The Sugar Cubesv2.0
Reference M anual

Jean-Ferdy SUSINI, Frédéric BOUSSINOT
INRIA EMP-CMA/Meije
2004 route des lucioles
F-06902 Sophia-Antipolis
Jean-Ferdinand.Susini @sophia.inria.fr, Frederic.Boussinot@sophia.inria.fr

Abstract: SugarCubesis a set of Java classes used to implement reactive, event based, concurrent systems.
It is a low-level basis upon which more complex reactive formalisms can be implemented. SugarCubes
introduces the notion of a global logical instant of execution, which is used to define synchronous parallelism
and concurrency. It is also used to define instantaneous broadcasting of events which is a powerful
communication mechanism. The second release of the Sugar Cubes package introduces some new extensions
for easy implemention of dynamic and modular systems. It also defines a more accurate interface between
reactive programs and standard Java objects. Basically, it introduces the notion of a reactive object, called
cube, and focus on descriptions and combinations of behaviors of such objects. SugarCubes is freely
available on the Web.

Keywords:. Parallelism and Concurrency, Reactive Programming, Broadcast Events, Java, Cubes, Behavior
Combinations.

The Sugar Cubes v2.0 Reference Manual

1. Introduction

Sugar Cubesis aset of Java[GJS)] classes for implementing systems that are:

» Event based. In these systems, events are instantly broadcast. Communicating in thus like in radio
transmissions, where emitters send information that is instantaneously received by all other components.
This communication paradigm gives a very modular way of system structuring. For example, adding a
receiver to a system, or removing one from it, is totally transparent for the others components (which is
not the case with other communication mechanisms like message passing or rendez-vous).

 Concurrent, but thread-less. Parallelism isalogical programming construct to implement activities which
are supposed to proceed concurrently, and not one after the other. Such parallel activities need not to be
executed by distinct threads, but instead can be automatically interleaved to get the desired result. This
avoids well-known thread related problems.

* Reactive. Reactive systems are systems which continuously interact with their environment [HP]. A
natural way of programming those systems is by combining reactive instructions whose semantics are
defined by reference to activation/reaction couples identified to instants. The end of the reaction
provoked by an activation gives a natural way for determining stable states, where a system is only
waiting for the next activation to resume execution. An important point is that the existence of stable
statesis of major importance for code migration over the network.

In order to implement such systems, Sugar Cubes' add instants, concurrency and parallelism, and broadcast
events to Java in accordance with the reactive paradigm ; description of it can be found on the Web at the
URL http://ww.inria.fr/imeije/rc/.

Presently, two main applications are implemented using the Sugar Cubes:

o Rsi-Java is the implementation of Reactive Scripts[BH] on top of Java. Reactive Scripts gives a very
flexible and powerful mean to program over the Internet especially using code migration facilities.
Actually, SugarCubes primitives are embedded in Reactive Scripts. In addition, Reactive Scripts
introduces modul e declarations (keyword behavi or), which can be dynamically instantiated.

o Weblcobjs is an implementation of Icobj Programming. Icobjs (for iconic objects) define a new,
intuitive and fully graphical way of programming. The demo of the Webl cobjsis available on the Web at
the URL http://www inria.fr/neijelrc/ Vbl cobj/.

Sugar Cubes v1 [BS] was the first attempt to implements the Reactive Approach on top of Java. In this
paper we present Sugar Cubes v2 and give most part of its code. Section 2 gives an overview of the Reactive
Approach and of SugarCubes v2. Section 3 presents the two main sets of classes: Instructions and
Machines. The basic reactive instructions are given in section 4. Section 5 introduces events and related
instructions. Finally, sections 6 to 10 describe the new features of Sugar Cubesv2.

Sugar Cubesisfreely distributed as a tool box for reactive programming in Java.

2. The Reactive Approach

Reactive formalisms introduce the notion of an instant of execution, also called reaction, which splits
program execution in logical instants. A reactive program is activated in an environment and it reacts to the
activation by performing one instant of execution. This notion of alogical instant is of a major importance in
the Reactive Approach asit allows the definition of synchronous concurrency: during areaction, (during the
execution of an instant) all parallel components execute one step of execution corresponding to that instant.
Thus, they synchronize at each end of instant which occurs when all components have terminated their
execution for the current instant. This leads to interleaved executions simulating parallelism.

! Why the name SugarCubes? Because many people like to add some sugar in their Java...

2

The Sugar Cubes v2.0 Reference Manual

Instant 1 Instant 2 Instant3 Instant 4

- > < > < >
C1 >
C2 >
C3 >

Fig 1. Synchronous concurrency. C1, C2 and C3
are executed in parallel at each instant. They naturally
synchronize at each end of instant.

A powerful communication mechanism called instantaneous broadcasting of events is defined using logical
instants of execution. It has a clear semantics:

* instantaneity: events are non persistent instantaneous data, only available during the very instant of their
generation;

* broadcast: events are seen in the same coherent state by all parallel components in the system during the
whole instant. An event cannot be seen absent by some components and present by some others during
the same instant.

Instant
4>

C1 @ : & >

Cc2 *— >

C3 - ¢ >

Fig 2: Instantaneous Broadcast Events. Component C3 generates an event (triangle)
which is broadcast to all parallel components during the instant. Absence of an other event
(rectangle) can only be decided at the end of the instant.

Components waiting for a generated event can immediately react to its presence. Thisis caled instantaneous
reaction to presence. On the contrary, components waiting for an absent event cannot immediately react to its
absence, as absence cannot be decided before the end of the instant. Thus, reaction to the absence is
postponed to the next instant. Thisis called delayed reaction to absence. Note that forbidding instantaneous
reaction to the absence of an event is a way to avoid causality problems (present in the Synchronous
Approach [HAL]). Causality problems are incoherent situations in which one can react immediately to the
absence of an event by immediately generating it. More information on this subject can be found in [BG] or
[HAL].

Finaly, instants provide a clear semantics to simultaneity of events during one instant: two events are
simultaneous if they are present during the instant.

The Sugar Cubes v2.0 Reference Manual

2.1. Sugar Cubes overview

Sugar Cubes programs (also caled behaviors) are made of reactive instructions implemented as pure Java
objects; from this point of view, Sugar Cubes is more a high level language, built on top of Java, than a
standard API. A reactive program is a tree of objects representing the syntax of the program. Each node is an
instruction as in the following figure:

Fig 3: A Reactive Program. A reactive programis a tree of
reactive instructions which are implemented as Java objects.

In the following, reactive instructions and reactive programs will be considered as synonymous.
Activation of a reactive instruction

An instruction is activated by a call to its method act i v. It transmits activation to its sub-terms, following the
syntax tree; thisis shown on the example:

activ

activ activ

Fig 9: Method activ. The method activ is called on the top level node which is usually a Merge,
and it browses the tree, activating instructions that need to be, according to the nodes semantics.

Each reactive instruction activation returns TERM, STOP, or SUSP representing the state of the instruction
after activation; these return codes are interpreted as follows:

- TERM (for terminated) means that execution of the instruction is completed. Thus, activating it at following
instants will have no effect and will again return TERM.

TERM activ TERM

Fig 6: TERM. When activ returns TERM, all following activations
of the instruction will return TERM.

activ

The Sugar Cubes v2.0 Reference Manual

- STOP (for stopped) means that execution of the instruction is stopped at a stable state for the current instant.
At the next instant, execution restarts from the intruction following the stop. It is like the stop road sign: in
front of the stop sign, cars must stop before resuming.

Sae N EESGN

Fig 7: STOP. When it has finished to react for the current instant,
an instruction returns STOP.

activ

- SUSP (for suspended) means that execution of the instruction has not reached a stable state for the current
instant, and has to resume during this instant. This is, for example, the case when awaiting for a not yet
generated event (see section 5.3): execution then suspends to give other components the opportunity to
generate it.

activ W\/\;SP activ /\/\/\./

Fig 8: SUSP. Whileit has not reached a stable state for the current instant,
an instruction returns SUSP.

2.2. Sugar Cubesv2

Sugar Cubes v2 basically introduces four extensions to the reactive paradigm: the Shell, Freeze, Link, and
Cube instructions.

Sugar Cubes v2 aso introduces the notion of a named instruction which can be referenced by its name in
reactive machines. Instruction names are Java strings. The present version of Sugar Cubes does not make any
asumption on the way names are managed; in particular, machines do not verify that two distincts instructions
have two distinct names; it is the programmer responsability to assure this, if needed.

In this section, we overview the extensions which are described in details in sections 6 to 10 of this document.
2.2.1. Shell Instruction

Shells are named instructions in which it is possible to dynamically add new parallel instructions.The key
point is that addings are not immediately performed, but are delayed to the next instant; thus, execution of the
current instant is not perturbed and does not depend on the moments addings actually take place.

Implementation is as follows: during each instant, all add orders (AddToShel | instructions described in section
8) are collected by the machine and placed into a buffer of instructions; at the end of the instant, instructions
in the buffer are put in parallel with the shell program; thus, added instructions will be actually started only at
the next instant.

2.2.2. Freezing a program

In SugarCubes v2, freezable instructions are named instructions which are frozen when freeze orders are
issued on them. In response to a freeze order, execution of a freezable instruction is stopped at the end of
instant and the remaining program (the residual) is removed from the system. The residual is stored in the
environment and can be retreived from it for future use. This mechanism is especially useful to implement
code migration and persistency mechanisms. The key point is that residuals are computed after the setting of
the end of instant, when instructions are in stable states.

Freeze order areraised by Freeze instructions (see section 9 for details). All freeze orders executed during an

5

The Sugar Cubes v2.0 Reference Manual
instant are accumulated by the execution machine which start a freeze process at the end of the instant. Like
for activations, the freeze process browses the program tree, starting from the top level instruction. Each time
afreezable instruction is reached, the execution machine checks if afreeze order has been raised for it during
the instant. If so, the freezable instruction is removed from the system and its residual (described bellow) is
computed and stored in the environment

Computing the residual of a frozen instruction means to browse the instruction body and create a new
instruction corresponding to what remainsto do in the instruction.

2.2.3. Link
Reactive instructions do not directly perform data computations which must be handled by standard Java

objects. A link encapsulates a Java object and a reactive behavior in the same instruction. The associated
object becomes the default object with which the reactive instruction interacts.

2.2.5. Cube

A Cube is the encapsulation in the same entity of a standard Java object and of a dynamic reactive behavior.
Cubes are autonomous instructions run in paralel in the system and communicating using broadcast events.
A Cube is actually the combination of alink, and of a shell, and it is also a basic unit of migration (that is to
say, a Cube is afreezable instruction):

Cube = Freezable + Link + Shell

Reactive machines, called event machines in Sugar Cubesv2, are actually cubes. However they are speciad
closed cubes which limit the scope of events, and of freeze and add orders.

The rest of the paper gives a technical view of Sugar Cubesv2, presenting and commenting most part of the
code of the different classes.

3. TheMain Classes

Sugar Cubesisdivided in two main set of Java classes:

* Reactive Instructions are objects implementing reactive primitives, for example, the sequence operator,
the concurrency operator, loops instructions, generation of an event, preemption by events, etc.

* Reactive Machines are objects used to execute programs made of reactive instructions and to provide
their execution environment. Basically, a reactive machine activates its program, defines its instants, and
provides the event environment and default Java object for it.

All classes presented here are parts of the packagei nri a. rei j e. r c. sugar cubes.

3.1. Reactive Instructions
An instruction defines areactive behavior. It is aJava object implementing the interface I nstructi on.
3.1.1. Instruction Interface

This interface defines methods, called by reactive machines, in order to manage and execute instructions.

The Sugar Cubes v2.0 Reference Manual

package inria. meije.rc. sugarcubes;

public interface Instruction extends d oneabl e, Java.io. Seri alizabl e
{

byte activ(Context context);

bool ean i sTerm nat ed();

oj ect clone();

voi d freeze(Context context);

Instruction residual ();

voi d noti f yWar nUpToJava(Cont ext context);

voi d noti fyFreezeToJava(Cont ext context);

voi d notifyTerm nati onToJava(Cont ext context);

}

Each activation returns a code which is the state of the instruction after activation. There are three return
codes defined in the Ret ur nCodes interface:

public interface ReturnCodes

{
byte STCP = 0;
byte TERM = 1;
byte SUSP = 2;

}

Activation

Aninstruction is activated by calling its method act i v. When activated, the instruction receives the execution
environment (which implements the Cont ext interface described in the next sub-section) as argument and it
executes its behavior.

isTerminated

Method i sTer mi nat ed returns a boolean indicating if the instruction has terminated, without having to activate
it.

Clone and Serialization

Instruction extends interface A oneabl e and thus instruction copies are available by calling the method
cl one. It also extends interface Seri al i zabl e for trangating instructions into byte streams (this can be useful
to implement code migration on the top of Java RMI or code persistence mechanisms).

Freeze

At the end of each instant, reactive machines invoke method freeze on their programs. Method freeze
bowses the program tree and calls the method freeze of all instructions that have been activated and not
terminated during the instant; the effect of these callsis describein section 9.1. Informally, it is asfollows:

* the instruction computesits residual (see method r esi dual bellow);

* it stores the residual in the current context, using method st or eFrozenl nstructi on (see the Cont ext
interface description in next section).

* it removesitself from the executed program;

The Sugar Cubes v2.0 Reference Manual

Residual

Method resi dual , called at ends of instants on frozen instructions, returns the remaining of the instruction
(what remains to be done at next instants).

Notifications to Java

Method not i f yFr eezeToJava is called by the machine on instructions that have to be frozen. It executes some
Java code just before freezing instructions (note that this Java code is executed between instants). Typically
this method is useful to remove the references on objects associated to frozen instructions (for example to
implement a dynamic binding mechanism for code migration).

Method not i fyTer m nat i onToJava is called when instructions terminate or are destroyed. It is useful to
execute some Java code in order to inform associated Java objects that reactive instructions are over.

Method not i f yWar mpToJava handles Java code executed when the residual of an instruction is added back in
an execution machine. It executes Java code allowing for example a Java object bound to the reactive
instruction to proceed to some reinitialisation process (essentialy, dynamic rebinding of the Java object)
before resuming. This code is executed only at the very first activation of the newly added back instruction.

3.1.2. Ingtruction I mplementation

Class Instructionlnpl implements interface I nstruction; it is an abstract class that implements common
basic methods of an instruction. It also implements method t oSt ri ng which produces readabl e representations
of reactive programs; actually, programs are printed as Reactive Scripts. All reactive instructions extends the
classinstructionl npl which has the following structure:

abstract public class Instructionlnpl inplements Instruction, ReturnCodes
{

protected bool ean term nated = fal se;

protected bool ean firstActivation = true;

publ ic boolean isTermnated(){ return termnated; }
abstract protected byte activation(Context context);
protected void firstActivation(Context context){ firstActivation = false; }
public byte activ(Context context){
if (terminated) return TERM
if (firstActivation) firstActivation(context);
byte res = activation(context);
if (res == TERV) lastActivation(context);
return res;
}
protected void | ast Activation(Context context){ termnated = true; }
public String toString(){ return ""; }

public (pject clone(){
try{ return (Instruction)super.clone(); }
cat ch (d oneNot Suppor t edExcepti on €){
throw new Internal Error(e.toString());

}

}

Note that method act i v calls act i vati on which is abstract and must be defined in derived classes. These two
methods receive a Cont ext parameter for interacting with the execution environment.

The Sugar Cubes v2.0 Reference Manual

Note also that firstActivation and I ast Activation alow subclasses to proceed specia activities when the
instruction is activated for the very first time and for the last time.

Two abstract classes extends | nst ructi onl npl : Unaryl nst ruct i on and Bi nar yl nst r uct i on.
Unary Instructions

Unaryl nst ruct i on is an abstract class with abody which is also an instruction. It is used for example to define
loopsin section 4.5.

abstract public class Unarylnstruction extends |nstructionl npl

{
protected Instructi on body = new Nothing();"
public oject clone(){
Unarylnstruction inst = (Unaryl nstruction)super.clone();
i nst.body = (Instruction)body. clone();
return inst;
}
protected byte activation(Context context){
return body. activ(context);
}
}

Binary I nstructions

Bi naryl nstruction is an abstract class with two components, left and right, which are aso instructions. It is
used, for example, to define the binary sequence instruction in section 4.2.

abstract public class Binarylnstruction extends Instructionlnpl

{
protected Instruction I eft = new Nothing(), right = new Nothi ng();
public (pject clone(){
Bi naryl nstruction inst = (Bi narylnstruction)super.clone();
inst.left = (Instruction)left.clone();
inst.right = (Instruction)right.clone();
return inst;
}
}

Named | nstructions

In Sugar Cubesv2, shells, cubes, and freezable instructions implements the NarmedI nst r uct i on interface and
can be identified by a name.

public interface Namedl nstruction extends Instruction

{
}

String nane();

3.2. Reactive M achines

Reactive instructions are executed by execution machines called reactive machines. A reactive machine is a
Java object owning a program which is an instruction. It provides and manages the execution environment for

9

The Sugar Cubes v2.0 Reference Manual

the program and it defines the instants of execution for it.
3.2.1. Machine Interface

A reactive machine is an execution machine that runs a reactive program. Reactive machines implement the
Machi ne interface:

public interface Machine

{
public Instruction program();
bool ean react ();

}

Method pr ogr amreturns the program of the reactive machine. Method r eact executes one reaction, that is one
instant of the program. Method react returns a boolean value which indicates if the machine is terminated
(i.e. the program is compl etely terminated).

3.2.2. Context | nterface

Reactive machinesimplement the Cont ext interface:

public interface Context

{
voi d newhove();

int currentlnstant();
bool ean i sEndCf I nstant () ;

voi d set QurrentLink(Li nk |ink);
Li nk currentLink();

voi d addToShel | (String nane, I nstruction inst);
void regi sterShell (String nare, Shell shell);
voi d renmoveShel | (String nane);

void freezeCrder(String nane);

bool ean i sToBeFrozen(Stri ng narre);

voi d storeFrozenlnstruction(String nane, I nstruction frozen);
I nstruction getFrozenlnstruction(String nane);

}

I nstants processing

Two methods are used to detect ends of instants: newwbve indicates that something new happens in the
program; thus, the end of the current instant has to be postponed; i sEndcf I nstant returns a boolean to
indicate if the end of the current instant has been declared by the execution machine.

Method current I nst ant returns the number of the current instant (initially equalsto 1).
Links processing

Methods set Qurrent Li nk and current Li nk bind and retrieve the Li nk instruction which associates a Java
object to areactive program. This mechanism is detailed in section 6.

Shells processing

10

The Sugar Cubes v2.0 Reference Manual

Methods addToShel I, registerShel |, and removeshel | are used to implement dynamic parallelism with
which new instructions can be added to shells; this is detailed later in the section about shells (7). Actual
adding of instructions is performed between instants. Machines are responsible to collect all add orders
during areaction and to actually proceed them at the end of the reaction.

Freeze orders

Method f reezeQ der adds the name of an instruction to the set of instructions having to be frozen at the end
of thereaction. It isusually called by the Freeze instruction (see section 9). Method i sToBeFr ozen is called by
an instruction, when the instant is over, to know if it has to be frozen. If true, the instruction proceeds the
freeze order as described in the previous subsection (about instructions). Method st or eFr ozenl nst r uct i on
stores the residual of a frozen instruction in the execution context. Finally, get Frozenl nstructi on retrieves
the residual of a frozen instruction. Note that calling get Frozenl nstructi on to retreive a recently frozen
instruction also removes this instruction from the frozen instructions pool in the environment; so, it can be
called only once to retreive a particular instruction.

3.2.2. Event Machines

Execution machine of class Event Machi ne implements interfaces Machi ne and Cont ext . It provides an
event environment for reactive programs and detects ends of instants.

Method react

Method react of Event Machi ne isasfollows:

» The program is cyclically activated while there are suspended instructions in it (that is, while activations
return SUSP).

* At the end of each program activation, the machine tests if some new events were generated during this
execution. If it was not the case, then there is no hope that future program activations will change the
situation, and the end of the current instant can be safely decided. Then, a flag is set to let suspended
instructions stop, knowing from that point that awaited events are absent. As the instant is over, reactions
to the absence of events are postponed to the next instant.

» The end of the current instant is effective when al parallel instructions in the program are terminated or
stopped (no suspended instruction remains).

Two variables nove and endO | nst ant are used to implement this algorithm with the simple following code:
while ((res = programactiv(this)) == SUSP){

if (move) nove = fal se; else enddfInstant = true;

}

Method add

In Sugar Cubes v2, execution machines are instructions and more precisely cubes (see section 10).

Initially the program of a machine is the Not hi ng instruction (defined in section 4.1) which does nothing and
terminates immediately. The method add adds a new instruction to the program; this new instruction is run in
paralel with the previous program, using the Mer ge primitive defined in section 4.3.

Event environment

Event Machi ne contains an environment named event Env to deal with events (events are described later in
section 5). It implements the interface Domai n to allow reactive instructions to access the event environment.

11

The Sugar Cubes v2.0 Reference Manual

Class EventMachine

Class Event Machi ne has the following structure:

public class Event Machi ne ext ends Qube i npl enents Donai n, Machi ne
{
protected transi ent bool ean nove=f al se, endf | nst ant =f al se,
begi ni ngCxf | nst ant =t r ue;
protected int instant = 1;

publ i ¢ Event Machi ne(){ super("nonane", new Nothing()); }
publ i ¢ Event Machi ne(lnstruction i){ super("noname",i); }

public void add(Instruction inst){
synchroni zed(t hi s) {
i f (addToProgram =nul 1)
addToPr ogram = new Mer ge(addToPrograminst);
el se
addToProgram = inst;

}

public int currentinstant(){ return instant; }
public void newve(){ nove = true; }
protected void new nstant(){ instant++ presentEvents.renoveA |H ements(); }

protected byte activation(Context context){
nmove = fal se;
i f (begi ni ngCxr I nstant) {
noti f yBegi nCf | nst ant ToJava() ;
begi ni ngx I nstant = fal se;

}

byte res = super.activation(this);
if (res == STOP){

endC I nstant = fal se;

new nstant () ;

not i f yEndCr | nst ant ToJava() ;
begi ni ngxf I nstant = true;
}
else if(res == SUSP){
if (!nmove) endCfinstant = true;
cont ext . newhove();
}

return res;

}

publ i c bool ean i sEndCfInstant(){ return enddInstant; }

publ i ¢ bool ean react (){
byte res = SUSP,
while (res == SUSP) res = activ(this);
return res == TERM? true : fal se;
}
public Instruction progran(){
return body();

12

The Sugar Cubes v2.0 Reference Manual

}

public (pject clone(){
Event Machi ne i nst = (Event Machi ne) super. cl one();

i nst. addToProgram = (I nstruction) addToProgram cl one();
return inst;

}

3.2.3. Processing of instants

Finally, in SugarCubes, execution machines allow the user to implement special tasks performed at the
beginning or at the end of instants by overridding the two methods not i f yBegi nCf I nst ant ToJava and
noti f yEndCf I nst ant ToJava. This can be for example useful to perform periodic graphics refreshes at each
instant.

4. Basic Instructions

In this section, we introduce the basic reactive instructions.

4.1. Nothing, Stop, Halt

Not hi ng does nothing when activated and immediatly returns TERM; it is introduced only as the initial
program value:

public class Nothing extends |nstructionl npl

{
public String toString(){ return "nothing"; }

protected byte activation(Context context){ return TERM }

}

St op stops execution for the current instant by returning STOP. It will return TERM at next instants:

public class Stop extends Instructionl npl

{

prot ected bool ean ended = fal se;

public String toString(){ return "stop"; }
protected byte activation(Context context){
if (ended) return TERM
ended = true;
return STCP,

}

Instruction Hal t return STOP at each activation (and thus never terminates):
public class Halt extends Instructionlnpl

{

public String toString(){ return "halt"; }
protected byte activation(Context context){ return STCP; }

13

The Sugar Cubes v2.0 Reference Manual
4.2. Sequencing

Class seq extends Binaryl nstruction and implements sequencing. First, instruction 1 eft is activated; if it
terminates, then control immediately (during the same instant) goestori ght :

public class Seq extends Binarylnstruction

{
public Seq(lnstruction left,Instruction right){
this.left = left;
this.right = right;
}
public String toString(){ return left+"; "+right; }
protected byte activation(Context context){
if (left.isTermnated()) return right.activ(context);
byte res = left.activ(context);
if (res I=TERV return res;
return right.activ(context);
}
}
4.3. Parallelism

Class Merge extends Binarylnstruction and implements basic parallelism: at each instant, the two
instructions I ef t and then ri ght are both activated, always in this order. It terminates when both 1 eft and
right are terminated. The return code of method activ is determined, from the return states of the two
branches, by the following table:

) left

right TERM | STOP | SUSP
TERM TERM | STOP | SUSP
STOP STOP | STOP | SUSP
SUSP SUSP | SUSP | SUSP

Class Mer ge has the following structure:

public class Merge extends Binarylnstruction

{
private byte leftStatus = SUSP, rightStatus = SUSP;

public Merge (Instruction left, Instruction right){
super.left = left;
super.right = right;

}

public String toString(){ return "("+ eft+" || "+right+")"; }

protected byte activation(Context context){
if (leftStatus == SUSP) leftStatus = left.activ(context);
if (rightStatus == SUSP) rightStatus = right.activ(context);
if (leftStatus == TERM & right Status == TERM{ return TERM }
if (leftStatus == SUSP || rightStatus == SUSP){ return SUSP; }
leftStatus = rightStatus = SUSP;
return STCP;

14

The Sugar Cubes v2.0 Reference Manual

4.4. Atoms

Abstract class At om extends I nstructi onl npl and defines actions which implement interactions and side-
effects with the execution environment. Typically, atoms are used to implement event generations and
interactions with standard Java objects.

abstract public class Atomextends |Instructionl npl

{

abstract protected void action(Context context);
protected byte activation(Context context){ action(context); return TERM }

}

Class Pri nt At om for example, extends At omto display a message on the standard output stream:
package inria.nmeije.rc.io;
inport inria.neije.rc.sugarcubes.*;

public class PrintAtomextends Atom

{
private String nmessage;
public PrintAtonm{String mj{ message = m }
public String toString(){ return "{Systemout.print(\""+message+"\")}"; }
protected void action(Context context) {
Systemout . print (nmessage); Systemout. flush();
}
}

Note that in Sugar Cubesv2, pri nt At omhas been moved to theinri a. neije.rc.io package as its purpose is
essentially to generate traces of execution (for testing or debugging). Ancther instruction Pri nt Ti e, can be
also used for profiling purposes.

4.5. Cyclic Instructions

Sugar Cubes provides two kinds of loops: infinite loops and finite ones; both extend the abstract class ¢ycl i c,
which has the following structure:

public class Cyclic extends Unarylnstruction

{
protected Instruction nodel = null;
public Cyclic(Instruction inst){ nmodel = inst; body = freshBody(); }
protected Instruction freshBody(){ return (Instruction)model.clone(); }
}

Note that each iteration of a cyclic instruction uses a new fresh copy of theinitial body (called the model).

4.6. Infinite loops

When the body of an infinite loop of class Loop isterminated, it is automatically and immediately restarted.

15

The Sugar Cubes v2.0 Reference Manual

I nstantaneous loops

A loop is said to be instantaneous when it cannot terminate its reaction for the current instant in afinite time
because its body terminates and is restarted for ever. Instantaneous loops are to be rejected because they
would never converge to a stable state closing the instant.

To avoid instantaneous loops we use the following heuristics: aloop enforces a stop to occur at the end of the
execution of the body if the beginning of it has also been previously executed during the same instant. Thisis

a valid strategy because all successive iterations would probably also terminate during the same instant,
leading to an instantaneous |oop.

ClassLoop

Class Loop isthe following:

public class Loop extends Cyclic

{
protected bool ean first = true, endReached = fal se;
public Loop(lnstruction inst){ super(inst); }
public String toString(){ return "l oop "+body+" end"; }
protected Instruction rest(){
return new Seq(body. residual (), new Loop(freshBody()));
}
protected byte activation(Context context){
for(;;){
byte res = body. activ(context);
if (res != TERV{
first = endReached = fal se;
return res;
}
if (first || endReached){
Systemerr. println("warning: instantaneous |oop detected");
first = endReached = fal se;
return STCP;
endReached = true;
body = freshBody();
}
}
}

4.7. Finite L oops

Finite loops are implemented by the class Repeat . A finite loop executes its body a fixed number of times.
Therefore, there is no detection of instantaneous looping, because finite loops cannot diverge.

public class Repeat extends Cyclic

{

protected int counter;
prot ect ed Javal nt eger Expr essi on i nt Exp;

public Repeat(int n,Instruction inst){ this(new Javal ntegerVal ue(n),inst); }

publ i ¢ Repeat (Javal nt eger Expr essi on exp, I nstructi on body){
super (body); intExp = exp;
}

16

The Sugar Cubes v2.0 Reference Manual

protected Instruction rest(){
if (counter <= 1) return body.residual ();
return new Seq(body. residual (), new Repeat (counter-1, freshBody()));
}
public String toString(){ return "l oop "+i nt Exp+" tines "+body+" end"; }
public void firstActivation(Context context){
counter = intExp.eval uate(context. currentLink());
super. firstActivation(context);

}
protected byte activation(Context context){
for(;;){
if (counter <= 0){ return TERM }
byte res = body. activ(context);
if (res!=TERVY return res;
counter--; body = freshBody();
}
}

}

The number of iterations is determinated a run time, when using the constructor having a
Javal nt eger Expr essi on parameter. The number of iterations is then computed when the loop is activated
for thefirst time. More details about Javal nt eger Expr essi on can be found in section 7.

4.8. If

Class | f extends Bi naryl nstructi on and allows execution to choose between the then branch (1 eft) or the
else branch (ri ght) according to the evaluation of a boolean expression. The boolean expression is computed
by an object implementing the JavaBool eanExpr essi on interface (see section 6.2). Code of class|f is:

public class If extends Binarylnstruction

{
prot ect ed bool ean val ue;
prot ect ed JavaBool eanExpr essi on conditi on;
publ i c |f(JavaBool eanExpression cond, Instruction t, Instruction e){
condition = cond; left =t; right = e;
}
public |f(JavaBool eanExpressi on cond, Instruction t){
this(cond, t, new Nothing());
}
public String toString(){
if (right instanceof Nothing) return "if "+condition+" then "+l eft+" end";
if (left instanceof Nothing) return "if "+condition+" else "+right+" end";
return "if "+condition+" then "+l eft+" else "+right+" end";
}
protected void firstActivation(Context context){
val ue = condi tion. eval uat e(context. currentLink());
super.firstActivation(context);
}
protected byte activation(Context context){
return value ? left.activ(context) : right.activ(context);
}
}

17

The Sugar Cubes v2.0 Reference Manual

4.9. An Example

The little example we consider here consists in running three instants of a machine. First, one defines the
machine and an instruction using the primitives St op, Seq, Mer ge, and Pri nt At onj then, the instruction is added
to the machine; finally, three machine activations are provoked.

cl ass Exanpl e

{
public static void main (String argv[])
{
Event Machi ne machi ne = new Event Machi ne();
Instruction inst =
new Seq(
new Mer ge(
new Seq(new Stop(),new PrintAtom("left ")),
new PrintAton("right ")),
new PrintAton("end "));
nmachi ne. add(i nst);
for (int i =1; i<4; i++){
Systemout.print("instant "+ +": ");
nmachi ne. react ();
Systemout.println("");
}
}
}

Execution of this class gives:
instant 1: right

instant 2: left end
i nstant 3:

Note that termination of Merge only occurs at the second instant because of the st op instruction in the first
branch. Note a'so that printing of end occurs in the second instant: sequencing is instantaneous, that is control
goes to the second component of the sequence as soon as the first one terminates.

A call to the method tostring of instruction i nst would produce the following reactive script, which is
actually a more readable form of the instruction:

(
'l

)
{Systemout.print("end ")}

stop;{Systemout.print("left ")}

{Systemout.print("right ")}

5. Event Programming

Sugar Cubes provides a powerful mechanism of communication, called instantaneous broadcasting of events.
First, we consider events, then reactive instructions dealing with them

18

The Sugar Cubes v2.0 Reference Manual
5.1. Events

Sugar Cubes provide events with the following characteristics:

* events are automatically reset at the beginning of each instant; thus, events are not persistent data across
instants.

 events can be generated by the method generate of the Domai n interface (implemented by reactive
machines). This sets an event to be present for the current instant. Generating an event which is already
present has no effect.

* an event is perceived in the same way by all parallel components during the instant: events are broadcast.
* events can be tested for presence, waited for, or used to preempt a reactive statement.
* one cannot decide that an event is absent during the current instant before the end of this instant (thisis

the only moment one is sure that the event has not been generated during the instant). Thus, reaction to
absence is always postponed to the next instant. Thisis the basic principle of the reactive approach.

5.2. Interface Domain

Event Machi ne implements interface Domain which defines methods used to interact with the event
environment. Thisinterface is an extension of Cont ext .

public interface Donai n extends Context

{

bool ean i sGenerated(String nare);
voi d generate(String nane);

}

Method gener at e generates an event. Method i sGener at ed returns true if the event given in argument has
been generated during the current instant; it returns false otherwise.

Note: if i sGenerat ed return false, it doesn’'t mean that the event is absent, which can only be decided at the
end of the instant; it only means that the event has not yet been generated.

5.3. Configurations

In SugarCubes, events are handled by event configurations. Intuitively, a configuration is a boolean
expression of events. A configuration is satisfied if it evaluates to true; else, it is unsatisfied. Event
configurations are of 4 kinds:

» asimple event (class PosConfi g), satisfied if the event is present.

« the negation not of a configuration (class Not Conf i g) satisfied if its sub-configuration is unsatisfied.

* the and of two configurations (class AndConfig) satified when the two sub-configurations are both
satisfied in the same instant.

« the or of two configurations (class O Config) statisfied when one of the two sub-configurations is
satisfied.

Event configurations extend the abstract class Config which describes the basic methods common to all
configurations.

19

The Sugar Cubes v2.0 Reference Manual

5.3.1. Class Config

Abstract class conf i g has the structure:

abstract public class Config inplenents A oneabl e, Java.io. Serializabl e

{
abstract public bool ean fixed(Donai n donain);
abstract public bool ean eval uat e(Donai n domai n) ;

}

A configuration is said to be fixed when its value can be safely evaluated.

Note: Only fixed configurations should be evaluated. Evaluation is performed by method eval uat e (which
thus should be called only on fixed configurations).

5.3.2. Class PosConfig

A PosConfi g configuration is fixed as soon as the corresponding event is generated, or when the end of the
current instant is set. Evaluation returnstrue if the event is generated, and false if the event is absent, that is, it
is not present while end of the current instant is set.

public class PosConfig extends Config
{

protected String eventName = nul |l ;
prot ected JavaStri ngExpressi on event NameToEval uate = nul | ;

publ i c PosConfig(String event Nane){ this(new JavaStringVal ue(event Nane)); }
publ i ¢ PosConfi g(JavaStri ngExpressi on expr){ event NameToEval uate = expr;}

public String toString(){ return event NaneToEval uate.toString(); }
publ i ¢ bool ean eval uat e(Domai n donai n) {
return domai n. i sGener at ed(event Nane) ;

}

protected voi d conput eNarme(Donmai n donai n) {
event Nane = event NameToEval uat e. eval uat e(domai n. current Li nk());
event NaneToEval uat e = new JavaSt ri ngVal ue(event Nare) ;

publ i ¢ bool ean fi xed(Domai n domai n) {

i f(eventName == null) conput eNarre(domai n);
return domai n. i sGener at ed(event Narre) ?t rue: donai n. i SEndCf I nstant () ;

}

The name of the actual event is computed at run time when the constructor with a JavaSt ri ngExpr essi on
parameter isused (JavaSt ri ngExpr essi on is considered in section 6).
Note: PosConfi g isthe only class that directly seeks eventsin the environment.

5.3.3. Class NotConfig

Class Not Conf i g extends Conf i g and implements the negation of a sub-configuration. It is fixed as soon as the
sub-configuration is, and evaluation returns the negation of it.

5.3.4. Binary configurations

Binary configurations are conjunctions (and) or disjunctions (or) of configurations. The BinaryConfig

20

The Sugar Cubes v2.0 Reference Manual
abstract class contains two fields c1 and c2 of type Confi g.
A conjunction of class andConfi gi s fixed when both sub-configurations are, or as soon as one component is
fixed and evaluates to false: in this case, the other one does not need to be also fixed. Evaluation returns the
and of the evaluation of the two sub-configurations:

public class AndConfig extends Bi naryConfig

{
publ i c AndConfig(Config c1, Config c2){super(cl,c2);}
public String toString(){ return "("+cl+" and "+c2+")"; }
publ i ¢ bool ean fi xed(Donai n donai n){
bool ean bl = cl. fi xed(domai n);
bool ean b2 = c2.fi xed(domai n);
if (bl & !cl. eval uate(domain)) return true;
if (b2 & !c2.eval uate(domain)) return true;
return bl & b2;
publ i ¢ bool ean eval uat e(Donai n domai n) {
return cl. eval uat e(dorai n) &% c2. eval uat e(donai n);
}
}

Class a onf i g of configuration digunctionsisnot given here asit isvery similar to AndConfi g.

5.4. Event Generation

Class Generat e extends At om (event generation terminates instantaneously). Generating an event cals the
newMbve method to indicate that something new happens in the system; this avoid the execution machine to
decide the end of the instant at the end of the current activation. Thus, configurations waiting for the event
will still have the possibility, during the current instant, to seethat it is actually present.

public class CGenerate extends Atom

{
protected JavaStri ngExpressi on event Name = nul | ;
public CGenerate(String e) { this(new JavaStringVal ue(e)); }
publ i ¢ CGenerate(JavaStri ngExpression jsi){ eventNane = jsi;}
public String toString(){
return "generate "+event Nane;
}
protected void acti on(Context context){
((Dorrai n) cont ext) . gener at e(event Nane. eval uat e(cont ext. current Li nk()));
}
}

The name of the generated event is set at run time when the constructor with a JavaSt ri ngExpr essi on
parameter is used (see section 6).

5.5. Waiting for Events

Class anai t extends I nstructi onl npl and implements a reactive behavior waiting for a configuration to be
satisfied. Aanai t contains a conf i g field which isthe awaited configuration.

The activation method returns SUSP while the configuration is not fixed. When fixed, it evaluates the
configuration. If evaluation returns false, meaning that the configuration waited for is not satisfied, then

21

STOP isreturned. If evaluation returns true, TERM is returned if the end of the current instant is not already
set, and STORP is returned otherwise. In this last case, termination occurs at the next instant. For example,
evaluation of not e returns true when e was not generated during an instant, and at the end of the instant,
activation returns STOP in this case. This is coherent with the basic principle of section 5.1 which states that
the absence of an event cannot be decided before the end of the current instant.

The Sugar Cubes v2.0 Reference Manual

public class Await extends Instructionl npl

{

prot ected bool ean ended = fal se;
protected Config config;

public Await(Config config){ this.config = config; }
public Await(String event){ this(new PosConfig(event)); }

public String toString(){ return "await "+config; }
public (pject clone(){
Await inst = (Await)super.clone();
inst.config = (Config)config.clone();
return inst;
}
protected byte activation(Context context){
if (ended) return TERM
if (!config.fixed((Donmain)context)) return SUSP;
if (!config.eval uate((Domai n)context)) return STCR;
ended = true;
return ((Domai n)context).isEndCfinstant() ? STCP : TERM

5.6. Configuration test

Class Wien extends Bi nar yI nst r uct i on and chooses a branch accordingly to the evaluation of a configuration.
If the configuration is satisfied, then thel eft branch is choosen, elsetheright oneis.

If evaluation of the configuration takes the whole instant, then execution of the chosen branch only starts at

the next instant.

public class Wen extends Binarylnstruction

{

protected Config config;
prot ect ed bool ean conf Eval uated = fal se, val ue;

publ ic When(Config config,Instruction th,Instruction el){
this.config = config;
left = th;
right = el;

public Wien(String event,Instruction th,Instruction el){
thi s(new PosConfig(event),th,el);

}

public String toString(){
return "when "+config+' then "+ eft+" else "+right+" end";
}

public pject clone(){
When inst = (Wen)super. cl one();
inst.config = (Config)config.clone();
return inst;

22

The Sugar Cubes v2.0 Reference Manual

}

protected byte activation(Context context){
Dormai n domai n = (Dormai n) cont ext ;
if (!confEval uat ed){
if (!'config.fixed(domain)) return SUSP;
val ue = confi g. eval uat e(donai n) ;
conf Eval uated = true;
i f(domain.iseEndCfInstant()) return STCP;
}

return value ? left.activ(donain) : right.activ(donain);

5.6. Preemption

Instruction Until extends Binarylnstruction and implements preemption. Until contains an event
configuration, the left branch is the body, and the right branch is the handler. Execution of the body is aborted
when the event configuration becomes satisfied; one says then that the body is preempted; in this case,
control goesto the handler.

Preemption implemented by until is a weak one: the body is not prevented to react at the very instant of
preemption. Preemption only occurs when the body has finished its reaction for the current instant. If the
instant is over when the body has terminated, then preemption is effective for the next instant.

public class Until extends Binarylnstruction
{
protected Config config;
prot ect ed bool ean activeHandl e = fal se;
prot ected bool ean resuneBody = true;

public Until (Config config,|nstruction body,|nstruction handl er){
this.config = config;, left = body; right = handl er;

}

public Until (Config config,lnstruction body){
thi s(confi g, body, new Not hing());

}

public Until (String nane, | nstruction body, | nstruction handl er){
t hi s(new PosConfi g(nane), body, handl er);

}

public Until (String name, | nstruction body){
t hi s(name, body, new Not hi ng());

}

public String toString(){
if (right instanceof Nothing) return "do "+l eft+" until "+config;
return "do "+l eft+" until "+config+" actual "+right+" end";

}
public oject clone(){

Until inst = (Until)super.clone();
inst.config = (Config)config.clone();
return inst;

}

protected byte activation(Context context){
Dormai n donmai n = (Domai n) cont ext ;
if (activeHandl e)
return right.activ(domain);
if (resuneBody){

23

The Sugar Cubes v2.0 Reference Manual

byte res = left.activ(domain);
if (res != STCP) return res;
resumeBody = fal se;
}
if ('config.fixed(donmain)) return SUSP,
if (config.eval uate(domain)){
activeHandl e = true;
I eft.notifyTerm nationToJava(context);
if (donain.iseEnddlInstant()) return STCP
return right.activ(domain);
}
resumeBody = true;
return STCP,

}

public void notifyTerm nati onToJava(Cont ext context){
i f(activeHandl e)
right.notifyTerm nati onToJava(context);
el se
I eft.notifyTerm nationToJava(context);

}

Note that “weakness’ of the preemption is coherent with the basic principle of 5.1 which states that the
absence of an event cannot be decided before the end of the current instant.

Finally, note that method not i f yTer m nati onToJava (section 3.1) is called when preemption occurs. This
allows the Java object associated to an enclosed program (see section 6.1) to know that the program is
cancelled; in such a case, the possibility still remains, for example, to remove bindings with other objects.

5.7. Execution Controlled by Event

Class control extends Unaryl nstruction and its body is the controlled instruction. The body execution is
controlled by an event (not by a configuration). The body is run only at instants where the event is present. At
each instant, Control tests if the control event is present; if so, then the body reacts for one instant; if the
event is not present, then the instruction stops for the current instant. The Cont r ol instruction is as follows:

public class Control extends Unarylnstruction

{
protected String event Nane;
public Control (String s,Instruction inst){ eventNane = s; body = inst; }
public String toString(){ return "control "+body+"' by "+event Nane; }
protected Instruction rest(){
return new Control (event Nare, body. resi dual ());
}
protected byte activation(Context context){
i f (((Domai n)context).isGenerated(event Nane))
return body. activ(context);
el se
if(context.isEndOInstant())
return STCP,
el se
return SUSP,
}
}

24

The Sugar Cubes v2.0 Reference Manual

5.8. Local Event Declaration

Event Decl extends Unaryl nstructi on and defines alocal event. The scope of the local event is the body of the
declaration. The local event hides the global event with the same name. The local event cannot be accessed
by components that are extern to the local declaration and vice versa.

public class EventDecl extends Unarylnstruction

{
protected String event Nane;
protected transient bool ean | ocal = false;
protected transi ent bool ean external ;
public EventDecl (String | ocal Nane, | nstructi on body) {
event Nane = | ocal Nang;
thi s. body = body;
}
public String toString(){
return "event "+event Nane+" in "+body+" end";
}
protected byte activation(Context context){
external = ((Domnain)context).swapEvent Presence(event Nare, | ocal) ;
byte res = body. acti v(context);
I ocal = ((Domai n)cont ext).swapEvent Presence(event Nane, external);
if(res == STOP) local = fal se;
return res;
}
}

The status of the local event is stored in the field | ocal and the status of the external event is temporarily
stored in ext er nal during activations.

Class | ODecl

Class | apecl extends Event Decl and binds an internal event to a global event. It is basically used for event
renaming. For example, if alocal event g is bound to the global event gy, then the body of | CDecl sees g as

eg- if ey is present then g is aso present for the body; if g is generated in the body then g is generated. That
isto say, | cpecl performs an input binding (global to local), and also an output binding (local to global).

public class | Cecl extends Event Decl

{
protected String actual Nane;
protected JavaStri ngExpressi on actual NaneExp = nul | ;
protected bool ean start;

public I CDecl (String | ocal Nane, String actual Name, | nstruction body) {
t hi s(I ocal Narre, new JavasStri ngVal ue(act ual Nane) , body) ;

public | CDecl (String | ocal Nane, JavaSt ri ngExpr essi on act ual Nane,
I nstruction body){
super (| ocal Nare, body) ;
act ual NaneExp = act ual Nane;

}

public String toString(){
return "inputoutput "+event Nane+" is "+actual NameExp+" in "+body+" end";

}

25

The Sugar Cubes v2.0 Reference Manual

protected void firstActivation(Context context){
act ual Nane = act ual NarmeExp. eval uat e(cont ext . current Li nk());
act ual NaneExp = new JavaStri ngVal ue(act ual Nane) ;
super. firstActivation(context);

}
protected voi d setlnput(Donai n domai n) {

local = local ||(start = domain.isGenerated(actual Nare));
}

protected byte activation(Context context){
set | nput ((Dorai n) cont ext) ;
byte res = super. activation(context);
set Qut put ((Donai n) cont ext) ;
return res;
}
protected void set Qut put (Domai n donai n) {
if(!start & | ocal) domai n. generate(actual Nane);

}
}

It is adso possible to perform only an input binding (class I nput Decl), or only an output binding (class

Qut put Decl) . Classes | nput Decl and Qut put Decl arevery similar to | Cecl .

Example

In this example, one first adds to a machine an instruction which waits for an event e and then prints “e!”

The machine is run and a copy of the previous instruction is also added to it. Then, the machineis run for the

second time. Finally, an instruction is added which generates e, and the machineis run for the third time.

cl ass Exanpl el
{
public static Event Machi ne machi ne = new Event Machi ne();
public static run(){
Systemout. println("instant "+nachine.currentinstant()+":");
machi ne. react () ;
Systemout. println("");
}
public static Instruction inst(){
return new Seq(new Awai t (new PosConfig("e")),new PrintAton("e! "));
}
public static void main (String argv[])
{
nmachi ne. add(inst());
run();
machi ne. add(inst());
run();
machi ne. add(new Generate("e"));
run();

Execution gives:
instant 1:
instant 2:
instant 3: e! e!

Note that the two Awai t instructions are both fired during the third instant, when the event is generated.

26

The Sugar Cubes v2.0 Reference Manual

6. Links

Links are Sugar Cubes instructions which associate a Java object with a reactive program. The associated
Java object becomes the default object with which the link body (the reactive program) can interact.

6.1. InterfaceLink

Interface Li nk isthe following:
public interface Link extends Instruction

{
Li nk super Li nk();

Chj ect java(hject();
}

Method j avatbj ect returns the actual object bound to the body of the Link. Method super Li nk is used to
retrieve the link in which the current one is encapsulated; by this way, one can build structures of nested
Links.

6.2. Management of Links

As indicated in section 3.2, two methods of the environment of execution (interface Cont ext) are used to
manage links:

« set Qurrent Li nk setsthe current link. _ _
« current Li nk returns the reference of the current active link.

Corresponding code in class Event Machi ne is:
protected Link currentLink = this;
public void setQurrentLink(Link link){ currentLink = link; }

public Link currentLink(){ return currentlLink; }

Thefirst activated link is the execution machine itself which implements the Li nk interface.

6.3. Class Linklmpl

Class Li nkl npl extends Unaryl nstruct i on and associates a standard Java object to a reactive program (the
body). It implements the Li nk interface.

When alink instruction is activated, it performs the following tasks in sequence:

1. backups the reference to the current active link in a field (super Li nk) which is accessible via method
super Li nk;

2. storesitself hasthe new current Li nk by calling the set Li nk of the Cont ext interface;
3. activatesits body;
4. restoresthe current Li nk tO super Li nk.

Codeof Li nkl npl isthefollowing:

public class Linklnpl extends Unarylnstruction inplenments Link{
protected hject javathject = null;

27

}

The following section is a presentation of the different interfaces for computing data needed to dynamically
parametrize executions of reactive behaviors. Examples of these data are event names, or number of loop

The Sugar Cubes v2.0 Reference Manual

prot ected JavaChj ect Expression joe = null;
protected Javal nstruction onTerm nate, onFreeze, onVWarnup;
protected Link superlLink,trueLink = this;

publ i ¢ Li nkl npl (JavaChj ect Expressi on obj, I nstruction i
,Javal nstruction fin,Javalnstruction f,Javal nstruction w){
joe = obj; body =i; onTermnate = fin;onFreeze = f;onVWrnmp = w
}
publ i ¢ Li nkl npl (Cbj ect obj,Instruction i){
t hi s(new Java(oj ect Val ue(obj), i, new JavaEnptyl nstruction()
, new JavaEnpt yl nstruction(), new JavaEnpt yl nstruction());

}

public pject java(oject(){
return java(hj ect;

}
public Link superLink(){ return superlLink; }

public String toString(){
return "link "+body+" on freeze "+onFreeze+
onVér mp+" on termnate "+onTerninate+" end";

on warmup "+

}

protected void firstActivation(Context context){
javathj ect = joe.eval uate(context.currentLink());
joe = new Java(hj ect Val ue(j avaChj ect);
super.firstActivation(context);

}

protected byte activation(Context context){
super Li nk = context. currentLink();
cont ext . set Qurrent Li nk(trueLink);
byte res = body. activ(context);
cont ext . set Qurr ent Li nk(super Li nk) ;
return res;

}

protected void | astActivation(Context context){
onTer ni nat e. execut e(trueLi nk) ;
super . | ast Acti vation(context);

iterations.

7. Java Expressionsand Instructions

Some instructions such as | f and Repeat may need some run time information (for example, an integer value
which is the number of iterations of a finite loop) in order to execute. In Sugar Cubes v2, these run time
computations are performed by Java expressions. Method calls performed on Java objects others than
reactive instructions (for example, showing a window) are handled in Sugar Cubesv2 by Java instructions.

Java expressions and Java instructions are described in the rest of the section.

7.1. Java expressions

There are several Java expressions.

28

The Sugar Cubes v2.0 Reference Manual

JavaBooleanExpression

JavaBool eanExpr essi on computes a boolean value, needed for example by an instruction | f.

public interface JavaBool eanExpressi on extends Java.io. Seri al i zabl e, d oneabl e

{
}

When the instruction 1 f needs a boolean value to decide which branch to execute, it calls the method
eval uat e of the JavaBool eanExpressi on it contains.The argument sel f is actually the current active link.
Using it, the JavaBool eanExpr essi on get access to the Java object bound to the reactive program.

bool ean eval uat e(Li nk sel f);

JavalntegerExpression
A Javal nt eger Expr essi on computes an integer value, used for example by Repeat instructions.
JavaStringExpression

A JavaSt ri ngExpr essi on computes a string value, used for example by PosConf i g to computes an event hame
a run time.

JavaObjectExpression

A Java(bj ect Expr essi on computes a Java object reference used for example by Li nkl npl to associate at run
time an object to its body.

JavalnstructionExpression

A Javal nst ruct i onExpr essi on computes a Java object which is actually a reactive instruction; it is used for
example by instruction AddToshel | described in section 6.3.

Static expressions

Some predefined classes implementing the previous Java expressions are handling static values (not
computed at run-time), for example, class JavaBool eanVal ue handles static boolean values :

public class JavaBool eanVal ue i npl ements JavaBool eanExpr essi on

{
prot ected bool ean b;
publ i ¢ JavaBool eanVal ue(bool ean b){ this.b = b;}
publ i ¢ bool ean eval uate(Link self) { return b; }
public String toString(){ return ""+b; }

}

Similarly, are defined Javal nt eger Val ue, JavaSt ri ngval ue, Java(hj ect Val ue, and
Javal nst ruct i onVal ue that handle respectively static integer, string, object, and reactive instruction val ues.

7.2. Javainstructions

Interface Javal nstruct i on implements interactions with Java objects (for example, to display a message on
the screen) without any return value.

29

The Sugar Cubes v2.0 Reference Manual

public interface Javal nstruction extends Java.io. Serializabl e, doneabl e

{
}

Method execut e of Javal nstructi on takes the current active link as parameter. In this method, one can put
any standard Java code and the Java object associated by the link is returned by method j avatj ect called
with sel f as parameter.

publ ic void execute(Link self);

Class JavaAtom

Java instructions are used by the class Javaat om A Javal nst ruct i on implements an atomic action which can
interact with Java objects.

public class JavaAt om ext ends Atom

{

Javal nstruction javal nst;
publ i ¢ JavaAt on{Javal nstruction inst){ javalnst = inst; }

protected void acti on(Context context){
j aval nst . execut e(cont ext . current Li nk());

}
public String toString(){

return javalnst.toString();
}

}
For example, one can implement a class equivalent to Pri nt At omby defining a Java instruction like this one:

public class M/Printlnstruction inplements Javal nstruction

{
protected String nessage;
public M/Printlnstruction(String nsg){
nmessage = nsg;
}
public void execute(Link self){
Systemout . print| n(nessage) ;
}
}

Then, one uses this Java instruction with a JavaAt omi
new JavaAt on{new M/Printlnstruction(“nessage”))
which is actually equivaent to:

new Pri nt At on(“message”)

Class JavaEmptyInstruction

The class JavaEnpt yl nstruction implements the Javal nstruction interface and its method execute does
nothing.

30

The Sugar Cubes v2.0 Reference Manual

8. Shells

Sugar Cubes v2 introduces new named instructions called shells to implement dynamic parallelism. New
instructions added to a shell are put in paralel with the previous shell body. For consistency reasons,
instruction addings are not immediately performed but are collected during the instant; they become actual
when the system has reach a stable state i.e. when the current instant is finished. Thus, during each instant,
the reactive machine stores the add requests, and, at the end of the instant, it adds the stored instructionsin the
corresponding shells.

8.1. Shdll interface

A shell implements the shel | interface:

public interface Shell extends Instruction
{

void add(Instruction inst);

public Instruction body();

}

Method add performs the actual adding of an instruction in a shell: the instruction is put in parallel with the
shell body. This method is called by the reactive machine at ends of the instants. Instructions added are the
ones collected during the instant.

The program handled by a shell is returned by the method body.

8.2. Shell implementation

The class shel I I npl extends Unar yl nst ruct i on and implements the shel | interface:

public class Shelllnpl extends Unarylnstruction
i npl emrents Shel |, Nanedl nstructi on
{
protected String name = "noname";
prot ected JavasStri ngExpressi on naneExp = nul | ;

publ ic Shelllnpl (JavaStri ngExpression n,Instruction i){ nameExp = n;body =i; }
public Shelllnpl (String n,Instruction i){ this(new JavaStri ngVal ue(n),i); }

public String name(){ return nare; }
public void add(Instruction inst){ body = new Merge(body,inst); }
public String toString(){

return "shell "+nameExp+" "+body+" end";

}
public Instruction body(){ return body; }

protected void firstActivation(Context context){
nane = nameExp. eval uat e(cont ext. currentLink());
naneExp = new JavaStri ngVal ue(nane);
context.registerShell (nane, this);
super.firstActivation(context);

}

protected void | astActivation(Context context){
cont ext . renoveShel | (narre) ;
super. | ast Acti vation(context);

31

The Sugar Cubes v2.0 Reference Manual

}

The method add simply creates a new body which is a Mer ge of the new added instruction and of the already
executing body.

First and last activations

Method firstActivation computes the name of the shell and then calls the regi st er Shel I method of the
execution context. Thus, the shell exports its reference (its name), allowing other components in the system to
add new instructionsin it.

Method | ast Act i vat i on removes the reference to the shell, when it terminates.

8.3. Class AddT oShell

Class AddToshel | extends At omand requests an instruction to be added to a shell.

public class AddToShel | extends At om

{
protected JavaStri ngExpressi on target NaneExp = nul | ;
prot ected Javal nstructi onExpression instExp = nul | ;
publ i ¢ AddToShel | (JavaSt ri ngExpressi on n, Javal nstructi onExpression i) {
target NameExp = n; instExp = i;
}
publ i c AddToShel I (String n,Instruction i){
t hi s(new JavaStri ngVal ue(n), new Javal nstructionVal ue(i));
}
public String toString(){return "add "+i nst Exp+"* to "+t arget NameExp; }
protected void acti on(Context context){
cont ext . addToShel | (t ar get NameExp. eval uat e(cont ext . current Li nk())
, (Instruction)inst Exp. eval uat e(context. currentLink()));
}
}

This instruction has two parameters: the name of the target shell (which can be set a run time using a
JavaStringExpressi on) and the instruction to be added (which can also be set a run time using a
Javal nstruct i onExpr essi on).

Class AddToshel | actually uses the context interface for accessing registered shells. Adding orders are
collected during the instant; at the end of it, the execution machine adds all the collected instructions into the
corresponding shells; thus, additions become actual only at the next instant.

The corresponding code of Event Machi ne is the following:

public class Event Machi ne extends Qube inpl enents Domain, Machi ne

{

protected bool ean nove = fal se, enddInstant = fal se,
begi ni ngxd I nstant = true;

prot ected Hasht abl e addToShel | = new Hasht abl e()
, shell Env = new Hasht abl e();

publ ic void addToShel | (String name, I nstruction inst){
Instruction old = (Instruction)addToShel |. get(nane);
if (ol d==null)

32

The Sugar Cubes v2.0 Reference Manual

addToShel | . put (nane, i nst);
el se
addToShel | . put (name, new Merge(ol d,inst));
}
protected void processAddToShel | (){
if (addToShell.isEnpty()) return;
Enureration |ist = addTosShel | . keys();
while (list.hasMoreH enents()){
String name = (String)list.nextHE enent();
Shel | shell = (Shell)shell Env. get (nane);
if (shell==null)
Systemerr. println("unknown shell: "+nane);
el se
shel | . add((I nstructi on)addToShel | . get (nane));
}
addToShel | . cl ear ();

}

protected byte activation(Context context){
nove = fal se;
i f (begi ni ngtf I nstant) {
synchr oni zed(t hi s) {
i f(addToProgram!= null){
super . add(addToPr ogram) ; addToProgram = nul | ;
}
}
processAddToShel | ();

begi ni ngx I nstant = fal se;
}
byte res = super. activation(this);
if (res == STOP){

endC I nstant = fal se;

new nstant () ;

begi ni ngx I nstant = true;

}

else if(res == SUSP){
if (!nmove) endCfinstant = true;
cont ext . newhbve();

}

return res,

Event Machi ne owns a shell environment and maintains a table of instructions to be added to registered shells.
At the very beginning of each instant, method pr ocessAddToshel | is called to perform the additions. (Method
acti vati on of Event Machi ne presented here is more detailed than the one presented in section 3.2).

9. Freeze of components

In SugarCubes v2, it is possible to extract executing components out of systems. The key point is that
extractions are performed when components are in stable states (at ends of instants). This is specialy useful
to implement code migration over the network or code persistence mechanisms.

Only freezable instructions, which are named instructions, can be frozen. When an instruction is to be frozen,

33

The Sugar Cubes v2.0 Reference Manual
it is stopped in the state reached at the end of the current instant, and its residual is stored in the environment.

The execution context manages a set of instructions to be frozen (freeze orders), and a pool of frozen
instructions. It isresponsible to call the method f r eeze of its program at the end of each instant.

Method f r eeze browses the program tree; for Unaryl nstructi ons, itis:

abstract public class Unharylnstruction extends |nstructionl npl

{

public void freeze(Context context){ body.freeze(context); }

}

For Bi naryl nstruction, things are little more complicated as the method freeze is called only on active
branches. For example, if the left branch of a Seq instruction is not terminated, then method f r eeze does not
call the method freeze on the right branch. The same holds for nti |, Wen, | f. We do not give more details
on this matter here.

9.1. Class Freezable

In Sugar Cubesv2, instruction Freezabl e is the only instruction which implements method freeze. Class
Fr eezabl e extends Unar yl nst r uct i on and implements Nanedl nst r uct i on:

public class Freezabl e extends Unarylnstruction inpl enents Nanmedl nstruction
{

prot ected bool ean reani m= fal se;

protected String nane = "nonane";

prot ected JavaStri ngExpressi on naneExpression = null;

public Freezabl e(String n,Instruction i){
thi s(new JavaStri ngVal ue(n),i);

}

publ i ¢ Freezabl e(JavaStri ngExpression n,Instruction i){
body = i;nameExpression = n;

}

public String nane(){ return nare; }
prot ect ed bool ean doFreeze(Cont ext context)
if(firstActivation||ternminated) return true;
i f(context.isToBeFrozen(nane)){
Freezable i = (Freezabl e) residual ();
i.reanim= true;
cont ext . st oreFrozenl nstruction(nane,i);
noti f yFreezeToJava(cont ext);
body = new Not hing();term nated = true;
return true;
}
return fal se;
}
public void freeze(Context context){
i f (doFreeze(context)) return;
super. freeze(context);
}
public String toString(){
return "freezabl e "+naneExpressi on+" "+body+" end";

}

protected Instruction rest(){

The Sugar Cubes v2.0 Reference Manual

return new Freezabl e(naneExpr essi on, body. resi dual ());
}
protected void firstActivation(Context context){
nane = nameExpr essi on. eval uat e(cont ext. currentLi nk());
nameExpr essi on = new JavaStri ngVal ue(nane);
if(reaninm{
reani m= fal se;
not i f yWar mipToJava(cont ext);
}

super.firstActivation(context);

}
Method f r eeze calls the method doFr eeze which actually freezes the instruction, if needed.

1. Firgt, it checks if the instruction need to be frozen by caling the method i sToBeFr ozen on the execution
context. If so, then it computes the remaining program by calling the method r esi dual .

2. Then, it stores the result in the execution context by calling the method st or eFr ozenl nst ruct i on.

3. It calls the method not i f yFreezeToJava to perform special tasks in Java. In case of migration, this is
useful to disable bindings of the Java object associated with the instruction, in order to migrate it safely .

4. Finally, it replacesits body by Not hi ng, and returns.

Note that a Freezabl e instruction which is frozen does not call the method freeze of its body. A boolean
valueisreturned by method doFr eeze to indicate that the freeze order has been actually proceeded, so method
freeze will not be called on the body. Therefore, if a Freezabl e instruction is encapsulated in the body of an
other Freezabl e instruction, and if the two instructions are requested to freeze in the same instant, then only
the encapsulating oneis actually frozen.

One can retrieve frozen instructions by calling the method get Fr ozenl nst ructi on on the execution context.
The instruction obtained can then be sent over the network, for example using RMI and the serialization
mechanism of Java.

Method not i f ywar nipToJdava is called when a frozen instruction is reactivated (after being added in an
execution machine). This method is called by first Acti vati on which tests the reani mflag to know if the
instruction is descendant of a previously frozen instruction. Method not i f yWar nipToJava is useful to perform
some specia tasks before reanimation of frozen instructions (for example, dynamic rebinding of associated
Java objects; see sections 6 and 7 for more details).

9.2. Freezeinstruction

The Fr eeze instruction extends At omand is used to program the freezing of instructions:

public class Freeze extends Atom

{
protected JavaStri ngExpressi on tar get NaneExp;

public Freeze(String target){thi s(new JavaStri ngVal ue(target));}
publ i ¢ Freeze(JavaStri ngExpressi on naneExp) {

target NameExp = nameExp;
}

public String toString(){
return "freeze "+t arget NaneExp;

}

protected void action(Context context){

35

The Sugar Cubes v2.0 Reference Manual
cont ext. freezeQr der (t arget NanmeExp. eval uat e(cont ext. current Li nk()));

}

The name of the instruction to freeze can be set at run time using aJavaSt ri ngExpr essi on.

9.3. Freezing mechanism in EventM achine

In Event Machi ne, the freezing mechanism isimplemented as follows:

public class Event Machi ne ext ends CQube inpl enents Domai n, Machi ne
{
prot ected Hashtabl e frozenStore = new Hasht abl e();
protected Vector toFreeze = new Vector();
protected Instruction rest(){
return new Event Machi ne(new JavaSt ri ngVal ue(name()),
new Java(Chj ect Val ue(j avathj ect ()), body(). resi dual (),
onTer m nat e, onFr eeze, on\\r nip) ;
}
protected byte activation(Context context){
nove = fal se;
i f (begi ni ngCxr I nst ant) {
synchr oni zed(t hi s) {
i f(addToProgram!= nul I){
super . add(addToPr ogran); addToProgram = nul | ;
}
}

processAddToShel | ();
begi ni ngx I nstant = fal se;
}
byte res = super.activation(this);
if (res == STOP){
endd I nstant = fal se;
new nstant () ;
begi ni ngx I nstant = true;
processFreezeQ ders();

}

else if(res == SUSP){
if (!nmove) endCfinstant = true;
cont ext . newhbve();

}

return res,

public void freeze(Context context){ doFreeze(context); }
public void freezeGder(String nane){ toFreeze.addH enent (nane); }
publ i ¢ bool ean i sToBeFrozen(String name){ return toFreeze. contai ns(nane); }
protected voi d processFreezeO ders(){
if (toFreeze.isEnpty()) return;
body().freeze(this);
t oFreeze. renoveAl | El enents();
}
publ ic void storeFrozenlnstruction(String nane, I nstruction frozen){
frozenStor e. put (nane, frozen);
}

public Instruction getFrozenlnstruction(String nane){
return (Instruction) frozenStore.renove(nare);

36

The Sugar Cubes v2.0 Reference Manual

}

Note that Event Machi ne which extends Fr eezabl e (as it extends Qube - see in the next section -) overrides the
method f reeze and never calls method f reeze of its program. An execution machine encapsulated in another
one never transmits freeze orders to its program; this is because reactive machines are closed cubes (as said in
2.2.5).

Note also that instruction additions pending on frozen shells are ssimply discarded.

10. Cubes

Sugar Cubes v2 introduces new objects, called cubes. A cube encapsulates in the same entity a standard Java
object and a reactive behavior which can be dynamically extended. Actually, a cube is a freezable instruction
implementing the Li nk and shel | interfaces.

Cubes are the basic unit for code migration, especialy when implementing autonomous agents able to
migrate over the network.

10.1. Class Cube

Class aube contains aLi nk which itself containsa shel | . The codeis:

public class Qube extends Freezable inplenents Link, Shell
{
protected Shelllnpl shell;
protected Link Iink;
protected Javal nstruction onTerm nate, onFreeze, onWarnp;
prot ected JavaChj ect Expressi on obj ;

publ i ¢ Qube(JavaStri ngExpressi on s, Javathj ect Expression o, Instruction b
,Javal nstruction fin,Javalnstruction f,Javal nstruction w){
super (s, b);
obj = 0; onvarnip = w, onFreeze = f; onTernminate = fin;
}
public Qube(String s, (hject o,Instruction i){
t hi s(new JavaStri ngVal ue(s), new JavaChj ect Val ue(0), i
, hew JavaEnpt yl nst ructi on()
, hew JavaEnmpt yl nstructi on()
, hew JavaEnptyl nstruction());

}
public Qube(String s,Instruction i){ this(s,null,i); }

public void add(lnstruction inst){
if(firstActivation){ body = new Merge(body,inst); return; }
shel | . add(i nst);
}
public Instruction body(){
if(firstActivation) return body;
return shell . body();

public (pject java(oject(){
if(!firstActivation) return link.javaChject();
Systemerr.printl n("Warning: Link not yet activated");
return null;

37

The Sugar Cubes v2.0 Reference Manual

public Link superLink(){ return |ink.superLink(); }
public String toString(){
return "cube "+nane()+" "+body()+
" on freeze "+onFreeze+
" on warnp " +onWar nip+
" on terninate "+onTerm nate+" end";
}
protected Instruction rest(){
return new Qube(naneExpr essi on, new Java(hj ect Val ue(j avaChj ect ()),
body() . resi dual (),
onTer m nat e, onFr eeze, new JavaEnpt yl nstruction());
}
protected voi d buil dBody(){
body = new Until (new PosConfi g(name+"-destroy"),
(l'ink = new Li nkl npl (obj, shel | = new Shel | | npl (nare, body),
onTer m nat e,
onFr eeze,
onVérnp))) ;
}
protected void firstActivation(Context context){
super.firstActivation(context);
bui | dBody() ;
((Li nkl npl) 1'i nk) . set Qube(t his);
}
public void notifyWrnmjpToJava(Cont ext context) {
body. not i f yWar mpToJava(cont ext) ;
body = new Seq(new JavaAt on{ onVr nip) , body) ;

}

The encapsulated Li nk and shel | are actually instantiated at the first activation. Some Javal nstructi on are
used to perform specific tasks when a freeze order occurs (not i f yFreezeToJava), When a reanimation occurs
(not i f ywar nupToJava), or when the cube terminates (not i f yTer mi nat i onToJava).

10.2. Notificationsto Java

The Java instructions onFr eeze and onTer ni nat e are used in the encapsulated Li nki npl and are parameters of
the link construction. Li nkl npl implements not i f yFr eezeToJava and not i f yTer ni nat i onToJava:

public class Linklnpl extends Unarylnstruction inplements Link

{
protected voi d set Qube(Qube cube){ trueLink = cube; }

protected byte activation(Context context){
super Link = context. currentLink();
cont ext . set Qurr ent Li nk(trueLi nk);
byte res = body. acti v(context);
cont ext . set Qurrent Li nk(super Li nk) ;
return res;

}

public void notifyTerm nati onToJava(Cont ext context){
super Li nk = context. currentLink();
cont ext. set Qurrent Li nk(trueLi nk);
body. noti f yTer mi nati onToJava(context);
onTer ni nat e. execut e(trueLi nk) ;
cont ext . set Qurr ent Li nk(super Li nk) ;

38

The Sugar Cubes v2.0 Reference Manual

public void notifyFreezeToJava(Cont ext context){
superLi nk = context. currentLink();
cont ext . set Qurrent Li nk(trueLi nk);
body. noti f yFr eezeToJava(cont ext);
onFr eeze. execut e(trueLi nk) ;
cont ext . set Qurrent Li nk(super Li nk) ;

}

Note that, in a Qube, interface Li nk is implemented by an encapsulated Li nkl npl instruction. Li nkl npl uses
the trueLi nk parameter when it calls the method execut e of Java instructions. The trueLi nk references the
Qube and not the encapsulated Li nki npl itself. When building its body, a Qube calls method set Qube of the
Li nkl npl to set thet rueLi nk field.

10.3. Cubedestruction

A cube named x is destroyed by generating the event x-destroy because the cube body is enclosed ina unti |
instruction having this event as preemption event.

Conclusion

Sugar Cubes v2 introduces new features to ease reactive programming over Java. It has been used in severa
contexts, as low level basis for example to implement Reactive Scripts or to program autonomous migrating
reactive agents.

In front of the complexity of some notions, we feel that there is a real need for a forma semantics for

Sugar Cubes v2; we plan to do this, in the spirit of the work on Junior[HSB] which actually corresponds to
the version 1 of Sugar Cubes.

Bibliography

[BG] G. Berry, G. Gonthier, The Esterel Synchronous Language: Design, Semantics, Implementation,
Science of Computer Programming, 19(2), 1992.

[BH] F. Boussinot, L. Hazard, Reactive Scripts, Proc. RTCSA’ 96, Seoul , IEEE, 1996.

[BS] F. Boussinat, JF. Susini, The SugarCubes Tool Box: A Reactive Java Framework Software-Practice
and Experience, VOL. 28(14), 1531-1550 (Dec. 1998).

[GJS] J. Godling, B. Joy, G. Steele, The Java Language Specification, Addison-Wesley, 1996.
[HAL] N. Halbwachs, Synchronous Programming of Reactive System, Kluwer Academic Pub., 1993.

[HP] D. Harel, A. Pnueli, On the Development of Reactive Systems, NATO ASI Series F, Val. 13, Springer-
Verlag, 1985.

[HSB] L. Hazard, J-F. Susini, F. Boussinot, The Junior Reactive Kernel, INRIA Research Rapport n°3732,
July 1999.

39

