commands interpreter)

Client
(commands interface)

Server
(commands interpreter)

TCP

Characters ASCII + characters of control

TELNETTELNET

• Port 23

• Data + control code & commands over the same TCP
connection

• Network Virtual Terminal (NVT)
– Virtual Representation of a generic terminal (standard keyboard,

standard screen size, etc.)

• Negotiation the options between the client and the server

• Code ASCII : 33 char of commands + 95 visualisation
=128

• 0xxx xxxx state & code of control

• 1xxx xxxx cmd

Commands TELNETCommands TELNET

• Commands :
– IAC 255 (Interpret As Command) first cmd

– EL 247 (Erase Line)

– EC 246 (Erase Character)

– IP 243 (Interrupt Process)

– NOP 241 “No Operation”– NOP 241 “No Operation”

– AYT 246 “Are You There”

– AO 245 "Abort Output”

– IP 244 “Interrupt Process”

– BRK 243 “Break”

– …

Exemple connexion telnetExemple connexion telnet

Z:\users>telnet if-4433.insa-lyon.fr

Login: SP1321

Password: ********

*===

Bienvenue à Microsoft Telnet Server.

*===

C:\>netstat

Connexions actives

Proto Adresse locale Adresse distante Etat

TCP if-4433:telnet localhost:4342 TIME_WAITTCP if-4433:telnet localhost:4342 TIME_WAIT

TCP if-4433:telnet localhost:4352 ESTABLISHED

TCP if-4433:4352 localhost:telnet ESTABLISHED

TCP if-4433:4143 servif-baie.insa-lyon.fr:microsoft-ds ESTABLISH

ED

TCP if-4433:4145 cs27.msg.dcn.yahoo.com:5050 ESTABLISHED

TCP if-4433:4146 baym-cs17.msgr.hotmail.com:1863 ESTABLISHED

TCP if-4433:4170 servif-impr.insa-lyon.fr:netbios-ssn ESTABLISHE

D

TCP if-4433:4306 csiges9.insa-lyon.fr:993 ESTABLISHED

C:\>exit

Perte de la connexion à l'hôte.

Z:\users>

Problems with TELNETProblems with TELNET

• Servers do not allow users to use TELNET

– telnet can be used without control cmd

– Exemple :

• telnet www.wanadoo.fr 80

• Not secure connection• Not secure connection

– User name+ pass are captured easily (e.g. wireshark)

• adandoush@Ubuntu-server:~$ telnet Ubuntu-server

Trying ::1...

Trying 127.0.1.1...

Trying 192.168.1.100...

telnet: Unable to connect to remote host: Connection telnet: Unable to connect to remote host: Connection
refused

• adandoush@Ubuntu-server:~$ telnet
www.adandoush.com 80

Trying 66.84.14.67...

telnet: Unable to connect to remote host: Connection timed
out

SSHSSH

• Secure Shell: set of programs which employ
public/private key (authenticating & encrypting
sessions)

• Alternative to TELNET & Berkeley "r" utilities: rlogin,
rcp, rshrcp, rsh

• Used as a way to "tunnel" other protocols to improve
security against packet sniffing and "man in the
middle" attacks

• Port 22

• ssh-keygen -> subdirectory $HOME/.ssh : identity
and identity.pub, server side :$HOME/.ssh/authorized_keys

adandoush@Ubuntu-server:~$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/adandoush/.ssh/id_rsa):

Created directory '/home/adandoush/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/adandoush/.ssh/id_rsa.

Your public key has been saved in /home/adandoush/.ssh/id_rsa.pub.

The key fingerprint is:The key fingerprint is:

c6:4b:70:0e:ff:d2:8e:ad:0d:4a:6b:bf:d7:0c:02:ea adandoush@Ubuntu-
server

The key's randomart image is:

+--[RSA 2048]----+

| o . |

| .B |

| . .S |

| . o.+. |

| . . +.o+ |

| E..o B. o |

| .o.=++ |

• adandoush@adandoush-laptop:~$ ls -l .ssh

-rw------- 1 adandoush adandoush 1679 2011-10-
10 22:26 id_rsa

-rw-r--r-- 1 adandoush adandoush 405 2011-10-10
22:26 id_rsa.pub

• adandoush@adandoush-laptop:~$ scp• adandoush@adandoush-laptop:~$ scp
.ssh/id_rsa.pub adandoush@Ubuntu-
server:/home/adandoush

• root@Ubuntu-server:~$ cat
/home/adndoush/id_rsa.pub >
.ssh/authorized_keys

PublicPublic--key cryptographykey cryptography

• asymmetric key algorithms

• does not require a secure initial exchange of one
or more secret keys.

• create a mathematically related key pair: a secret
private key and a published public key

PublicPublic--key cryptographykey cryptography

• protection of the authenticity of a message �
digital signature of a message using the private
key, which can be verified using the public key

PublicPublic--key cryptographykey cryptography

• protection of the confidentiality and integrity of a
message, by public key encryption, which can
only be decrypted using the private key.

