
The SugarCubes v2.0
Reference Manual

Jean-Ferdy SUSINI, Frédéric BOUSSINOT
INRIA EMP-CMA/Meije

2004 route des lucioles
F-06902 Sophia-Antipolis

Jean-Ferdinand.Susini@sophia.inria.fr, Frederic.Boussinot@sophia.inria.fr

Abstract: SugarCubes is a set of Java classes used to implement reactive, event based, concurrent systems.
It is a low-level basis upon which more complex reactive formalisms can be implemented. SugarCubes
introduces the notion of a global logical instant of execution, which is used to define synchronous parallelism
and concurrency. It is also used to define instantaneous broadcasting of events which is a powerful
communication mechanism. The second release of the SugarCubes package introduces some new extensions
for easy implemention of dynamic and modular systems. It also defines a more accurate interface between
reactive programs and standard Java objects. Basically, it introduces the notion of a reactive object, called
cube, and focus on descriptions and combinations of behaviors of such objects. SugarCubes is freely
available on the Web.

Keywords: Parallelism and Concurrency, Reactive Programming, Broadcast Events, Java, Cubes, Behavior
Combinations.

1. Introduction

SugarCubes is a set of Java[GJS] classes for implementing systems that are:

• Event based. In these systems, events are instantly broadcast. Communicating in thus like in radio
transmissions, where emitters send information that is instantaneously received by all other components.
This communication paradigm gives a very modular way of system structuring. For example, adding a
receiver to a system, or removing one from it, is totally transparent for the others components (which is
not the case with other communication mechanisms like message passing or rendez-vous).

• Concurrent, but thread-less. Parallelism is a logical programming construct to implement activities which
are supposed to proceed concurrently, and not one after the other. Such parallel activities need not to be
executed by distinct threads, but instead can be automatically interleaved to get the desired result. This
avoids well-known thread related problems.

• Reactive. Reactive systems are systems which continuously interact with their environment [HP]. A
natural way of programming those systems is by combining reactive instructions whose semantics are
defined by reference to activation/reaction couples identified to instants. The end of the reaction
provoked by an activation gives a natural way for determining stable states, where a system is only
waiting for the next activation to resume execution. An important point is that the existence of stable
states is of major importance for code migration over the network.

In order to implement such systems, SugarCubes1 add instants, concurrency and parallelism, and broadcast
events to Java in accordance with the reactive paradigm ; description of it can be found on the Web at the
URL http://www.inria.fr/meije/rc/.

Presently, two main applications are implemented using the SugarCubes:

Rsi-Java is the implementation of Reactive Scripts[BH] on top of Java. Reactive Scripts gives a very
flexible and powerful mean to program over the Internet especially using code migration facilities.
Actually, SugarCubes primitives are embedded in Reactive Scripts. In addition, Reactive Scripts
introduces module declarations (keyword behavior), which can be dynamically instantiated.

WebIcobjs is an implementation of Icobj Programming. Icobjs (for iconic objects) define a new,
intuitive and fully graphical way of programming. The demo of the WebIcobjs is available on the Web at
the URL http://www.inria.fr/meije/rc/WebIcobj/.

SugarCubes v1 [BS] was the first attempt to implements the Reactive Approach on top of Java. In this
paper we present SugarCubes v2 and give most part of its code. Section 2 gives an overview of the Reactive
Approach and of SugarCubes v2. Section 3 presents the two main sets of classes: Instructions and
Machines. The basic reactive instructions are given in section 4. Section 5 introduces events and related
instructions. Finally, sections 6 to 10 describe the new features of SugarCubes v2.

SugarCubes is freely distributed as a tool box for reactive programming in Java.

2. The Reactive Approach

Reactive formalisms introduce the notion of an instant of execution, also called reaction, which splits
program execution in logical instants. A reactive program is activated in an environment and it reacts to the
activation by performing one instant of execution. This notion of a logical instant is of a major importance in
the Reactive Approach as it allows the definition of synchronous concurrency: during a reaction, (during the
execution of an instant) all parallel components execute one step of execution corresponding to that instant.
Thus, they synchronize at each end of instant which occurs when all components have terminated their
execution for the current instant. This leads to interleaved executions simulating parallelism.

1 Why the name SugarCubes? Because many people like to add some sugar in their Java...

The SugarCubes v2.0 Reference Manual

2

C 1

C 2

C 3

Instant 1 Instant 2 Instant 3 Instant 4

Fig 1: Synchronous concurrency. C1, C2 and C3
 are executed in parallel at each instant. They naturally

synchronize at each end of instant.

A powerful communication mechanism called instantaneous broadcasting of events is defined using logical
instants of execution. It has a clear semantics:

• instantaneity: events are non persistent instantaneous data, only available during the very instant of their
generation;

• broadcast: events are seen in the same coherent state by all parallel components in the system during the
whole instant. An event cannot be seen absent by some components and present by some others during
the same instant.

Instant

C1

C2

C3

Fig 2: Instantaneous Broadcast Events. Component C3 generates an event (triangle)
which is broadcast to all parallel components during the instant. Absence of an other event

(rectangle) can only be decided at the end of the instant.

Components waiting for a generated event can immediately react to its presence. This is called instantaneous
reaction to presence. On the contrary, components waiting for an absent event cannot immediately react to its
absence, as absence cannot be decided before the end of the instant. Thus, reaction to the absence is
postponed to the next instant. This is called delayed reaction to absence. Note that forbidding instantaneous
reaction to the absence of an event is a way to avoid causality problems (present in the Synchronous
Approach [HAL]). Causality problems are incoherent situations in which one can react immediately to the
absence of an event by immediately generating it. More information on this subject can be found in [BG] or
[HAL].

Finally, instants provide a clear semantics to simultaneity of events during one instant: two events are
simultaneous if they are present during the instant.

The SugarCubes v2.0 Reference Manual

3

2.1. SugarCubes overview

SugarCubes programs (also called behaviors) are made of reactive instructions implemented as pure Java
objects; from this point of view, SugarCubes is more a high level language, built on top of Java, than a
standard API. A reactive program is a tree of objects representing the syntax of the program. Each node is an
instruction as in the following figure:

Merge

Seq

Await (“e”)

Stop

Seq

PrintAtom (“e!”)

Seq

StopSeq

Generate(“e”)Stop

Fig 3: A Reactive Program. A reactive program is a tree of
reactive instructions which are implemented as Java objects.

In the following, reactive instructions and reactive programs will be considered as synonymous.

Activation of a reactive instruction

An instruction is activated by a call to its method activ. It transmits activation to its sub-terms, following the
syntax tree; this is shown on the example:

Merge

Seq

Await (“e”)

Stop

Seq

PrintAtom (“e!”)

Seq

StopSeq

Generate(“e”)Stop

activ

activactiv

activ

activ

activ

Fig 9: Method activ. The method activ is called on the top level node which is usually a Merge,
and it browses the tree, activating instructions that need to be, according to the nodes semantics.

Each reactive instruction activation returns TERM, STOP, or SUSP representing the state of the instruction
after activation; these return codes are interpreted as follows:

- TERM (for terminated) means that execution of the instruction is completed. Thus, activating it at following
instants will have no effect and will again return TERM.

activ TERM activ TERM

Fig 6: TERM. When activ returns TERM, all following activations
of the instruction will return TERM.

The SugarCubes v2.0 Reference Manual

4

- STOP (for stopped) means that execution of the instruction is stopped at a stable state for the current instant.
At the next instant, execution restarts from the intruction following the stop. It is like the stop road sign: in
front of the stop sign, cars must stop before resuming.

activ STOP activ

Fig 7: STOP. When it has finished to react for the current instant,
an instruction returns STOP.

- SUSP (for suspended) means that execution of the instruction has not reached a stable state for the current
instant, and has to resume during this instant. This is, for example, the case when awaiting for a not yet
generated event (see section 5.3): execution then suspends to give other components the opportunity to
generate it.

activ SUSP activ

Fig 8: SUSP. While it has not reached a stable state for the current instant,
an instruction returns SUSP.

2.2. SugarCubes v2

SugarCubes v2 basically introduces four extensions to the reactive paradigm: the Shell, Freeze, Link, and
Cube instructions.

SugarCubes v2 also introduces the notion of a named instruction which can be referenced by its name in
reactive machines. Instruction names are Java strings. The present version of SugarCubes does not make any
asumption on the way names are managed; in particular, machines do not verify that two distincts instructions
have two distinct names; it is the programmer responsability to assure this, if needed.

In this section, we overview the extensions which are described in details in sections 6 to 10 of this document.

2.2.1. Shell Instruction

Shells are named instructions in which it is possible to dynamically add new parallel instructions.The key
point is that addings are not immediately performed, but are delayed to the next instant; thus, execution of the
current instant is not perturbed and does not depend on the moments addings actually take place.

Implementation is as follows: during each instant, all add orders (AddToShell instructions described in section
8) are collected by the machine and placed into a buffer of instructions; at the end of the instant, instructions
in the buffer are put in parallel with the shell program; thus, added instructions will be actually started only at
the next instant.

2.2.2. Freezing a program

In SugarCubes v2, freezable instructions are named instructions which are frozen when freeze orders are
issued on them. In response to a freeze order, execution of a freezable instruction is stopped at the end of
instant and the remaining program (the residual) is removed from the system. The residual is stored in the
environment and can be retreived from it for future use. This mechanism is especially useful to implement
code migration and persistency mechanisms. The key point is that residuals are computed after the setting of
the end of instant, when instructions are in stable states.

Freeze order are raised by Freeze instructions (see section 9 for details). All freeze orders executed during an

The SugarCubes v2.0 Reference Manual

5

instant are accumulated by the execution machine which start a freeze process at the end of the instant. Like
for activations, the freeze process browses the program tree, starting from the top level instruction. Each time
a freezable instruction is reached, the execution machine checks if a freeze order has been raised for it during
the instant. If so, the freezable instruction is removed from the system and its residual (described bellow) is
computed and stored in the environment

Computing the residual of a frozen instruction means to browse the instruction body and create a new
instruction corresponding to what remains to do in the instruction.

2.2.3. Link

Reactive instructions do not directly perform data computations which must be handled by standard Java
objects. A link encapsulates a Java object and a reactive behavior in the same instruction. The associated
object becomes the default object with which the reactive instruction interacts.

2.2.5. Cube

A Cube is the encapsulation in the same entity of a standard Java object and of a dynamic reactive behavior.
Cubes are autonomous instructions run in parallel in the system and communicating using broadcast events.
A Cube is actually the combination of a link, and of a shell, and it is also a basic unit of migration (that is to
say, a Cube is a freezable instruction):

Cube = Freezable + Link + Shell

Reactive machines, called event machines in SugarCubes v2 , are actually cubes. However they are special
closed cubes which limit the scope of events, and of freeze and add orders.

The rest of the paper gives a technical view of SugarCubes v2, presenting and commenting most part of the
code of the different classes.

3. The Main Classes

SugarCubes is divided in two main set of Java classes:

• Reactive Instructions are objects implementing reactive primitives, for example, the sequence operator,
the concurrency operator, loops instructions, generation of an event, preemption by events, etc.

• Reactive Machines are objects used to execute programs made of reactive instructions and to provide
their execution environment. Basically, a reactive machine activates its program, defines its instants, and
provides the event environment and default Java object for it.

All classes presented here are parts of the package inria.meije.rc.sugarcubes.

3.1. Reactive Instructions

An instruction defines a reactive behavior. It is a Java object implementing the interface Instruction.

3.1.1. Instruction Interface

This interface defines methods, called by reactive machines, in order to manage and execute instructions.

The SugarCubes v2.0 Reference Manual

6

package inria.meije.rc.sugarcubes;

public interface Instruction extends Cloneable,Java.io.Serializable
{
 byte activ(Context context);
 boolean isTerminated();
 Object clone();
 void freeze(Context context);
 Instruction residual();
 void notifyWarmUpToJava(Context context);
 void notifyFreezeToJava(Context context);
 void notifyTerminationToJava(Context context);
}

Each activation returns a code which is the state of the instruction after activation. There are three return
codes defined in the ReturnCodes interface:

public interface ReturnCodes
{
 byte STOP = 0;
 byte TERM = 1;
 byte SUSP = 2;
}

Activation

An instruction is activated by calling its method activ. When activated, the instruction receives the execution
environment (which implements the Context interface described in the next sub-section) as argument and it
executes its behavior.

isTerminated

Method isTerminated returns a boolean indicating if the instruction has terminated, without having to activate
it.

Clone and Serialization

Instruction extends interface Cloneable and thus instruction copies are available by calling the method
clone. It also extends interface Serializable for translating instructions into byte streams (this can be useful
to implement code migration on the top of Java RMI or code persistence mechanisms).

Freeze

At the end of each instant, reactive machines invoke method freeze on their programs. Method freeze
bowses the program tree and calls the method freeze of all instructions that have been activated and not
terminated during the instant; the effect of these calls is describe in section 9.1. Informally, it is as follows:

• the instruction computes its residual (see method residual bellow);

• it stores the residual in the current context, using method storeFrozenInstruction (see the Context
interface description in next section).

• it removes itself from the executed program;

The SugarCubes v2.0 Reference Manual

7

Residual

Method residual, called at ends of instants on frozen instructions, returns the remaining of the instruction
(what remains to be done at next instants).

Notifications to Java

Method notifyFreezeToJava is called by the machine on instructions that have to be frozen. It executes some
Java code just before freezing instructions (note that this Java code is executed between instants). Typically
this method is useful to remove the references on objects associated to frozen instructions (for example to
implement a dynamic binding mechanism for code migration).

Method notifyTerminationToJava is called when instructions terminate or are destroyed. It is useful to
execute some Java code in order to inform associated Java objects that reactive instructions are over.

Method notifyWarmUpToJava handles Java code executed when the residual of an instruction is added back in
an execution machine. It executes Java code allowing for example a Java object bound to the reactive
instruction to proceed to some reinitialisation process (essentially, dynamic rebinding of the Java object)
before resuming. This code is executed only at the very first activation of the newly added back instruction.

3.1.2. Instruction Implementation

Class InstructionImpl implements interface Instruction; it is an abstract class that implements common
basic methods of an instruction. It also implements method toString which produces readable representations
of reactive programs; actually, programs are printed as Reactive Scripts. All reactive instructions extends the
class InstructionImpl which has the following structure:

abstract public class InstructionImpl implements Instruction, ReturnCodes
{
 protected boolean terminated = false;
 protected boolean firstActivation = true;

 public boolean isTerminated(){ return terminated; }
 abstract protected byte activation(Context context);
 protected void firstActivation(Context context){ firstActivation = false; }
 public byte activ(Context context){
 if (terminated) return TERM;
 if (firstActivation) firstActivation(context);
 byte res = activation(context);
 if (res == TERM) lastActivation(context);
 return res;
 }
 protected void lastActivation(Context context){ terminated = true; }
 public String toString(){ return ""; }
 …
 public Object clone(){
 try{ return (Instruction)super.clone(); }
 catch (CloneNotSupportedException e){
 throw new InternalError(e.toString());
 }
 }
 …
}

Note that method activ calls activation which is abstract and must be defined in derived classes. These two
methods receive a Context parameter for interacting with the execution environment.

The SugarCubes v2.0 Reference Manual

8

Note also that firstActivation and lastActivation allow subclasses to proceed special activities when the
instruction is activated for the very first time and for the last time.

Two abstract classes extends InstructionImpl: UnaryInstruction and BinaryInstruction.

Unary Instructions

UnaryInstruction is an abstract class with a body which is also an instruction. It is used for example to define
loops in section 4.5.

abstract public class UnaryInstruction extends InstructionImpl
{
 protected Instruction body = new Nothing();`

 public Object clone(){
 UnaryInstruction inst = (UnaryInstruction)super.clone();
 inst.body = (Instruction)body.clone();
 return inst;
 }
 protected byte activation(Context context){
 return body.activ(context);
 }
 …
}

Binary Instructions

BinaryInstruction is an abstract class with two components, left and right, which are also instructions. It is
used, for example, to define the binary sequence instruction in section 4.2.

abstract public class BinaryInstruction extends InstructionImpl
{
 protected Instruction left = new Nothing(), right = new Nothing();

 public Object clone(){
 BinaryInstruction inst = (BinaryInstruction)super.clone();
 inst.left = (Instruction)left.clone();
 inst.right = (Instruction)right.clone();
 return inst;
 }
}

Named Instructions

In SugarCubes v2, shells, cubes, and freezable instructions implements the NamedInstruction interface and
can be identified by a name.

public interface NamedInstruction extends Instruction
{
 String name();
}

3.2. Reactive Machines

Reactive instructions are executed by execution machines called reactive machines. A reactive machine is a
Java object owning a program which is an instruction. It provides and manages the execution environment for

The SugarCubes v2.0 Reference Manual

9

the program and it defines the instants of execution for it.

3.2.1. Machine Interface

A reactive machine is an execution machine that runs a reactive program. Reactive machines implement the
Machine interface:

public interface Machine
{
 public Instruction program();
 boolean react();
}

Method program returns the program of the reactive machine. Method react executes one reaction, that is one
instant of the program. Method react returns a boolean value which indicates if the machine is terminated
(i.e. the program is completely terminated).

3.2.2. Context Interface

Reactive machines implement the Context interface:

public interface Context
{
 void newMove();
 int currentInstant();
 boolean isEndOfInstant();

 void setCurrentLink(Link link);
 Link currentLink();

 void addToShell(String name,Instruction inst);
 void registerShell(String name,Shell shell);
 void removeShell(String name);

 void freezeOrder(String name);
 boolean isToBeFrozen(String name);
 void storeFrozenInstruction(String name,Instruction frozen);
 Instruction getFrozenInstruction(String name);
}

Instants processing

Two methods are used to detect ends of instants: newMove indicates that something new happens in the
program; thus, the end of the current instant has to be postponed; isEndOfInstant returns a boolean to
indicate if the end of the current instant has been declared by the execution machine.

Method currentInstant returns the number of the current instant (initially equals to 1).

Links processing

Methods setCurrentLink and currentLink bind and retrieve the Link instruction which associates a Java
object to a reactive program. This mechanism is detailed in section 6.

Shells processing

The SugarCubes v2.0 Reference Manual

10

Methods addToShell, registerShell, and removeShell are used to implement dynamic parallelism with
which new instructions can be added to shells; this is detailed later in the section about shells (7). Actual
adding of instructions is performed between instants. Machines are responsible to collect all add orders
during a reaction and to actually proceed them at the end of the reaction.

Freeze orders

Method freezeOrder adds the name of an instruction to the set of instructions having to be frozen at the end
of the reaction. It is usually called by the Freeze instruction (see section 9). Method isToBeFrozen is called by
an instruction, when the instant is over, to know if it has to be frozen. If true, the instruction proceeds the
freeze order as described in the previous subsection (about instructions). Method storeFrozenInstruction
stores the residual of a frozen instruction in the execution context. Finally, getFrozenInstruction retrieves
the residual of a frozen instruction. Note that calling getFrozenInstruction to retreive a recently frozen
instruction also removes this instruction from the frozen instructions pool in the environment; so, it can be
called only once to retreive a particular instruction.

3.2.2. Event Machines

Execution machine of class EventMachine implements interfaces Machine and Context. It provides an
event environment for reactive programs and detects ends of instants.

Method react

Method react of EventMachine is as follows:

• The program is cyclically activated while there are suspended instructions in it (that is, while activations
return SUSP).

• At the end of each program activation, the machine tests if some new events were generated during this
execution. If it was not the case, then there is no hope that future program activations will change the
situation, and the end of the current instant can be safely decided. Then, a flag is set to let suspended
instructions stop, knowing from that point that awaited events are absent. As the instant is over, reactions
to the absence of events are postponed to the next instant.

• The end of the current instant is effective when all parallel instructions in the program are terminated or
stopped (no suspended instruction remains).

Two variables move and endOfInstant are used to implement this algorithm with the simple following code:

while ((res = program.activ(this)) == SUSP){
 if (move) move = false; else endOfInstant = true;
}

Method add

In SugarCubes v2, execution machines are instructions and more precisely cubes (see section 10).

Initially the program of a machine is the Nothing instruction (defined in section 4.1) which does nothing and
terminates immediately. The method add adds a new instruction to the program; this new instruction is run in
parallel with the previous program, using the Merge primitive defined in section 4.3.

Event environment

EventMachine contains an environment named eventEnv to deal with events (events are described later in
section 5). It implements the interface Domain to allow reactive instructions to access the event environment.

The SugarCubes v2.0 Reference Manual

11

Class EventMachine

Class EventMachine has the following structure:

public class EventMachine extends Cube implements Domain, Machine
{
 protected transient boolean move=false,endOfInstant=false,
 beginingOfInstant=true;
 protected int instant = 1;
 …

 public EventMachine(){ super("noname", new Nothing()); }
 public EventMachine(Instruction i){ super("noname",i); }
 …

 public void add(Instruction inst){
 synchronized(this){
 if(addToProgram!=null)
 addToProgram = new Merge(addToProgram,inst);
 else
 addToProgram = inst;
 }
 }
 …
 public int currentInstant(){ return instant; }
 public void newMove(){ move = true; }
 protected void newInstant(){ instant++; presentEvents.removeAllElements(); }
 …
 protected byte activation(Context context){
 move = false;
 if(beginingOfInstant){
 notifyBeginOfInstantToJava();
 beginingOfInstant = false;
 }
 …
 byte res = super.activation(this);
 if (res == STOP){
 endOfInstant = false;
 newInstant();
 …
 notifyEndOfInstantToJava();
 beginingOfInstant = true;
 }
 else if(res == SUSP){
 if (!move) endOfInstant = true;
 context.newMove();
 }
 return res;
 }
 …
 public boolean isEndOfInstant(){ return endOfInstant; }
 …
 public boolean react(){
 byte res = SUSP;
 while (res == SUSP) res = activ(this);
 return res == TERM ? true : false;
 }
 public Instruction program(){
 return body();

The SugarCubes v2.0 Reference Manual

12

 }
 …
 public Object clone(){
 EventMachine inst = (EventMachine)super.clone();
 …
 inst.addToProgram = (Instruction) addToProgram.clone();
 return inst;
 }
}

3.2.3. Processing of instants

Finally, in SugarCubes, execution machines allow the user to implement special tasks performed at the
beginning or at the end of instants by overridding the two methods notifyBeginOfInstantToJava and
notifyEndOfInstantToJava. This can be for example useful to perform periodic graphics refreshes at each
instant.

4. Basic Instructions

In this section, we introduce the basic reactive instructions.

4.1. Nothing, Stop, Halt

Nothing does nothing when activated and immediatly returns TERM; it is introduced only as the initial
program value:

public class Nothing extends InstructionImpl
{
 public String toString(){ return "nothing"; }
 protected byte activation(Context context){ return TERM; }
}

Stop stops execution for the current instant by returning STOP. It will return TERM at next instants:

public class Stop extends InstructionImpl
{
 protected boolean ended = false;

 public String toString(){ return "stop"; }
 protected byte activation(Context context){
 if (ended) return TERM;
 ended = true;
 return STOP;
 }
}

Instruction Halt return STOP at each activation (and thus never terminates):

public class Halt extends InstructionImpl
{
 public String toString(){ return "halt"; }
 protected byte activation(Context context){ return STOP; }
}

The SugarCubes v2.0 Reference Manual

13

4.2. Sequencing

Class Seq extends BinaryInstruction and implements sequencing. First, instruction left is activated; if it
terminates, then control immediately (during the same instant) goes to right:

public class Seq extends BinaryInstruction
{
 public Seq(Instruction left,Instruction right){
 this.left = left;
 this.right = right;
 }

 public String toString(){ return left+"; "+right; }
 …
 protected byte activation(Context context){
 if (left.isTerminated()) return right.activ(context);
 byte res = left.activ(context);
 if (res != TERM) return res;
 return right.activ(context);
 }
 …
}

4.3. Parallelism

Class Merge extends BinaryInstruction and implements basic parallelism: at each instant, the two
instructions left and then right are both activated, always in this order. It terminates when both left and
right are terminated. The return code of method activ is determined, from the return states of the two
branches, by the following table:

TERM STOP SUSP

TERM TERM STOP SUSP

STOP STOP STOP SUSP

SUSP SUSP SUSP SUSP

left
right

Class Merge has the following structure:

public class Merge extends BinaryInstruction
{
 private byte leftStatus = SUSP, rightStatus = SUSP;

 public Merge (Instruction left, Instruction right){
 super.left = left;
 super.right = right;
 }

 public String toString(){ return "("+left+" || "+right+")"; }
 …
 protected byte activation(Context context){
 if (leftStatus == SUSP) leftStatus = left.activ(context);
 if (rightStatus == SUSP) rightStatus = right.activ(context);
 if (leftStatus == TERM && rightStatus == TERM){ return TERM; }
 if (leftStatus == SUSP || rightStatus == SUSP){ return SUSP; }
 leftStatus = rightStatus = SUSP;
 return STOP;
 }

The SugarCubes v2.0 Reference Manual

14

 …
}

4.4. Atoms

Abstract class Atom extends InstructionImpl and defines actions which implement interactions and side-
effects with the execution environment. Typically, atoms are used to implement event generations and
interactions with standard Java objects.

abstract public class Atom extends InstructionImpl
{
 abstract protected void action(Context context);
 protected byte activation(Context context){ action(context); return TERM; }
}

Class PrintAtom, for example, extends Atom to display a message on the standard output stream:

package inria.meije.rc.io;

import inria.meije.rc.sugarcubes.*;

public class PrintAtom extends Atom
{
 private String message;

 public PrintAtom(String m){ message = m; }

 public String toString(){ return "{System.out.print(\""+message+"\")}"; }
 protected void action(Context context) {
 System.out.print(message); System.out.flush();
 }
}

Note that in SugarCubes v2, PrintAtom has been moved to the inria.meije.rc.io package as its purpose is
essentially to generate traces of execution (for testing or debugging). Another instruction PrintTime, can be
also used for profiling purposes.

4.5. Cyclic Instructions

SugarCubes provides two kinds of loops: infinite loops and finite ones; both extend the abstract class Cyclic,
which has the following structure:

public class Cyclic extends UnaryInstruction
{
 protected Instruction model = null;

 public Cyclic(Instruction inst){ model = inst; body = freshBody(); }

 protected Instruction freshBody(){ return (Instruction)model.clone(); }
}

Note that each iteration of a cyclic instruction uses a new fresh copy of the initial body (called the model).

4.6. Infinite loops

When the body of an infinite loop of class Loop is terminated, it is automatically and immediately restarted.

The SugarCubes v2.0 Reference Manual

15

Instantaneous loops

A loop is said to be instantaneous when it cannot terminate its reaction for the current instant in a finite time
because its body terminates and is restarted for ever. Instantaneous loops are to be rejected because they
would never converge to a stable state closing the instant.

To avoid instantaneous loops we use the following heuristics: a loop enforces a stop to occur at the end of the
execution of the body if the beginning of it has also been previously executed during the same instant. This is
a valid strategy because all successive iterations would probably also terminate during the same instant,
leading to an instantaneous loop.

Class Loop

Class Loop is the following:

public class Loop extends Cyclic
{
 protected boolean first = true, endReached = false;

 public Loop(Instruction inst){ super(inst); }

 public String toString(){ return "loop "+body+" end"; }
 protected Instruction rest(){
 return new Seq(body.residual(),new Loop(freshBody()));
 }
 protected byte activation(Context context){
 for(;;){
 byte res = body.activ(context);
 if (res != TERM){
 first = endReached = false;
 return res;
 }
 if (first || endReached){
 System.err.println("warning: instantaneous loop detected");
 first = endReached = false;
 return STOP;
 }
 endReached = true;
 body = freshBody();
 }
 }
}

4.7. Finite Loops

Finite loops are implemented by the class Repeat. A finite loop executes its body a fixed number of times.
Therefore, there is no detection of instantaneous looping, because finite loops cannot diverge.

public class Repeat extends Cyclic
{
 protected int counter;
 protected JavaIntegerExpression intExp;

 public Repeat(int n,Instruction inst){ this(new JavaIntegerValue(n),inst); }
 public Repeat(JavaIntegerExpression exp,Instruction body){
 super(body); intExp = exp;
 }

The SugarCubes v2.0 Reference Manual

16

 protected Instruction rest(){
 if (counter <= 1) return body.residual();
 return new Seq(body.residual(),new Repeat(counter-1,freshBody()));
 }
 public String toString(){ return "loop "+intExp+" times "+body+" end"; }
 public void firstActivation(Context context){
 counter = intExp.evaluate(context.currentLink());
 super.firstActivation(context);
 }
 protected byte activation(Context context){
 for(;;){
 if (counter <= 0){ return TERM; }
 byte res = body.activ(context);
 if (res != TERM) return res;
 counter--; body = freshBody();
 }
 }
}

The number of iterations is determinated at run time, when using the constructor having a
JavaIntegerExpression parameter. The number of iterations is then computed when the loop is activated
for the first time. More details about JavaIntegerExpression can be found in section 7.

4.8. If

Class If extends BinaryInstruction and allows execution to choose between the then branch (left) or the
else branch (right) according to the evaluation of a boolean expression. The boolean expression is computed
by an object implementing the JavaBooleanExpression interface (see section 6.2). Code of class If is:

public class If extends BinaryInstruction
{
 protected boolean value;
 protected JavaBooleanExpression condition;

 public If(JavaBooleanExpression cond, Instruction t, Instruction e){
 condition = cond; left = t; right = e;
 }
 public If(JavaBooleanExpression cond, Instruction t){
 this(cond,t,new Nothing());
 }

 public String toString(){
 if (right instanceof Nothing) return "if "+condition+" then "+left+" end";
 if (left instanceof Nothing) return "if "+condition+" else "+right+" end";
 return "if "+condition+" then "+left+" else "+right+" end";
 }
 …
 protected void firstActivation(Context context){
 value = condition.evaluate(context.currentLink());
 super.firstActivation(context);
 }
 protected byte activation(Context context){
 return value ? left.activ(context) : right.activ(context);
 }
 …
}

The SugarCubes v2.0 Reference Manual

17

4.9. An Example

The little example we consider here consists in running three instants of a machine. First, one defines the
machine and an instruction using the primitives Stop, Seq, Merge, and PrintAtom; then, the instruction is added
to the machine; finally, three machine activations are provoked.

class Example
{
 public static void main (String argv[])
 {
 EventMachine machine = new EventMachine();

 Instruction inst =
 new Seq(
 new Merge(
 new Seq(new Stop(),new PrintAtom("left ")),
 new PrintAtom("right ")),
 new PrintAtom("end "));

 machine.add(inst);

 for (int i = 1; i<4; i++){
 System.out.print("instant "+i+": ");
 machine.react();
 System.out.println("");
 }
 }
}

Execution of this class gives:

instant 1: right
instant 2: left end
instant 3:

Note that termination of Merge only occurs at the second instant because of the Stop instruction in the first
branch. Note also that printing of end occurs in the second instant: sequencing is instantaneous, that is control
goes to the second component of the sequence as soon as the first one terminates.

A call to the method toString of instruction inst would produce the following reactive script, which is
actually a more readable form of the instruction:

(
 stop;{System.out.print("left ")}
||
 {System.out.print("right ")}
);
{System.out.print("end ")}

5. Event Programming

SugarCubes provides a powerful mechanism of communication, called instantaneous broadcasting of events.
First, we consider events, then reactive instructions dealing with them

The SugarCubes v2.0 Reference Manual

18

5.1. Events

SugarCubes provide events with the following characteristics:

• events are automatically reset at the beginning of each instant; thus, events are not persistent data across
instants.

• events can be generated by the method generate of the Domain interface (implemented by reactive
machines). This sets an event to be present for the current instant. Generating an event which is already
present has no effect.

• an event is perceived in the same way by all parallel components during the instant: events are broadcast.

• events can be tested for presence, waited for, or used to preempt a reactive statement.

• one cannot decide that an event is absent during the current instant before the end of this instant (this is
the only moment one is sure that the event has not been generated during the instant). Thus, reaction to
absence is always postponed to the next instant. This is the basic principle of the reactive approach.

5.2. Interface Domain

EventMachine implements interface Domain which defines methods used to interact with the event
environment. This interface is an extension of Context.

public interface Domain extends Context
{
 boolean isGenerated(String name);
 void generate(String name);
 …
}

Method generate generates an event. Method isGenerated returns true if the event given in argument has
been generated during the current instant; it returns false otherwise.
Note: if isGenerated return false, it doesn’t mean that the event is absent, which can only be decided at the
end of the instant; it only means that the event has not yet been generated.

5.3. Configurations

In SugarCubes, events are handled by event configurations. Intuitively, a configuration is a boolean
expression of events. A configuration is satisfied if it evaluates to true; else, it is unsatisfied. Event
configurations are of 4 kinds:

• a simple event (class PosConfig), satisfied if the event is present.

• the negation not of a configuration (class NotConfig) satisfied if its sub-configuration is unsatisfied.

• the and of two configurations (class AndConfig) satified when the two sub-configurations are both
satisfied in the same instant.

• the or of two configurations (class OrConfig) statisfied when one of the two sub-configurations is
satisfied.

Event configurations extend the abstract class Config which describes the basic methods common to all
configurations.

The SugarCubes v2.0 Reference Manual

19

5.3.1. Class Config

Abstract class Config has the structure:

abstract public class Config implements Cloneable,Java.io.Serializable
{
 abstract public boolean fixed(Domain domain);
 abstract public boolean evaluate(Domain domain);
 …
}

A configuration is said to be fixed when its value can be safely evaluated.
Note: Only fixed configurations should be evaluated. Evaluation is performed by method evaluate (which
thus should be called only on fixed configurations).

5.3.2. Class PosConfig

A PosConfig configuration is fixed as soon as the corresponding event is generated, or when the end of the
current instant is set. Evaluation returns true if the event is generated, and false if the event is absent, that is, it
is not present while end of the current instant is set.

public class PosConfig extends Config
{
 protected String eventName = null;
 protected JavaStringExpression eventNameToEvaluate = null;

 public PosConfig(String eventName){ this(new JavaStringValue(eventName)); }
 public PosConfig(JavaStringExpression expr){ eventNameToEvaluate = expr;}

 public String toString(){ return eventNameToEvaluate.toString(); }
 public boolean evaluate(Domain domain){
 return domain.isGenerated(eventName);
 }
 protected void computeName(Domain domain){
 eventName = eventNameToEvaluate.evaluate(domain.currentLink());
 eventNameToEvaluate = new JavaStringValue(eventName);
 }
 public boolean fixed(Domain domain){
 if(eventName == null) computeName(domain);
 return domain.isGenerated(eventName)?true:domain.isEndOfInstant();
 }
}

The name of the actual event is computed at run time when the constructor with a JavaStringExpression
parameter is used (JavaStringExpression is considered in section 6).
Note: PosConfig is the only class that directly seeks events in the environment.

5.3.3. Class NotConfig

Class NotConfig extends Config and implements the negation of a sub-configuration. It is fixed as soon as the
sub-configuration is, and evaluation returns the negation of it.

5.3.4. Binary configurations

Binary configurations are conjunctions (and) or disjunctions (or) of configurations. The BinaryConfig

The SugarCubes v2.0 Reference Manual

20

abstract class contains two fields c1 and c2 of type Config.

A conjunction of class AndConfig is fixed when both sub-configurations are, or as soon as one component is
fixed and evaluates to false: in this case, the other one does not need to be also fixed. Evaluation returns the
and of the evaluation of the two sub-configurations:

public class AndConfig extends BinaryConfig
{
 public AndConfig(Config c1, Config c2){super(c1,c2);}

 public String toString(){ return "("+c1+" and "+c2+")"; }
 public boolean fixed(Domain domain){
 boolean b1 = c1.fixed(domain);
 boolean b2 = c2.fixed(domain);
 if (b1 && !c1.evaluate(domain)) return true;
 if (b2 && !c2.evaluate(domain)) return true;
 return b1 && b2;
 }
 public boolean evaluate(Domain domain){
 return c1.evaluate(domain) && c2.evaluate(domain);
 }
}

Class OrConfig of configuration disjunctions is not given here as it is very similar to AndConfig.

5.4. Event Generation

Class Generate extends Atom (event generation terminates instantaneously). Generating an event calls the
newMove method to indicate that something new happens in the system; this avoid the execution machine to
decide the end of the instant at the end of the current activation. Thus, configurations waiting for the event
will still have the possibility, during the current instant, to see that it is actually present.

public class Generate extends Atom
{
 protected JavaStringExpression eventName = null;

 public Generate(String e) { this(new JavaStringValue(e)); }
 public Generate(JavaStringExpression jsi){ eventName = jsi;}

 public String toString(){
 return "generate "+eventName;
 }
 protected void action(Context context){
 ((Domain)context).generate(eventName.evaluate(context.currentLink()));
 }
}

The name of the generated event is set at run time when the constructor with a JavaStringExpression
parameter is used (see section 6).

5.5. Waiting for Events

Class Await extends InstructionImpl and implements a reactive behavior waiting for a configuration to be
satisfied. Await contains a Config field which is the awaited configuration.

The activation method returns SUSP while the configuration is not fixed. When fixed, it evaluates the
configuration. If evaluation returns false, meaning that the configuration waited for is not satisfied, then

The SugarCubes v2.0 Reference Manual

21

STOP is returned. If evaluation returns true, TERM is returned if the end of the current instant is not already
set, and STOP is returned otherwise. In this last case, termination occurs at the next instant. For example,
evaluation of not e returns true when e was not generated during an instant, and at the end of the instant,
activation returns STOP in this case. This is coherent with the basic principle of section 5.1 which states that
the absence of an event cannot be decided before the end of the current instant.

public class Await extends InstructionImpl
{
 protected boolean ended = false;
 protected Config config;

 public Await(Config config){ this.config = config; }
 public Await(String event){ this(new PosConfig(event)); }

 public String toString(){ return "await "+config; }
 public Object clone(){
 Await inst = (Await)super.clone();
 inst.config = (Config)config.clone();
 return inst;
 }
 protected byte activation(Context context){
 if (ended) return TERM;
 if (!config.fixed((Domain)context)) return SUSP;
 if (!config.evaluate((Domain)context)) return STOP;
 ended = true;
 return ((Domain)context).isEndOfInstant() ? STOP : TERM;
 }
}

5.6. Configuration test

Class When extends BinaryInstruction and chooses a branch accordingly to the evaluation of a configuration.
If the configuration is satisfied, then the left branch is choosen, else the right one is.

If evaluation of the configuration takes the whole instant, then execution of the chosen branch only starts at
the next instant.

public class When extends BinaryInstruction
{
 protected Config config;
 protected boolean confEvaluated = false, value;

 public When(Config config,Instruction th,Instruction el){
 this.config = config;
 left = th;
 right = el;
 }
 public When(String event,Instruction th,Instruction el){
 this(new PosConfig(event),th,el);
 }

 public String toString(){
 return "when "+config+" then "+left+" else "+right+" end";
 }
 …
 public Object clone(){
 When inst = (When)super.clone();
 inst.config = (Config)config.clone();
 return inst;

The SugarCubes v2.0 Reference Manual

22

 }
 protected byte activation(Context context){
 Domain domain = (Domain)context;
 if (!confEvaluated){
 if (!config.fixed(domain)) return SUSP;
 value = config.evaluate(domain);
 confEvaluated = true;
 if(domain.isEndOfInstant()) return STOP;
 }
 return value ? left.activ(domain) : right.activ(domain);
 }
 …
}

5.6. Preemption

Instruction Until extends BinaryInstruction and implements preemption. Until contains an event
configuration, the left branch is the body, and the right branch is the handler. Execution of the body is aborted
when the event configuration becomes satisfied; one says then that the body is preempted; in this case,
control goes to the handler.

Preemption implemented by Until is a weak one: the body is not prevented to react at the very instant of
preemption. Preemption only occurs when the body has finished its reaction for the current instant. If the
instant is over when the body has terminated, then preemption is effective for the next instant.

public class Until extends BinaryInstruction
{
 protected Config config;
 protected boolean activeHandle = false;
 protected boolean resumeBody = true;

 public Until(Config config,Instruction body,Instruction handler){
 this.config = config; left = body; right = handler;
 }
 public Until(Config config,Instruction body){
 this(config,body,new Nothing());
 }
 public Until(String name,Instruction body,Instruction handler){
 this(new PosConfig(name),body,handler);
 }
 public Until(String name,Instruction body){
 this(name,body,new Nothing());
 }

 public String toString(){
 if (right instanceof Nothing) return "do "+left+" until "+config;
 return "do "+left+" until "+config+" actual "+right+" end";
 }
 public Object clone(){
 Until inst = (Until)super.clone();
 inst.config = (Config)config.clone();
 return inst;
 }
 …
 protected byte activation(Context context){
 Domain domain = (Domain)context;
 if (activeHandle)
 return right.activ(domain);
 if (resumeBody){

The SugarCubes v2.0 Reference Manual

23

 byte res = left.activ(domain);
 if (res != STOP) return res;
 resumeBody = false;
 }
 if (!config.fixed(domain)) return SUSP;
 if (config.evaluate(domain)){
 activeHandle = true;
 left.notifyTerminationToJava(context);
 if (domain.isEndOfInstant()) return STOP;
 return right.activ(domain);
 }
 resumeBody = true;
 return STOP;
 }
 …
 public void notifyTerminationToJava(Context context){
 if(activeHandle)
 right.notifyTerminationToJava(context);
 else
 left.notifyTerminationToJava(context);
 }
 …
}

Note that “weakness” of the preemption is coherent with the basic principle of 5.1 which states that the
absence of an event cannot be decided before the end of the current instant.

Finally, note that method notifyTerminationToJava (section 3.1) is called when preemption occurs. This
allows the Java object associated to an enclosed program (see section 6.1) to know that the program is
cancelled; in such a case, the possibility still remains, for example, to remove bindings with other objects.

5.7. Execution Controlled by Event

Class Control extends UnaryInstruction and its body is the controlled instruction. The body execution is
controlled by an event (not by a configuration). The body is run only at instants where the event is present. At
each instant, Control tests if the control event is present; if so, then the body reacts for one instant; if the
event is not present, then the instruction stops for the current instant. The Control instruction is as follows:

public class Control extends UnaryInstruction
{
 protected String eventName;

 public Control(String s,Instruction inst){ eventName = s; body = inst; }

 public String toString(){ return "control "+body+" by "+eventName; }
 protected Instruction rest(){
 return new Control(eventName,body.residual());
 }
 protected byte activation(Context context){
 if (((Domain)context).isGenerated(eventName))
 return body.activ(context);
 else
 if(context.isEndOfInstant())
 return STOP;
 else
 return SUSP;
 }
}

The SugarCubes v2.0 Reference Manual

24

5.8. Local Event Declaration

EventDecl extends UnaryInstruction and defines a local event. The scope of the local event is the body of the
declaration. The local event hides the global event with the same name. The local event cannot be accessed
by components that are extern to the local declaration and vice versa.

public class EventDecl extends UnaryInstruction
{
 protected String eventName;
 protected transient boolean local = false;
 protected transient boolean external;

 public EventDecl(String localName,Instruction body){
 eventName = localName;
 this.body = body;
 }

 public String toString(){
 return "event "+eventName+" in "+body+" end";
 }
 …
 protected byte activation(Context context){
 external = ((Domain)context).swapEventPresence(eventName,local);
 byte res = body.activ(context);
 local = ((Domain)context).swapEventPresence(eventName,external);
 if(res == STOP) local = false;
 return res;
 }
}

The status of the local event is stored in the field local and the status of the external event is temporarily
stored in external during activations.

Class IODecl

Class IODecl extends EventDecl and binds an internal event to a global event. It is basically used for event
renaming. For example, if a local event el is bound to the global event eg, then the body of IODecl sees el as
eg: if eg is present then el is also present for the body; if el is generated in the body then eg is generated. That
is to say, IODecl performs an input binding (global to local), and also an output binding (local to global).

public class IODecl extends EventDecl
{
 protected String actualName;
 protected JavaStringExpression actualNameExp = null;
 protected boolean start;

 public IODecl(String localName,String actualName,Instruction body){
 this(localName,new JavaStringValue(actualName),body);
 }
 public IODecl(String localName,JavaStringExpression actualName,
 Instruction body){
 super(localName,body);
 actualNameExp = actualName;
 }

 public String toString(){
 return "inputoutput "+eventName+" is "+actualNameExp+" in "+body+" end";
 }

The SugarCubes v2.0 Reference Manual

25

 …
 protected void firstActivation(Context context){
 actualName = actualNameExp.evaluate(context.currentLink());
 actualNameExp = new JavaStringValue(actualName);
 super.firstActivation(context);
 }
 protected void setInput(Domain domain){
 local = local ||(start = domain.isGenerated(actualName));
 }
 protected byte activation(Context context){
 setInput((Domain)context);
 byte res = super.activation(context);
 setOutput((Domain)context);
 return res;
 }
 protected void setOutput(Domain domain){
 if(!start && local) domain.generate(actualName);
 }
}

It is also possible to perform only an input binding (class InputDecl), or only an output binding (class
OutputDecl). Classes InputDecl and OutputDecl are very similar to IODecl.

Example

In this example, one first adds to a machine an instruction which waits for an event e and then prints “e!”.
The machine is run and a copy of the previous instruction is also added to it. Then, the machine is run for the
second time. Finally, an instruction is added which generates e, and the machine is run for the third time.

class Example1
{
 public static EventMachine machine = new EventMachine();
 public static run(){
 System.out.println("instant "+machine.currentInstant()+":");
 machine.react();
 System.out.println("");
 }
 public static Instruction inst(){
 return new Seq(new Await(new PosConfig("e")),new PrintAtom("e! "));
 }
 public static void main (String argv[])
 {
 machine.add(inst());
 run();
 machine.add(inst());
 run();
 machine.add(new Generate("e"));
 run();
 }
}

Execution gives:

instant 1:
instant 2:
instant 3: e! e!

Note that the two Await instructions are both fired during the third instant, when the event is generated.

The SugarCubes v2.0 Reference Manual

26

6. Links

Links are SugarCubes instructions which associate a Java object with a reactive program. The associated
Java object becomes the default object with which the link body (the reactive program) can interact.

6.1. Interface Link

Interface Link is the following:

public interface Link extends Instruction
{
 Link superLink();
 Object javaObject();
}

Method javaObject returns the actual object bound to the body of the Link. Method superLink is used to
retrieve the link in which the current one is encapsulated; by this way, one can build structures of nested
Links.

6.2. Management of Links

As indicated in section 3.2, two methods of the environment of execution (interface Context) are used to
manage links:

• setCurrentLink sets the current link.
• currentLink returns the reference of the current active link.

Corresponding code in class EventMachine is:

 protected Link currentLink = this;
 public void setCurrentLink(Link link){ currentLink = link; }
 public Link currentLink(){ return currentLink; }

The first activated link is the execution machine itself which implements the Link interface.

6.3. Class LinkImpl

Class LinkImpl extends UnaryInstruction and associates a standard Java object to a reactive program (the
body). It implements the Link interface.

When a link instruction is activated, it performs the following tasks in sequence:

1. backups the reference to the current active link in a field (superLink) which is accessible via method
superLink;

2. stores itself has the new currentLink by calling the setLink of the Context interface;

3. activates its body;

4. restores the currentLink to superLink.

Code of LinkImpl is the following:

public class LinkImpl extends UnaryInstruction implements Link{
 protected Object javaObject = null;

The SugarCubes v2.0 Reference Manual

27

 protected JavaObjectExpression joe = null;
 protected JavaInstruction onTerminate, onFreeze, onWarmUp;
 protected Link superLink,trueLink = this;

 public LinkImpl(JavaObjectExpression obj,Instruction i
 ,JavaInstruction fin,JavaInstruction f,JavaInstruction w){
 joe = obj; body = i; onTerminate = fin;onFreeze = f;onWarmUp = w;
 }
 public LinkImpl(Object obj,Instruction i){
 this(new JavaObjectValue(obj),i,new JavaEmptyInstruction()
 ,new JavaEmptyInstruction(),new JavaEmptyInstruction());
 }

 public Object javaObject(){
 return javaObject;
 }
 public Link superLink(){ return superLink; }
 …
 public String toString(){
 return "link "+body+" on freeze "+onFreeze+ " on warm up "+
 onWarmUp+" on terminate "+onTerminate+" end";
 }
 …
 protected void firstActivation(Context context){
 javaObject = joe.evaluate(context.currentLink());
 joe = new JavaObjectValue(javaObject);
 super.firstActivation(context);
 }
 protected byte activation(Context context){
 superLink = context.currentLink();
 context.setCurrentLink(trueLink);
 byte res = body.activ(context);
 context.setCurrentLink(superLink);
 return res;
 }
 protected void lastActivation(Context context){
 onTerminate.execute(trueLink);
 super.lastActivation(context);
 }
}

The following section is a presentation of the different interfaces for computing data needed to dynamically
parametrize executions of reactive behaviors. Examples of these data are event names, or number of loop
iterations.

7. Java Expressions and Instructions

Some instructions such as If and Repeat may need some run time information (for example, an integer value
which is the number of iterations of a finite loop) in order to execute. In SugarCubes v2, these run time
computations are performed by Java expressions. Method calls performed on Java objects others than
reactive instructions (for example, showing a window) are handled in SugarCubes v2 by Java instructions.
Java expressions and Java instructions are described in the rest of the section.

7.1. Java expressions

There are several Java expressions:

The SugarCubes v2.0 Reference Manual

28

JavaBooleanExpression

JavaBooleanExpression computes a boolean value, needed for example by an instruction If.

public interface JavaBooleanExpression extends Java.io.Serializable,Cloneable
{
 boolean evaluate(Link self);
}

When the instruction If needs a boolean value to decide which branch to execute, it calls the method
evaluate of the JavaBooleanExpression it contains.The argument self is actually the current active link.
Using it, the JavaBooleanExpression get access to the Java object bound to the reactive program.

JavaIntegerExpression

A JavaIntegerExpression computes an integer value, used for example by Repeat instructions.

JavaStringExpression

A JavaStringExpression computes a string value, used for example by PosConfig to computes an event name
at run time.

JavaObjectExpression

A JavaObjectExpression computes a Java object reference used for example by LinkImpl to associate at run
time an object to its body.

JavaInstructionExpression

A JavaInstructionExpression computes a Java object which is actually a reactive instruction; it is used for
example by instruction AddToShell described in section 6.3.

Static expressions

Some predefined classes implementing the previous Java expressions are handling static values (not
computed at run-time), for example, class JavaBooleanValue handles static boolean values :

public class JavaBooleanValue implements JavaBooleanExpression
{
 protected boolean b;

 public JavaBooleanValue(boolean b){ this.b = b;}

 public boolean evaluate(Link self) { return b; }
 public String toString(){ return ""+b; }
}

Similarly, are defined JavaIntegerValue, JavaStringValue, JavaObjectValue, and
JavaInstructionValue that handle respectively static integer, string, object, and reactive instruction values.

7.2. Java instructions

Interface JavaInstruction implements interactions with Java objects (for example, to display a message on
the screen) without any return value.

The SugarCubes v2.0 Reference Manual

29

public interface JavaInstruction extends Java.io.Serializable,Cloneable
{
 public void execute(Link self);
}

Method execute of JavaInstruction takes the current active link as parameter. In this method, one can put
any standard Java code and the Java object associated by the link is returned by method javaObject called
with self as parameter.

Class JavaAtom

Java instructions are used by the class JavaAtom. A JavaInstruction implements an atomic action which can
interact with Java objects.

public class JavaAtom extends Atom
{
 JavaInstruction javaInst;

 public JavaAtom(JavaInstruction inst){ javaInst = inst; }

 protected void action(Context context){
 javaInst.execute(context.currentLink());
 }
 public String toString(){
 return javaInst.toString();
 }
}

For example, one can implement a class equivalent to PrintAtom by defining a Java instruction like this one:

public class MyPrintInstruction implements JavaInstruction
{
 protected String message;
 public MyPrintInstruction(String msg){
 message = msg;
 }
 public void execute(Link self){
 System.out.println(message);
 }
}

Then, one uses this Java instruction with a JavaAtom:

new JavaAtom(new MyPrintInstruction(“message”))

which is actually equivalent to:

new PrintAtom(“message”)

Class JavaEmptyInstruction

The class JavaEmptyInstruction implements the JavaInstruction interface and its method execute does
nothing.

The SugarCubes v2.0 Reference Manual

30

8. Shells

SugarCubes v2 introduces new named instructions called shells to implement dynamic parallelism. New
instructions added to a shell are put in parallel with the previous shell body. For consistency reasons,
instruction addings are not immediately performed but are collected during the instant; they become actual
when the system has reach a stable state i.e. when the current instant is finished. Thus, during each instant,
the reactive machine stores the add requests, and, at the end of the instant, it adds the stored instructions in the
corresponding shells.

8.1. Shell interface

A shell implements the Shell interface:

public interface Shell extends Instruction
{
 void add(Instruction inst);
 public Instruction body();
}

Method add performs the actual adding of an instruction in a shell: the instruction is put in parallel with the
shell body. This method is called by the reactive machine at ends of the instants. Instructions added are the
ones collected during the instant.

The program handled by a shell is returned by the method body.

8.2. Shell implementation

The class ShellImpl extends UnaryInstruction and implements the Shell interface:

public class ShellImpl extends UnaryInstruction
 implements Shell,NamedInstruction
{
 protected String name = "noname";
 protected JavaStringExpression nameExp = null;

 public ShellImpl(JavaStringExpression n,Instruction i){ nameExp = n;body = i; }
 public ShellImpl(String n,Instruction i){ this(new JavaStringValue(n),i); }

 public String name(){ return name; }
 public void add(Instruction inst){ body = new Merge(body,inst); }
 public String toString(){
 return "shell "+nameExp+" "+body+" end";
 }
 public Instruction body(){ return body; }
 …
 protected void firstActivation(Context context){
 name = nameExp.evaluate(context.currentLink());
 nameExp = new JavaStringValue(name);
 context.registerShell(name,this);
 super.firstActivation(context);
 }
 protected void lastActivation(Context context){
 context.removeShell(name);
 super.lastActivation(context);
 }
 …

The SugarCubes v2.0 Reference Manual

31

}

The method add simply creates a new body which is a Merge of the new added instruction and of the already
executing body.

First and last activations

Method firstActivation computes the name of the shell and then calls the registerShell method of the
execution context. Thus, the shell exports its reference (its name), allowing other components in the system to
add new instructions in it.

Method lastActivation removes the reference to the shell, when it terminates.

8.3. Class AddToShell

Class AddToShell extends Atom and requests an instruction to be added to a shell.

public class AddToShell extends Atom
{
 protected JavaStringExpression targetNameExp = null;
 protected JavaInstructionExpression instExp = null;

 public AddToShell(JavaStringExpression n,JavaInstructionExpression i){
 targetNameExp = n; instExp = i;
 }
 public AddToShell(String n,Instruction i){
 this(new JavaStringValue(n),new JavaInstructionValue(i));
 }

 public String toString(){return "add "+instExp+" to "+targetNameExp;}
 protected void action(Context context){
 context.addToShell(targetNameExp.evaluate(context.currentLink())
 ,(Instruction)instExp.evaluate(context.currentLink()));
 }
}

This instruction has two parameters: the name of the target shell (which can be set at run time using a
JavaStringExpression) and the instruction to be added (which can also be set at run time using a
JavaInstructionExpression).

Class AddToShell actually uses the Context interface for accessing registered shells. Adding orders are
collected during the instant; at the end of it, the execution machine adds all the collected instructions into the
corresponding shells; thus, additions become actual only at the next instant.

The corresponding code of EventMachine is the following:

public class EventMachine extends Cube implements Domain, Machine
{
 protected boolean move = false, endOfInstant = false,
 beginingOfInstant = true;
 …
 protected Hashtable addToShell = new Hashtable()
 , shellEnv = new Hashtable();
 …
 public void addToShell(String name,Instruction inst){
 Instruction old = (Instruction)addToShell.get(name);
 if (old==null)

The SugarCubes v2.0 Reference Manual

32

 addToShell.put(name,inst);
 else
 addToShell.put(name,new Merge(old,inst));
 }
 protected void processAddToShell(){
 if (addToShell.isEmpty()) return;
 Enumeration list = addToShell.keys();
 while (list.hasMoreElements()){
 String name = (String)list.nextElement();
 Shell shell = (Shell)shellEnv.get(name);
 if (shell==null)
 System.err.println("unknown shell: "+name);
 else
 shell.add((Instruction)addToShell.get(name));
 }
 addToShell.clear();
 }
 …
 protected byte activation(Context context){
 move = false;
 if(beginingOfInstant){
 synchronized(this){
 if(addToProgram != null){
 super.add(addToProgram); addToProgram = null;
 }
 }
 processAddToShell();
 …
 beginingOfInstant = false;
 }
 byte res = super.activation(this);
 if (res == STOP){
 endOfInstant = false;
 newInstant();
 beginingOfInstant = true;
 …
 }
 else if(res == SUSP){
 if (!move) endOfInstant = true;
 context.newMove();
 }
 return res;
 }
 …
}

EventMachine owns a shell environment and maintains a table of instructions to be added to registered shells.
At the very beginning of each instant, method processAddToShell is called to perform the additions. (Method
activation of EventMachine presented here is more detailed than the one presented in section 3.2).

9. Freeze of components

In SugarCubes v2, it is possible to extract executing components out of systems. The key point is that
extractions are performed when components are in stable states (at ends of instants). This is specially useful
to implement code migration over the network or code persistence mechanisms.

Only freezable instructions, which are named instructions, can be frozen. When an instruction is to be frozen,

The SugarCubes v2.0 Reference Manual

33

it is stopped in the state reached at the end of the current instant, and its residual is stored in the environment.

The execution context manages a set of instructions to be frozen (freeze orders), and a pool of frozen
instructions. It is responsible to call the method freeze of its program at the end of each instant.

Method freeze browses the program tree; for UnaryInstructions, it is:

abstract public class UnaryInstruction extends InstructionImpl
{
 …
 public void freeze(Context context){ body.freeze(context); }
 …
}

For BinaryInstruction, things are little more complicated as the method freeze is called only on active
branches. For example, if the left branch of a Seq instruction is not terminated, then method freeze does not
call the method freeze on the right branch. The same holds for Until, When, If. We do not give more details
on this matter here.

9.1. Class Freezable

In SugarCubesv2, instruction Freezable is the only instruction which implements method freeze. Class
Freezable extends UnaryInstruction and implements NamedInstruction:

public class Freezable extends UnaryInstruction implements NamedInstruction
{
 protected boolean reanim = false;
 protected String name = "noname";
 protected JavaStringExpression nameExpression = null;

 public Freezable(String n,Instruction i){
 this(new JavaStringValue(n),i);
 }
 public Freezable(JavaStringExpression n,Instruction i){
 body = i;nameExpression = n;
 }

 public String name(){ return name; }
 protected boolean doFreeze(Context context){
 if(firstActivation||terminated) return true;
 if(context.isToBeFrozen(name)){
 Freezable i = (Freezable) residual();
 i.reanim = true;
 context.storeFrozenInstruction(name,i);
 notifyFreezeToJava(context);
 body = new Nothing();terminated = true;
 return true;
 }
 return false;
 }
 public void freeze(Context context){
 if(doFreeze(context)) return;
 super.freeze(context);
 }
 public String toString(){
 return "freezable "+nameExpression+" "+body+" end";
 }
 protected Instruction rest(){

The SugarCubes v2.0 Reference Manual

34

 return new Freezable(nameExpression,body.residual());
 }
 protected void firstActivation(Context context){
 name = nameExpression.evaluate(context.currentLink());
 nameExpression = new JavaStringValue(name);
 if(reanim){
 reanim = false;
 notifyWarmUpToJava(context);
 }
 super.firstActivation(context);
 }
}

Method freeze calls the method doFreeze which actually freezes the instruction, if needed.

1. First, it checks if the instruction need to be frozen by calling the method isToBeFrozen on the execution
context. If so, then it computes the remaining program by calling the method residual.

2. Then, it stores the result in the execution context by calling the method storeFrozenInstruction.

3. It calls the method notifyFreezeToJava to perform special tasks in Java. In case of migration, this is
useful to disable bindings of the Java object associated with the instruction, in order to migrate it safely .

4. Finally, it replaces its body by Nothing, and returns.

Note that a Freezable instruction which is frozen does not call the method freeze of its body. A boolean
value is returned by method doFreeze to indicate that the freeze order has been actually proceeded, so method
freeze will not be called on the body. Therefore, if a Freezable instruction is encapsulated in the body of an
other Freezable instruction, and if the two instructions are requested to freeze in the same instant, then only
the encapsulating one is actually frozen.

One can retrieve frozen instructions by calling the method getFrozenInstruction on the execution context.
The instruction obtained can then be sent over the network, for example using RMI and the serialization
mechanism of Java.

Method notifyWarmUpToJava is called when a frozen instruction is reactivated (after being added in an
execution machine). This method is called by firstActivation which tests the reanim flag to know if the
instruction is descendant of a previously frozen instruction. Method notifyWarmUpToJava is useful to perform
some special tasks before reanimation of frozen instructions (for example, dynamic rebinding of associated
Java objects; see sections 6 and 7 for more details).

9.2. Freeze instruction

The Freeze instruction extends Atom and is used to program the freezing of instructions:

public class Freeze extends Atom
{
 protected JavaStringExpression targetNameExp;

 public Freeze(String target){this(new JavaStringValue(target));}
 public Freeze(JavaStringExpression nameExp){
 targetNameExp = nameExp;
 }

 public String toString(){
 return "freeze "+targetNameExp;
 }
 protected void action(Context context){

The SugarCubes v2.0 Reference Manual

35

 context.freezeOrder(targetNameExp.evaluate(context.currentLink()));
 }
}

The name of the instruction to freeze can be set at run time using a JavaStringExpression.

9.3. Freezing mechanism in EventMachine

In EventMachine, the freezing mechanism is implemented as follows:

public class EventMachine extends Cube implements Domain, Machine
{
 protected Hashtable frozenStore = new Hashtable();
 protected Vector toFreeze = new Vector();
 protected Instruction rest(){
 return new EventMachine(new JavaStringValue(name()),
 new JavaObjectValue(javaObject()),body().residual(),
 onTerminate,onFreeze,onWarmUp);
 }
 protected byte activation(Context context){
 move = false;
 if(beginingOfInstant){
 synchronized(this){
 if(addToProgram != null){
 super.add(addToProgram); addToProgram = null;
 }
 }
 …
 processAddToShell();
 beginingOfInstant = false;
 }
 byte res = super.activation(this);
 if (res == STOP){
 endOfInstant = false;
 newInstant();
 beginingOfInstant = true;
 processFreezeOrders();
 …
 }
 else if(res == SUSP){
 if (!move) endOfInstant = true;
 context.newMove();
 }
 return res;
 }
 public void freeze(Context context){ doFreeze(context); }
 public void freezeOrder(String name){ toFreeze.addElement(name); }
 public boolean isToBeFrozen(String name){ return toFreeze.contains(name); }
 protected void processFreezeOrders(){
 if (toFreeze.isEmpty()) return;
 body().freeze(this);
 toFreeze.removeAllElements();
 }
 public void storeFrozenInstruction(String name,Instruction frozen){
 frozenStore.put(name,frozen);
 }
 public Instruction getFrozenInstruction(String name){
 return (Instruction) frozenStore.remove(name);

The SugarCubes v2.0 Reference Manual

36

 }
}

Note that EventMachine which extends Freezable (as it extends Cube - see in the next section -) overrides the
method freeze and never calls method freeze of its program. An execution machine encapsulated in another
one never transmits freeze orders to its program; this is because reactive machines are closed cubes (as said in
2.2.5).

Note also that instruction additions pending on frozen shells are simply discarded.

10. Cubes

SugarCubes v2 introduces new objects, called cubes. A cube encapsulates in the same entity a standard Java
object and a reactive behavior which can be dynamically extended. Actually, a cube is a freezable instruction
implementing the Link and Shell interfaces.

Cubes are the basic unit for code migration, especially when implementing autonomous agents able to
migrate over the network.

10.1. Class Cube

Class Cube contains a Link which itself contains a Shell. The code is:

public class Cube extends Freezable implements Link, Shell
{
 protected ShellImpl shell;
 protected Link link;
 protected JavaInstruction onTerminate, onFreeze, onWarmUp;
 protected JavaObjectExpression obj;

 public Cube(JavaStringExpression s,JavaObjectExpression o,Instruction b
 ,JavaInstruction fin,JavaInstruction f,JavaInstruction w){
 super(s,b);
 obj = o; onWarmUp = w; onFreeze = f; onTerminate = fin;
 }
 public Cube(String s,Object o,Instruction i){
 this(new JavaStringValue(s),new JavaObjectValue(o),i
 ,new JavaEmptyInstruction()
 ,new JavaEmptyInstruction()
 ,new JavaEmptyInstruction());
 }
 public Cube(String s,Instruction i){ this(s,null,i); }

 public void add(Instruction inst){
 if(firstActivation){ body = new Merge(body,inst); return; }
 shell.add(inst);
 }
 public Instruction body(){
 if(firstActivation) return body;
 return shell.body();
 }
 public Object javaObject(){
 if(!firstActivation) return link.javaObject();
 System.err.println("Warning: Link not yet activated");
 return null;
 }

The SugarCubes v2.0 Reference Manual

37

 public Link superLink(){ return link.superLink(); }
 public String toString(){
 return "cube "+name()+" "+body()+
 " on freeze "+onFreeze+
 " on warmUp "+onWarmUp+
 " on terminate "+onTerminate+" end";
 }
 protected Instruction rest(){
 return new Cube(nameExpression,new JavaObjectValue(javaObject()),
 body().residual(),
 onTerminate,onFreeze,new JavaEmptyInstruction());
 }
 protected void buildBody(){
 body = new Until(new PosConfig(name+"-destroy"),
 (link = new LinkImpl(obj,shell = new ShellImpl(name,body),
 onTerminate,
 onFreeze,
 onWarmUp)));
 }
 protected void firstActivation(Context context){
 super.firstActivation(context);
 buildBody();
 ((LinkImpl)link).setCube(this);
 }
 public void notifyWarmUpToJava(Context context){
 body.notifyWarmUpToJava(context);
 body = new Seq(new JavaAtom(onWarmUp),body);
 }
}

The encapsulated Link and Shell are actually instantiated at the first activation. Some JavaInstruction are
used to perform specific tasks when a freeze order occurs (notifyFreezeToJava), When a reanimation occurs
(notifyWarmupToJava), or when the cube terminates (notifyTerminationToJava).

10.2. Notifications to Java

The Java instructions onFreeze and onTerminate are used in the encapsulated LinkImpl and are parameters of
the link construction. LinkImpl implements notifyFreezeToJava and notifyTerminationToJava:

public class LinkImpl extends UnaryInstruction implements Link
{
 …
 protected void setCube(Cube cube){ trueLink = cube; }
 …
 protected byte activation(Context context){
 superLink = context.currentLink();
 context.setCurrentLink(trueLink);
 byte res = body.activ(context);
 context.setCurrentLink(superLink);
 return res;
 }
 …
 public void notifyTerminationToJava(Context context){
 superLink = context.currentLink();
 context.setCurrentLink(trueLink);
 body.notifyTerminationToJava(context);
 onTerminate.execute(trueLink);
 context.setCurrentLink(superLink);
 }

The SugarCubes v2.0 Reference Manual

38

 public void notifyFreezeToJava(Context context){
 superLink = context.currentLink();
 context.setCurrentLink(trueLink);
 body.notifyFreezeToJava(context);
 onFreeze.execute(trueLink);
 context.setCurrentLink(superLink);
 }
 …
}

Note that, in a Cube, interface Link is implemented by an encapsulated LinkImpl instruction. LinkImpl uses
the trueLink parameter when it calls the method execute of Java instructions . The trueLink references the
Cube and not the encapsulated LinkImpl itself. When building its body, a Cube calls method setCube of the
LinkImpl to set the trueLink field.

10.3. Cube destruction

A cube named x is destroyed by generating the event x-destroy because the cube body is enclosed in a Until
instruction having this event as preemption event.

Conclusion

SugarCubes v2 introduces new features to ease reactive programming over Java. It has been used in several
contexts, as low level basis for example to implement Reactive Scripts or to program autonomous migrating
reactive agents.

In front of the complexity of some notions, we feel that there is a real need for a formal semantics for
SugarCubes v2; we plan to do this, in the spirit of the work on Junior[HSB] which actually corresponds to
the version 1 of SugarCubes.

Bibliography

[BG] G. Berry, G. Gonthier, The Esterel Synchronous Language: Design, Semantics, Implementation,
Science of Computer Programming, 19(2), 1992.

[BH] F. Boussinot, L. Hazard, Reactive Scripts, Proc. RTCSA’96, Seoul , IEEE, 1996.

[BS] F. Boussinot, J-F. Susini, The SugarCubes Tool Box: A Reactive Java Framework Software-Practice
and Experience, VOL. 28(14), 1531-1550 (Dec. 1998).

[GJS] J. Gosling, B. Joy, G. Steele, The Java Language Specification, Addison-Wesley, 1996.

[HAL] N. Halbwachs, Synchronous Programming of Reactive System, Kluwer Academic Pub., 1993.

[HP] D. Harel, A. Pnueli, On the Development of Reactive Systems, NATO ASI Series F, Vol. 13, Springer-
Verlag, 1985.

[HSB] L. Hazard, J-F. Susini, F. Boussinot, The Junior Reactive Kernel, INRIA Research Rapport n°3732,
July 1999.

The SugarCubes v2.0 Reference Manual

39

