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ABSTRACT
The peer-to-peer (P2P) paradigm have emerged as a cheap, scal-
able, self-repairing and fault-tolerant storage solution. This solu-
tion relies on erasure codes to generate additional redundant frag-
ments of each “block of data” in order to increase the reliability
and availability and overcome the churn. When the amount of un-
reachable fragments attains a predefined threshold, due to perma-
nent departures or long disconnections of peers, a recovery process

is initiated to compensate the missing fragments, requiring multiple
fragments of data of a given “block” to be downloaded in parallel
for an enhanced service. Recent modeling efforts that address the
availability and the durability of data have assumed the recovery
process to follow an exponential distribution, an assumption made
mainly in the absence of studies characterizing the “real” distribu-
tion of the recovery process. This work aims at filling this gap and
better understanding the behavior of these systems through simu-
lation while taking into consideration the heterogeneity of peers,
the underlying network topologies, the propagation delays and the
transport protocol. To that end, the distributed storage protocol is
implemented in the NS-2 network simulator. This paper describes a
realistic simulation model that captures the behavior of P2P storage
systems. We provide some experiments results that show how mod-
eling the availability and durability can be impacted by the recovery
times distribution which is impacted in turn by the characteristics
of the the network and the context.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Network Architecture
and Design—Distributed networks; C.2.4 [Computer Systems

Organization]: Distributed Systems—Distributed applications;
D.4.8 [Software]: Performance—Simulation

General Terms
Discrete time event packet-level simulation

Keywords
Network Simulator NS-2, peer-to-peer storage system, stochastic
simulation, download time, recovery process

1. INTRODUCTION AND RELATED WORK
The peer-to-peer (P2P) model has proved to be an alternative to
the Client/Server model and a promising paradigm for Grid com-
puting, file sharing, voice over IP, backup and storage applications.
A major advantage of P2P systems is that peers can build a vir-
tual overlay network on top of existing architecture and topology.
Each peer receives/provides a service from/to other peers through
the overlay network; examples of such a service are sharing the ca-
pacity of its central processing unit, sharing its bandwidth capacity,
sharing its free storage space, and sharing local information about
neighbors to help each other locating resources.

P2P storage systems (P2PSS) have emerged as a cheap, scalable,
self-repairing and fault-tolerant solution. Such distributed systems
rely on data fragmentation and distributed storage. Files are par-
titioned into fixed-size blocks that are themselves partitioned into
fragments. Fragments of same block of data are usually stored on
different peers. Given this configuration, a user wishing to retrieve
a given data would need to perform multiple downloads, generally
in parallel for an enhanced service, thereby saturating the download
capacities of peers and reducing the download time. To mitigate
churn of peers, redundancy mechanisms and a recovery process are
needed. Redundant fragments are continuously injected in the sys-
tem, thus maintaining data redundancy above a minimum desired
level. When the amount of unreachable fragments attains a prede-
fined threshold, a recovery process is initiated.

This paper considers systems relying on erasure codes to gener-
ate the redundant fragments. If s denotes the initial number of
fragments of any block of data and r denotes the amount of ad-
ditional redundant fragments generated using an erasure code algo-
rithm (e.g. [21]) taking as input the s original fragments, then any
s out of the s + r fragments of a given block of data can be used
to generate a new redundant fragment or to reconstruct the original
block. Observe that this notation covers the case of replication-
based systems, with s = 1 and r denoting the number of replicas.
In fact, when a full-replication redundancy mechanism is used, the
system will store r additional copies of each block of data over r
different active peers in the network.

The recovery process includes the download of s fragments in order
to generate one or more missing fragments of a given block of data,
stored in the system initially as s + r fragments (as the case of
downloading the full block of data).

P2PSS may rely on a central authority that initiates the recovery
process when necessary. This central authority could reconstruct
all missing fragments of a given block of data and remotely store



them on as many new peers. By “new” peers, we refer to peers
that do not already store fragments of the same block of data. Al-
ternatively, secure agents running on new peers could reconstruct
by themselves missing fragments to be stored on the peers disks.
A more detailed description of P2PSS, their recovery schemes and
their policies is presented in Section 2.

Although the literature on modeling distributed systems, simulating
P2P systems and parallel downloading is abundant, in particular the
file sharing and resources allocation protocols (see [13, 23, 8]; non-
exhaustive list), the P2PSS, in particular, the recovery process, is a
subject that has not been analyzed.

K. Eger et al. [8] implemented a BitTorrent file sharing protocol in
NS-2 and compared packet-level simulation results with flow-level
for the download time of one file among an active peer-set. They
showed that the propagation delay can significantly influences the
download performance of BitTorrent.

V. Aggarwal et al. [1] implemented Gnutella file sharing protocol in
SSFNet simulator and compared also the packet-level and the flow-
level simulation results. They reflected the user behavior models in
their simulation framework.

Q. He et al. [13] implemented a framework of P2P file sharing, in
particular Gnutella, for NS-2, and they showed how Gnutella sys-
tem performance can be impacted by the network characteristics.

1.1 Motivation
There have been recent modeling efforts focusing on the perfor-
mance analysis of P2PSS in terms of data durability and data avail-
ability. In [20], Ramabhadran and Pasquale analyze systems that
use full replication for data reliability. They develop a Markov
chain analysis, then derive an expression for the lifetime of the
replicated state and study the impact of bandwidth and storage lim-
its on the system. This study relies on the assumption that the re-
covery process follows an exponential distribution. Observe that
in replication-based systems, the recovery process lasts mainly for
the download of one fragment of data that is equal to one block
as the block here is not fragmented. In other words, the authors
of [20] are implicitly assuming that the fragment download time is
exponentially distributed.

In [2], we developed a more general model than that in [20], which
applies to both replicated and erasure-coded P2PSS. Also, unlike
[20], the model presented in [2] accounts for transient disconnec-
tions of peers, namely, the churn in the system. But we also as-
sumed the recovery process to be exponentially distributed. How-
ever, this assumption can differ between replicated and erasure-
coded P2PSS, as in the latter systems the recovery process is much
more complex than in the former systems. Furthermore, the recov-
ery process differs from centralized to distributed implementation.

In both studies, findings and conclusions rely on the assumption
that the recovery process is exponentially distributed. However,
this assumption is not supported by any experimental data. To the
best of our knowledge, there has been no simulation study charac-
terizing this process in real P2PSS.

It is thus essential to characterize the distribution of download and
recovery processes in P2PSS. Evaluating these distributions is cru-
cial to validate (or invalidate) some key assumptions made in the
above works. Moreover, simulation is critical to the building and

better understanding of these systems, in particular the availability
and durability of data with the presence of realistic topologies, the
underlying network protocols and peers characteristics.

The main objective of this paper is the description of the simu-
lator itself, but we will show also in Section 4 through intensive
simulations of many realistic scenarios that (i) the fragment down-
load time follows closely an exponential distribution and (ii) frag-
ment download times are weakly correlated in some interesting
scenarios. Given that in erasure-coded systems, the block down-
load time consists of downloading several fragments in parallel, it
follows that the recovery process should follow approximately a
hypo-exponential distribution of several phases. (This is nothing
but the sum of several independent random variables exponentially
distributed having each its own rate [12]). We found that this is
indeed the case in some interesting contexts. We realized that be-
side the fact that the total workload is equally distributed over the
active peers, there are two main reasons for the weak correlation
between concurrent downloads as observed in some scenarios: (i)
the good connectivity of the core network and (ii) the asymmetry in
peers upstream and downstream bandwidths. So, as long as the bot-
tleneck is the upstream capacity of peers, the fragment download
times are close to be independent. Results of this simulator suggest
that the models presented in [2] give accurate results on data dura-
bility and availability only in replicated P2PSS (as in [20]). The
case of erasure-coded systems was inaccurately studied if the three
above situations are met in the network.

Building on these results, we have incorporated into the model of
[2] the assumption that fragment download and upload times (in-
stead of the block download times or the recover times) are expo-
nentially distributed with parameters α and β, respectively. The
resulting models, appeared in [5], characterize data lifetime and
availability in P2PSS storage systems that use either replication or
erasure codes, under more realistic assumptions and well-known
contexts as supported by results of the simulator presented in this
paper and in [6].

1.2 Why do we use simulations and why can

NS-2 be a good candidate?
To collect traces of fragment download/upload times, of block down-
load times and of recovery times, one can choose to perform simu-
lations or experimentations either on testbeds or on real networks.
We would like to consider situations where peers are either ho-
mogeneous or heterogeneous, different underlying network topolo-
gies, and different propagation delays in the network. Also, we
would like to consider systems with a large number of peers. To
achieve all this with experiments over real networks is very diffi-
cult. Setting up experiments over a dedicated network like Planet-
Lab [19] would require a long time, and there will be limitations
on changing the topology and the peers characteristics. In addition,
measurement-based studies do not allow to evaluate performance
in advance of building and deploying the system, hence the impor-
tance of simulations at reasonable scale for the thorough evaluation
of P2PSS before their deployment. We find it most attractive to im-
plement the distributed storage protocol in a well-known network
simulator and to simulate different scenarios. We choose NS-2 as
network simulator because it is an open source discrete event sim-
ulator targeted at networking research. NS-2 provides substantial
support for simulation of TCP and routing and it is well known and
well validated.

Note that in view of the application specifications and objectives



which are different from file sharing, grid computing or video stream-
ing systems, involving some thousands (1–3) of peers in a simula-
tion has to conclude realistic results and helps to understand the
system behavior.

The rest of this paper is organized as follows. Section 2 overviews
the storage protocol that we consider. Section 3 describes the sim-
ulation architecture, the methodology and the setup of the simula-
tions. In Section 4, some experimental results are discussed. Last,
Section 5 concludes the paper and highlights the future work.

2. SYSTEM DESCRIPTION
We will describe in this section the storage protocol that we want
to simulate:

• Files are partitioned into fixed-size blocks (the block size
is SB) that are themselves partitioned into s fragments (the
fragment size is SF ).

• Each block is stored as a total of s + r fragments, r of them
are redundant and generated using erasure codes.

• Fixing block and fragment sizes helps to fix the value of the
parameters s and r in the system for all stored blocks. These
s + r fragments are stored over s + r different peers.

• Mainly for privacy issues, a peer can store at most one frag-
ment of any block of data.

• Only the latest known location of each fragment is tracked,
whether it is a connected or disconnected peer.

• To overcome churn and maintain data reliability and avail-
ability, unreachable fragments are continuously recovered.

• The number of connected peers at any time is typically much
larger than the number of fragments associated with a block
of data, i.e., s + r. Therefore, there are always at least s + r
new connected peers which are ready to receive and store
fragments of a block of data.

• Once an unreachable fragment is recovered, any other copy
of it that “reappears” in the system due to a peer reconnec-
tion is simply ignored, as only one location of the fragment
(the newest one) is recorded in the system. Similarly, if a
fragment is unreachable, the system knows of only one dis-
connected peer that stores the unreachable fragment.

Two implementations of the recovery process are considered. This
process is triggered for each block whose number of unreachable
fragments reaches a threshold k.

In the centralized implementation, a central authority will: (1) down-
load in parallel s fragments from the peers which are connected,
(2) reconstruct at once all unreachable fragments (by now consid-
ered as missing), and (3) upload them all in parallel onto as many
new peers for storage. In fact, Step 2 executes in a negligible time
compared to the execution time of Steps 1 and 3 and then will be
neglected in the current simulator but can be added in the future.
Step 1 (resp. Step 3) execution completes when the last fragment
completes being downloaded (resp. uploaded).

In the distributed implementation, a secure agent on one new peer
is notified of the identity of one out of the k unreachable fragments

for it to reconstruct it. Upon notification, the secure agent (1) down-
loads s fragments from the peers which are connected to the storage
system, (2) reconstructs the specified fragment and stores it on the
peer’s disk; (3) the secure agent then discards the s downloaded
fragments so as to meet the privacy constraint that only one frag-
ment of a block of data is held by a peer. This operation iterates
until less than k fragments are sensed unreachable and stops if the
number of missing fragments reaches k − 1. The recovery of one
fragment lasts mainly for the execution time of Step 1; the recovery
is simulated to be completed then as soon as the last fragment (out
of s) completes being downloaded.

When k = 1, the recovery process is said to be eager; when k ∈
{2, . . . , r}, the recovery process is said to be lazy.

3. IMPLEMENTATION DETAILS
This section describes the base classes P2P_Storage_Directory,
P2P_Storage_App, P2P_Storage_Wrapper and data structure. In
fact, we follow the same methodology as the Web cash application
presented in the NS Manual (cf. [9, Chap. 40]), and use some of the
technical ideas presented in [9, Chap. 39,41] of the NS Manual, [8]
and [4]. Therefore, we will discuss some selected pieces of code
and sketch the description of the basic APIs, through which ap-
plications find data and request services from underlying transport
NS agents. We implemented the P2PSS application in NS-2 (ver-
sion 2.33) following the architecture depicted in Fig. 1 where the
P2P_Storage_Wrapper object is an intermediate class that passes
the data between the FullTcp transport agent object in NS-2 and
the P2P_Storage_App class that represent the P2PSS application
and takes care of crating the connections between applications.

Similarly to any simulation that uses NS, we define the basic pa-
rameters such as maximum number of stored files, maximum num-
ber of peers, block size, fragment size, amount of redundancy and
the recovery threshold at OTcl level in a TCL script as follows.

Listing 1: Simulation scenario setup

s e t NS [ new S i m u l a t o r ]
#Number of p e e r s

s e t N_P 1000
s e t I n t e r _ a r r i v a l _ r e q 3

# number of f i l e s
s e t N_F 10000

blocks_availability_
active_peers_set_

peers_set_
files_set_

packets

NS−2 Agent (FullTcp)

Storage Directory 

reg_files()
distribute_fragments()

randomChoice()

add_peer()

recover()
stopApp()

P2PSS Application

join()
request_frag()

send(bytes)
recv(bytes)

P2PSS Agent Wrapper

send_data(AppData)
process_data(AppData)

leave()

handle_request()
handle_frag()

Figure 1: Simulator architecture.



s e t max_reques t 1000
# overhead s t o r a g e r / s

s e t o h _ s t 1 . 5
# r e c o v e r y t h r e s h o l d k
s e t k_ th 1
# a p p l i c a t i o n type , e−l i b r a r y − l i k e =1
# buckup−l i k e t y p e = 0
s e t app_ type 1
# d a t a u n i t s i z e s

s e t S_F_KB [ expr 16 ∗1024]
s e t S_b_KB [ expr 4 ∗1024]
s e t S_Frag_KB [ expr 1 ∗1024]

# s e t MSS f o r TCP
Agent / TCP / F u l l T c p s e t s e g s i z e _ 1460
# c r e a t e i n s t a n c e of sys t em d i r e c t o r y
s e t d i r [ new P 2 P _ S t o r a g e _ D i r e c t o r y $N_P . . . ]

We instantiate then from P2P_Storage_Directory class the system
directory object. The basic function members of the class P2P_Sto-
rage_Directory which is implemented as a child class of TclObject,
as shown in Listing 2, are found in Table 1

Listing 2: Definition of the system directory class

c l a s s P 2 P _ S t o r a g e _ D i r e c t o r y : p u b l i c T c l O b j e c t
{

p u b l i c :

/ / The C o n s t r u c t o r of t h e c l a s s
P 2 P _ S t o r a g e _ D i r e c t o r y ( i n t N_P , i n t N_F , . . . ) ;

. . .
p r o t e c t e d :

/ / T c l command i n t e r p r e t e r
i n t command ( i n t ar , c o n s t c h a r ∗ c o n s t ∗ a rgv ) ;

. . .
} ;

To make it possible to create an instance of the system directory
object in OTcl, we have to define a linkage object that must be
derived from TclClass. This is illustrated in Listing 3. In fact, once
NS is started, it executes the constructor for the static variable
“class_p2p_storage_directory”, and thus an instance of
“P2P_Storage_DirectoryClass” is created.

Listing 3: The linkage object P2P_Storage_DirectoryClass be-

tween OTCL and C++ class P2P_Storage_Directory

s t a t i c c l a s s P 2 P _ S t o r a g e _ D i r e c t o r y C l a s s :
p u b l i c T c l C l a s s

{
p u b l i c :

P 2 P _ S t o r a g e _ D i r e c t o r y C l a s s ( ) :
T c l C l a s s ( " P 2 P _ S t o r a g e _ D i r e c t o r y " ) {}
T c l O b j e c t ∗ c r e a t e ( i n t argc , . . . )

{
i f ( a r g c != 10)

r e t u r n NULL;
e l s e
. . .

}
} c l a s s _ p 2 p _ s t o r a g e _ d i r e c t o r y ;

We assume that there is a given number of stored files in the sys-
tem and before that peers request data, the system directory ob-
ject distributes the s + r fragments of each block of data of all
files over s + r peers chosen uniformly among all the registered
peers in the system. This is the task of the member functions “dis-
tribute_fragments()” and “reg_file()”, where the system directory
has a private vector containing pointers to the meta-data of the
stored files. Listings 4 and 5 depict the details of the meta-data
(file structure) of any stored file and the member files_set_ respec-
tively. In fact, a DHT system [15] does not choose randomly peers
in the network to store the fragments of each block but the distri-
bution of data depends on the identifier space, the identifier of each
node (its position in the space) and the hash value of the block it-
self. However, it is proved in [15] that DHT makes the number of
keys per node uniformly distributed with high probability. In other
words, with high probability each node is responsible for O(1/N)
of the identifier space where N is the number of peers. It is proved
as well in [23] that the cost of the lookup phase in Chord-like pro-
tocol grows as the logarithm of the number of nodes. As a result,
and in view of the fact that we involve some hundreds to some
thousands of nodes, we neglect the lookup cost with respect to the
download or recovery times and we do not implement DHT to re-
duce the complexity. In other words, we use the same class of the
system directory for both recovery process implementations and we
assume that the system has a perfect knowledge of the state.

Listing 4: The file_list_entry data structure

t y p e d e f s t r u c t f i l e _ l i s t _ e n t r y {
i n t f i l e _ i d ;
l ong f i l e _ s i z e ;
l ong b l o c k _ s i z e ;
l ong f r a g _ s i z e ;
i n t N_blocks ; / / f i l e _ s i z e / b l o c k _ s i z e
i n t N_f rags ; / / s
i n t t o t a l _ N _ f r a g s ; / / s+ r

/∗ map between each block ’ i d ( key ) and a
l i s t o f s + r peer ’ s id , on which t h e
f r a g m e n t s a r e s t o r e d ∗ /

map< i n t , i n t ∗> > b l o c k _ n o d e _ i d _ l i s t _ ;
map< i n t , v e c t o r <Node∗> > b l o c k _ n o d e _ l i s t _ ;
map< i n t , i n t > b l o c k s _ a v a i l a b i l i t y ;
map< i n t , bool > b l a c k _ l i s t ; / / f a l s e == l o s t

} ;

Listing 5: The private member files_set_ of the

P2P_Storage_Directory class

v e c t o r < f i l e _ l i s t _ e n t r y ∗> f i l e s _ s e t _ ;

After creating the instance of the storage directory at the OTcl level,
we allocate next the NS nodes and we create the underlying net-
work topology by using for example the GT-ITM tool [3] (see more
details in Section 3.1). We instantiate from P2P_Storage_App class
the applications (peers) where a pointer at the Node class must be
set to the attached application running on that Node (Agent) which
will be used to pass data from an Agent to an Application. In fact,
we did minor changes to the files: tcp-full.cc, tcp-full.h, node.cc,
node.h, agent.cc and agent.h to support the collaboration between
nodes, agents and the P2PSS applications.

Listing 6: OTcl level, creating nodes and application



Table 1: The basic prototypes of P2P_Storage_Directory class
Method Functionality

map <int,vector<Node*> > get_peer_list_(int file_ID) gets a list of peers (s usually) for each block to download a specific file
void add_peer(Node* peer) adds new peer to the directory
void reg_file(file_list_entry* file) adds the file entry to the files_set_
void stopApps() stops all the applications and frees the memory

when the maximum simulation time or the maximum number
of requests are reached

void del_peer(Node* peer) deletes peer from active_Peer_set_ when leaving the system
void go_off(long id, Node * node_) reduces the blocks availability, checks the recovery threshold, del_peer
void go_on(long id, Node * node_) increases the blocks availability if not recovered, add_active_peer
int randomChoice( int min, int max ) chooses an active peer randomly
virtual void distribute_fragments() distributes the fragments of blocks of the registered files
bool recovery(int block_id, int missing) recovers missing fragments of a given block

s e t node ( $ i ) [ $ns node ]
. . .

s e t app ( $ i ) [ new P2P_Storage_App $ d i r
$node ( $ i ) $app_ type $C_up ( $ i )
$ I n t e r _ a r r i v a l _ r e q max_reques t ]
. . .

We consider in fact two different storage applications, a backup-
like application and an e-library-like application (“e” stands for
“electronic”). In the first, a file stored in the system can be re-
quested for retrieval only by the peer that has produced the file. In
the second, any file can be downloaded by any peer in the system.
In both applications, the storage protocol follows the description of
Section 2.

Two types of requests are issued in the system. The first type is
issued by the users of the system: a user issues a request to retrieve
one of its files in the backup-like application, or a public document
in the e-library-like application. The second type consists of man-
agement requests. Usually, these are issued by the central authority
(in the centralized implementation of the recovery process) or by
a peer (in the distributed implementation) as soon as the threshold
k is reached for any stored block of data. In the simulator, these
management requests are issued by the system directory object.

File download requests are translated into (i) a request to the di-
rectory service to obtain, for each block of the desired file, a list
of at least s peers that store fragments of this block, (ii) opening
TCP connections with each peer in the said list to download one
fragment, (iii) registering some statistical information such as the
start and the completion time of the downloaded data. All down-
load requests issued by a given peer form a Poisson process. This
assumption is met in real networks as found in [11]

Recovery requests are issued only in the scenarios where there is
churn in the network. A recovery request concerning a given block
translates into (i) a request from the directory service to a server
in the centralized-repair scheme (we consider explicitly the first
registered peer as the server in order to simulate the centralized im-
plementation) or any active peer that is in charge of (ii) obtaining a
list of at least s peers that store fragments of said block, (iii) open-
ing TCP connections with each peer in the said list to download
one fragment. Once all s fragments have been downloaded, the
process proceeds with Steps 2 and 3, according to the implementa-
tion, as explained in Section 2. Last, the storage directory updates

the system state at the end of the operation, namely it increases the
availability level of the blocks of interest and points to the right
locations of its fragments or otherwise it adds the lost block in a
black list if the operation failed.

The P2PSS application uses many timers to handle events. In par-
ticular, a timer for scheduling the next file’s request, a timer for
scheduling the next failure moment once a peer becomes on line,
and a timer for scheduling the next moment to rejoin the system
once a peer becomes off line. We define the FileRequestTimer,
OffLineTimer and OnLineTimer classes that are derived from the
“TimerHandler” class, and write their “expire()” member functions
to call file_request(), leave() and join() APIs respectively. Then,
we included an instance of each timer object as a private member
of P2P_Storage_App object. Listings 7 and 8 show the example of
FileRequestTimer and its expire member function implementation.

Listing 7: FileRequestTimer implementation

c l a s s F i l e R e q u e s t T i m e r : p u b l i c T imerHandle r
{
p r o t e c t e d :

P2P_Storage_App ∗ app_ ;

p u b l i c :
F i l e R e q u e s t T i m e r ( P2P_Storage_App∗ app ) :

T imerHandle r ( ) , app_ ( app ) {}
i n l i n e v i r t u a l vo id e x p i r e ( Event ∗ ) ;

} ;

Listing 8: Expire function of FileRequestTimer

void F i l e R e q u e s t T i m e r : : e x p i r e ( Event ∗ ) {
app_−> f i l e _ r e q u e s t ( ) ;

}

Typically, applications access network services through sockets.
NS-2 provides a set of well-defined API functions in the transport
agent to simulate the behavior of the real sockets. Therefore, the
P2P_Storage_Wrapper class handles calling the appropriate APIs
when two applications want to communicate in order to (i) attache
first the Full Tcp agent to both NS nodes via attach-agent and (ii)
call then connect() instproc to set each agent’s destination target to
the other and last (iii) place one of them in LISTEN mode. We use



in fact Full-Tcp agents since they support bidirectional data trans-
fers.

Similar to what is done in the web cash application (see tcpapp.cc)
we can model the underlying TCP connections as a FIFO byte
stream, and then we will create same buffer management stuff.
First, the P2P_Storage_Ms_Buf that contains a part of the mes-
sages such as the Request message and the Fragment message. Sec-
ond, P2P_Storage_Msg_BufList implements a FIFO queues that
will store all the sent messages (requests or data) on the sender side
until they correctly and completely arrive to the destination side.
In other words, there is no support in the class “Agent” to trans-
mit different applications data and messages. Instead, as all data
are delivered in sequence, we can view the TCP connections as a
FIFO pipes, and the transfer of the application data will be emu-
lated as follows. We first provide buffer for the application data at
the sender to store the messages to be sent, next we use the Agent’s
API “sendmsg(int nbytes, const char *flags = 0)” to send a stream
of an equivalent data size of the stored messages, then we count
the bytes received at the destination. When the receiver has got all
bytes of the current data or message transmission (first message in
the FIFO on the sender side toward the receiver), then the receiver
gets the data directly from the FIFO’s sender. These are the tasks
of the functions “send_data()” and “send()” on the sender appli-
cation side and “process_data()” and “recv()” on the received side
as shown in Fig.1 and described in Table 3, which use in turn the
prototypes of the FIFO queues depicted in Table 2, where a FIFO
queue is represented by the P2P_Storage_Msg_BufList class.

3.1 Network Topology
Having a representative view of enterprise networks or the Internet
topology is very important for a simulator to predict the behavior
of a network protocol or application if it were to be deployed. In
fact, the simulated topology often influences the outcome of the
simulations. Realistic topologies are thus needed to produce realis-
tic simulation results. Most of existing simulation studies have used
representations of a real topology (e.g. the Arpanet), simple models
(e.g. a star topology), or random flat graphs (i.e. non-hierarchical)
that are generated by Waxman’s edge-probability function [24].

However, random models offer very little control over the struc-
ture of the resulting topologies. In particular, they do not capture
the hierarchy that is present in the Internet. Recently, tools such as
BRITE [17] and GT-ITM [3] have been designed to generate more
complex random graphs, that are hierarchical, to better approxi-
mate the Internet’s hierarchical structure.

To produce realistic topologies for our simulations, we use the tool
GT-ITM [3] to generate a total of six random graphs. Three levels
of hierarchy are used corresponding to transit domains, stub do-
mains, and local area networks (LANs) attached to stub domains.
Each graph has one transit domain of four nodes; each of the nodes
is connected to two or three other transit nodes. Each transit node
is connected on average to two stub nodes, and each stub node is
in turn connected on average to four routers. Behind every router
there is a certain number of fully-connected peers constituting a
LAN. The first of these six graphs is depicted in Fig. 2, where
we have used the notation TN for “transit node” and SN for “stub
node”.

3.2 Experiments Setup
We will present results of four experiments that represent differ-
ent contexts. Experiments 1 and 2 used the random graphs gen-
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Figure 2: Three-level hierarchical random graph of Experi-

ment 1.

erated with the GT-ITM tool as detailed earlier, whereas a simple
star topology is used in Experiments 3 and 4. Regarding the intra-
and inter-domain capacities, we rely, in the first experiment, on the
information provided by RENATER [22] and GÉANT [10] web
sites. In those networks, the links are well-provisioned. To have
a more complete study, we consider, in Experiment 2, links with
smaller capacities, as can be seen in rows 4–6 of Table 4. Prop-
agation delays over TN-SN edges vary from edge to edge as can
be seen in row 7 of Table 4. Let Cu and Cd denote respectively
the upload and download capacity of a peer. To set these values,
we rely mainly on the findings of [11] and [14]. The experimental
study of file sharing systems and of the Skype P2P voice over IP
system [11] found that more than 90% of users have upload capac-
ity Cu between 30Kbps and 384Kbps. However, the measurement
study [14] done on BitTorrent clients in 2007 reports that 70% of
peers have an upload capacity Cu between 350Kbps and 1Mbps
and even 10% of peers have an upload capacity between 10Mbps
and 110 Mbps. The capacities that we have selected in the simu-
lations vary uniformly between the values of the ISDN and ADSL
technologies; they can be found in rows 8–9 of Table 4. Observe
that, except in Experiment 4, peers are heterogeneous. In addi-
tion, we consider a symmetric upload/download peer’s capacities
in Experiment 4 with Cu = Cd = 384kbps. We will attribute
the propagation delays over routers-peers edges randomly between
1ms and 25ms, except in Experiment 4 where a fixed delay of 2ms
is considered as can be seen in row 10 of Table 4.

In Experiments 1 and 2, there exists a background traffic between
three pairs of routers across the common backbone. This traffic
consists of random exponential and CBR traffic over UDP protocol
and FTP traffic over TCP.

In each of the experiments, the amount of data transferred between
routers and peers in the system during the observed time (that is
from 4e+5 up to 5e+6 seconds) are, on average, 4.5–9 GB of P2P
application traffic, and when applicable 150–350 MB of FTP, 200–
400 MB of CBR, and 250–500 MB of the exponential traffic. In
each of the experiments, the P2P traffic is well distributed over the



Table 2: The basic prototypes of P2P_Storage_Msg_BufList class
Method Functionality

void insert(P2P_Storage_Msg_Buf *d) stores msgs of the sender until the reception of their acks
P2P_Storage_Msg_Buf* detach() if the data is received by the destination, deletes them from the FIFO buffer
int size() returns the current size of the buffer

Table 3: The basic prototypes of P2P_Storage_App and P2P_Storage_Wrapper classes
Method Functionality

virtual void start() after calling the constructor, App starts requesting files with
an inter-request times chosen from an exponential distribution

double exponential(double lambda) generates a random number from an exponential distribution
int create_conn(Node *dst,int file_id,int block_id, int frag_id) establishes a connection with the destination
virtual void send_data(P2P_Storage_Msg m, int s_id, int dst_id) Application sends msg to the wrapper agent
virtual void send(int nbytes) wrapper agent calls sendmsg() of the tcp agent
void recv(int nbytes, int socket_id) the NS agent announces the App each time a packet arrives
void process_data(P2P_Storage_Msg msg, int s_id) handles the received data
void close_connections(int conn_id) requests the agent to close the connections after completing

a download if no other data to be sent or to be received
void file_request(int file_id) creates connections and sends requests to get the file after

calling the Directory member function get_peer_list_(int file_id)
void request_frag(int conn_id, int f_id, b_id, int fr_id, int dst_id) requests a fragment from a peer
void handle_request(P2P_Storage_Msg m, int conn_id) handles a request, creates a fragment message and sends it
void handle_frag(P2P_Storage_Msg m, int conn_id) called when the receiver gets all bytes of the current transmission,

updates the related members, increases the number of completed
fragments, calls reg_frag_traces(), and frag_downloaded()

void reg_frag_traces(int file_id, int b_id, int fr_id, int dst_id) registers the information about a completely received fragment
void frag_downloaded(int f, int b, int frag, int conn,int dst) after completing a download of fragment,

calls close_connections(), removes the uploader from the map
container between block_id and uploader_id

void join() scheduled by the OnLineTimer, initializes the instance of
FileRequestTimer and the OffLineTimer, informs the directory that
the peer is active, and calls go_on() function of the directory class

void leave() scheduled by the OffLineTimer, closes all the connections,
cleans the memory, initializes the instance of OnLineTimer,
informs the directory about the failure
and calls go_off() function of the directory class

int randomChoice( int min, int max ) chooses a file to be requested

active peers.

Experiment 2 simulates a backup-like application whereas the other
experiments simulate an e-library-like application. Churn is con-
sidered only in Experiments 2 and 3. As a consequence, redun-
dancy is added and maintained only in these experiments. The
storage overhead r/s is 1 and 0.5 respectively. We consider the
distributed implementation of the recovery process in Experiment
2, and the centralized implementation of the same in Experiment 3;
the eager policy (k = 1) is considered in both experiments. In other
words, once a peer disconnects from the system, all fragments that
are stored on it must be recovered.

Churn is implemented as follows. We assume in the simulations
that the successive on-times (respectively off-times) of a peer are
independent and identically distributed random variables with a
common exponential distribution function with parameter µ1 > 0
(respectively µ2 > 0). This assumption is in agreement with the
analysis in [20]. We consider 1/µ1 = 3 hours and 1/µ2 = 1 hours.

Download requests are generated at each peer according to a Pois-
son process. This assumption is met in real networks as found in
[11]. We assume all peers have the same request generation rate,
denoted λ. We vary the value of λ across the experiments as re-
ported in row 16 of Table 4.

The last setting concerns the files that are stored in the P2PSS. Frag-
ment sizes SF (resp. block sizes SB) in P2P systems are typically
between 64KB and 4MB each (resp. between 4MB and 9MB each).
We will consider in most of our experiments SF = 1MB except in
Experiment 2 where SF = 512KB. We consider SB = 8MB in
Experiments 1 and 3, and SB = 4MB in Experiments 2 and 4.
Therefore s = 4 or 8. As for the file size, we assume for now that
it is equal to the block size. Therefore, the file download size is ac-
tually the block download size. Observe that the recovery process
is related to the block download time and not to the file download
time.

Table 4 summarizes the key settings of the experiments.



Table 4: Experiments setup
Experiment number 1 2 3 4

Topology random random star star
Number of peers 960 640 480 250
TN-TN capacities (Gbps) 1 1 — —
TN-SN capacities (Mbps) 622 10–34 — —
SN-routers capacities (Mbps) 34–155 4–10 — —
TN-SN delays (ms) 5–25 5–25 — —
Cu of peers (Kbps) 150–1000 256–700 256–700 384
Cd of peers (Kbps) 8 × Cu 10 × Cu 2048 384
routers-peers delays (ms) 1–20 1–10 1–25 2
Background traffic yes yes no no
Application type e-library backup e-library e-library
Peers churn no yes yes no
Recovery process — distributed centralized —
r — s s/2 —
1/λ (min.) 80 160 16 1/60
SB (MB) 8 4 8 4
SF (KB) 1024 512 1024 1024
s 8 8 8 4

4. EXPERIMENTAL RESULTS
In this section, we present the results of our simulations and the
inference that we can draw from them. For each experiment, we
collect the fragment download time, the block download time and
the recovery time when applicable. In Experiment 2 (distributed
recovery), the two latter durations are collected to the same dataset
as there is no essential difference between them. Having collected
these samples, we compute the sample average and use MLE, LSE
and EM algorithms to fit the empirical distributions. Concerning
the fragment download time, we perform the Kolmogorov-Smirnov
test [16] on the fitted distribution. In the following, we will present
selected results from Experiments 1, 3 and 4. The results of the
second experiment are briefly reported in Tables 5–6.

4.1 Experiment 1
We have collected 76331 samples of the fragment download time
(cf. column 2 of Table 5). The empirical cumulative distribution
function (CDF) is depicted in Fig. 3(a). We can see that it is re-
markably close to the exponential distribution. Two exponential
distributions are plotted in Fig. 3(a), each having a different param-
eter, derived from a different fitting technique. The two techniques
that we used are MLE and LSE. The parameter returned by MLE
is nothing but the inverse of the sample average and is denoted α;
see row 2 of Table 5.

Beyond the graphical match between the empirical distribution and
the exponential distribution, we did a hypothesis test. Let X be a
vector storing the collected fragment download times. The Kolmog-
orov-Smirnov test compares the vector X with a CDF function, de-
noted cdf (in the present case, it is the exponential distribution), to
determine if the sample X could have the hypothesized continuous
distribution cdf . The null hypothesis is that X has the distribu-
tion defined in cdf , the alternative one being that X does not have
that distribution. We reject the null hypothesis if the test is signif-
icant at the l% level. In Experiment 1, the null hypothesis with
α = 1/40.35 is not rejected for l = 7%.

Looking now at concurrent downloads, we have found that these

are weakly correlated and close to be independent. Beside the fact
that the total workload is equally distributed over the active peers,
there are two main reasons for the weak correlation between con-
current downloads as observed in Experiment 1: (i) the good con-
nectivity of the core network and (ii) the asymmetry in peers up-
stream and downstream bandwidths. So, as long as the bottleneck
is the upstream capacity of peers, the fragment download times are
close to be independent.

Regarding the block download times, we have collected 9197 sam-
ples. The sample average is given in row 7 of Table 5. The empir-
ical CDF is plotted in Fig. 3(b). We followed the same methodol-
ogy and computed the closest exponential distribution using MLE.
However, the match between the two distribution appears to be
poor, and actually, the alternative hypothesis is not rejected in this
case.

To find a distribution that will more likely fit the empirical data, we
make the following analysis. To get a block of data, s fragments,
stored on s different peers, have to be downloaded. This is more
efficiently done in parallel and this is how we implemented it in the
simulator. We have seen that the download of a single fragment is
well-modeled by an exponential random variable with parameter α.
Also, concurrent downloads were found to be close to independent.
Therefore, the time needed for downloading s fragments in paral-
lel is distributed like the maximum of s “independent” exponential
random variables, which, due to the memoryless property (see also
[12]), is the sum of s independent exponential random variables
with parameters sα, (s − 1)α, . . . , α. This distribution is called
the hypo-exponential distribution and its expectation is

E[T ] = 1/α
s

X

i=1

1/i (1)

where T denotes the block download time (or equivalently the dis-
tributed recovery duration).

In Experiment 1, E[T ] = 109.66 seconds, while the sample aver-
age is equal to 102.75; cf. column 2 of Table 6. The relative error is



Table 5: Summary of experiments results
Experiment number 1 2 3 4

Average frag. down. time = 1/α (sec.) 40.35 34.7367 40.722 135.867
Samples number 76331 9737 4669 37200
tm (sec.) 8.77 6.84 16.4 25.377
1/α̂ (sec.) 39.351 32.106 32.05 110.49
1/β, 1/β̂ (sec.) — — 6.22, 5.11 —
Average of recovery or block down. time (sec.) 102.75 92.4762 89.848 205.19
Samples number 9197 589 561 9300

Table 6: Block download time or recovery process: Validation of the approximations introduced in Eqs. (1)–(3)
Experiment number 1 2 3 4

Sample average 102.75 92.48 89.85 205.19
Inferred average from Eqs. (1), (2) 109.66 94.40 116.89 283.05
Relative error (%) 6.7 2.1 30.1 37.95
Inferred average from Eqs. (4), (3) 106.95 94.10 92.21 255.564
Relative error (%) 4.1 1.8 2.6 24.55

6.7%. The hypo-exponential distribution with s phases and param-
eters sα, (s − 1)α, . . . , α is plotted in Fig. 3(b). This distribution
has a very good visual match with the empirical CDF of the block
download time.

As a next step, we apply an EM algorithm [7] to find the best
hypo-exponential distribution with s phases that fits the empiri-
cal data. In particular, we use EMpht [18], which is a program
for fitting phase-type distributions to collected data. We do not
plot the outcome of this program in Fig. 3(b) as it mainly over-
laps with the hypo-exponential distribution with s phases and pa-
rameters sα, (s − 1)α, . . . , α that is already plotted there. After
performing the Kolmogorov-Smirnov test, we find that the null hy-
pothesis is not rejected for l = 7% (same significance level as for
the fragment download times).

We conclude the analysis of the first experiment’s results with four
important points:

• The exponential assumption on the block download time is
not met in realistic simulations.

• The fragment download time could be modeled by an expo-
nential distribution with parameter α equal to the inverse of
its average.

• Download times are weakly correlated and close to be inde-
pendent as long as the bottleneck is the upstream capacity of
peers.

• As a consequence, the block download time could be mod-
eled by a hypo-exponential distribution with s phases and
parameters sα, (s − 1)α, . . . , α.

However, the null hypothesis for the block download time or
the recovery process, that it follows hypo-exponential distri-
bution, is not always rejected. This is the case of Experi-
ments 3 and 4, as seen next.

4.2 Experiment 3
In this experiment, peers are not always connected. Each time
a peer disconnects from the network, all the fragments that were

stored on his disk will have to be recovered. The recovery process
is implemented in a centralized way.

The empirical CDF of the fragment download time and that of the
recovery time are reported in Fig. 4. Following the same method-
ology as that used to analyze the results of Experiment 1, we find
that the alternative hypothesis on the recovery process distribution
is not rejected in spite of the fact that the system workload is small
and the bottleneck is the upstream capacity of peers. The relevant
parameters are reported in column 4 of Tables 5 and 6.

There is a simple reason for that. We actually know that the down-
load of a single fragment cannot be infinitely small, as suggested
by the exponential distribution. Let tm be the duration of the fastest
fragment download among all s downloads. All other (slower)
downloads are necessarily bounded by tm. The effect of this min-
imum value can be neglected as long as tm is negligible with re-
spect to the average fragment download time. Otherwise, we need
to consider that the fragment download/upload time is composed
of two components: (i) a (constant) minimum delay tm and (ii) a
random variable distributed exponentially with parameter α̂ (resp.
β̂). This random variable models the collected data, shifted left
by the value of tm. The minimum delay can be approximated
as RTT + (SF + Headers)/ max{Cu}, where RTT stands for
round-trip time.

The value of tm is clearly visible in Fig. 4(a). We plot in this
figure the empirical CDF of the fragment download time and the
MLE exponential fits to both the collected and shifted data. The
null hypothesis is rejected for the collected data but not rejected for
the shifted data.

This is the same case of the recovery process of Experiment 2. Re-
peating the same analysis than in Section 4.1, and assuming that the
fragment upload time follows an exponential distribution with pa-
rameter β, then the centralized recovery process, denoted Tc, would
be modeled by a hypo-exponential distribution with s + k phases
(k = 1 in Experiment 3) having expectation

E[Tc] = 1/α
s

X

i=1

1/i + 1/β
k

X

j=1

1/j . (2)
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Figure 3: Experiment 1: Fragment and block download times.

Considering this distribution, we find that the null hypothesis of the
Kolmogorov-Smirnov test for the collected data with parameters
1/α = 40.72 and 1/β = 6.22 is rejected1 for l = 6%, while it is
not rejected for the shifted data with parameters 1/α̂ = 32.05 and
1/β̂ = 5.11.

Equations (1) and (2) should then be replaced with

E[T ] = tm + 1/α̂

s
X

i=1

1/i , (3)

E[Tc] = tm + 1/α̂
s

X

i=1

1/i + 1/β̂
k

X

j=1

1/j . (4)

The averages inferred from Eqs. (1)–(4) are listed in rows 3 and
5 of Table 6, and their relative errors with respect to the sample
average are listed in rows 4 and 6 of the same table. Observe
that the inferred average improves across Experiments 1–3 when
considering shifted data. The best improvement seen is that in
Experiment 3. By considering that the shifted recovery time is

1Even though it is rejected, this distribution is still much closer to
the empirical data than the exponential distribution.
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Figure 4: Experiment 4: Fragment and recovery time, central-

ized recovery.

hypo-exponentially distributed with s + 1 phases and parameters
sα̂, (s − 1)α̂, . . . , α̂, β̂, the relative error on the inferred average
drops from 30.1% to 2.6%.

The conclusion of this discussion is that the exponential assump-
tion on fragments download/upload time is met in most cases as
long as the system workload is small and peers’s download/upload
capacities are asymmetric in such a way that the bottleneck is the
upstream capacity of peers. The same exponential assumption does
not hold on the block download time. The block download time and
the recovery time are well approximated in Experiments 1,2 and 3-
like scenarios by a hypo-exponential distribution.

4.3 Experiment 4
In this experiment, peers are homogeneous and always connected.
The system workload is relatively big and peers’s download/upload
capacities are symmetric in such a way that the bottleneck can be
the upstream or the downstream capacity of peers. The concurrent
fragment download processes are not independent but correlated.
We see from Fig. 5(a) that the fragment download time is remark-
ably not exponentially distributed in such a scenario, even for the
shifted, but it follows a phase type distribution unlike the case of



Experiments 1–3.

Regarding the block download time, we plot in Fig. 5 the empirical
CDF of the data download time and the MLE exponential fits to
both the collected and shifted data. It is remarkabl that the expo-
nential distribution fits very well the data distribution. In fact, the
null hypothesis is rejected for the collected data but not rejected for
the shifted data.
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Figure 5: Experiment 5: Fragment and block download times.

5. CONCLUSION
This paper describes a realistic simulation model of the P2P stor-
age system and sketches its implementation on top of the Network
Simulator NS (version 2.33). It provides some simulation analysis
of download and recovery processes in P2PSS. We set up four sim-
ulations which enable us to collect fragment/block download times
and recoveries times under a variety of conditions. We show that
the exponential assumption on the block download time can hold
in some contexts such as the Experiment 4 context. The same as-
sumption on fragments download/upload time is met in many cases
implying that both the block download time and the recovery pro-
cess could be modeled by a hypo-exponential distribution with a
pre-determined number of phases. As a result, our simulations sug-
gest that the models presented in [2] give accurate results on data
durability and availability only in replicated P2PSS (as in [20]) or

in Experiment 4 like-context. This was the motivation to realize the
work in [5] where the models evaluate data durability and availabil-
ity in more wide contexts.
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