
IS
S

N
 0

24
9-

63
99

appor t
de r echerche

THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Distributed Reactive Machines

Frédéric Boussinot — Jean-Ferdy Susini — Laurent Hazard

N˚ 3376

Mars 1998

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : 04 92 38 77 77 - International : +33 4 92 38 77 77 — Fax : 04 92 38 77 65 - International : +33 4 92 38 77 65

Distributed Reactive Machines

Frédéric Boussinot , Jean-Ferdy Susini� , Laurent Hazardy

Thème 1 � Réseaux et systèmes

Projets Meije

Rapport de recherche n° 3376 � Mars 1998 � 31 pages

Abstract: One considers systems made of synchronizers to which distributed reactive ma-

chines are connected. The corresponding model is described with its implementation in

Java, using SugarCubes and the RMI mechanism.

Key-words: Reactive Systems, Distribution, SugarCubes, Java, RMI

With support from France Telecom-CNET

� EMP-CMA/INRIA Meije
y CNET DTR/ASR

1. Introduction

Reactive Systems[HP] combine two main characteristics:

• They are continuously running systems, not intended to terminate. Thus, they do
not fall into the class of traditional programs which are executed with some data,
and which terminate after a while by producing a result. On the contrary, reactive
systems interact continuously with the environment.

• In response to an activation, a reactive system reacts, depending on the environ-
ment state, by changing it, then it waits for the next activation, an so on without
ever ending. Reactions to activations are called instants.

At the communication level, broadcast of information between parallel components has seve-
ral advantages, compared to traditional communication mechanisms as message passing
or rendezvous:

• It is simple, intuitive, and powerful; the same information is, for example, trans-
mitted to several receivers in one single operation.

• It allows a modular approach, as new receivers can be dynamically added to the
system without inducing any change to emitters.

By taking instants into account, one can define a variant of broadcast, called instanta-
neous broadcast, based on events defined as follows1:

• An event is present, absent, or undefined. It is undefined at the beginning of each
new instant (events are not persistent data).

• An event cannot be both present and absent during the same instant, and once defi-
ned it remains as it during the whole instant (coherency property).

In the instantaneous broadcast paradigm, an event is received by all receivers at the
very instant it is generated. Instantaneous broadcast has two more advantages over
simple broadcast:

• It gives an implicit way to associate dates to event and provides an automatic syn-
chronization on ends of instants. As a consequence, these notions do not have to be
implemented if needed, as they are already present in the formalism.

• Simultaneity and absence of events are seen in a coherent way in the whole system.

In this text, one extends reactive systems to networks by defining distributed reactive
systems, that one simply calls synchronized systems . Synchronized systems are made
of components, called reactive machines, distributed over the network which share the
same instants and communicate by instantaneous broadcast using a special component
called synchronizer.

1 The notion of an event comes from the synchronous language Esterel [BG], where it is called signal.

- 1-

Also described in the text is the implementation of synchronized systems in the Java
language[GJS], using a set of classes called SugarCubes (described below). The imple-
mentation runs on two execution Distributed Processing Environments (DPE): JavaRMI, and
an experimental distributed platform especially designed for telecommunications.

The structure of the text is as follows: in part 2 one describes the model of synchroni-
zed systems. The SugarCubes used to implement synchronized systems are briefly des-
cribed in part 3. Synchronizers are defined in part 4. In part 5, one defines three new
instructions for connections, disconnections, and event broadcast. Synchronized reac-
tive machines are described in part 6. In part 7, one describes how to execute syn-
chronized systems. Another algorithm, using counters, and its implementation on a
platform different from RMI are described in part 8. Finally, one considers in part 9
several related works et one makes proposals for future work.

2. Synchronized Systems

One starts by defining the model of synchronized systems, then the algorithm to detect
ends of instants used to implement them.

The Model
One considers systems made of a synchronizer to which are connected reactive machi-
nes distributed over the network. Reactive machines connected to a synchronizer all
execute at the same pace and share the same instants; on the contrary, machines which
are not connected to any synchronizer execute at their own pace. A machine cannot be
connected to several synchronizers at the same time.

synchronizer

connected machine

connected machine

connected machine

disconnected
machine

disconnected
machine

 A synchronizer with three connected machines

Any machine has the possibility to broadcast an event to the machines connected to a
synchronizer. This broadcast is coherent; all machines connected to the synchronizer
receive the event at the same instant; moreover, if the emitting machine is also con-
nected to the synchronizer, the instant of emission is the same as the instant of recep-
tion: in this case, broadcast is instantaneous.

- 2-

generated
event

received
event

received
event

 Synchronous broadcast of an event

Actually, systems made of machines linked to synchronizers are some kind of dynamic
reactive areas in which communication is broadcast. Moreover, broadcast is instanta-
neous inside the same area (when the emitting and the receiving machines are connected
to the same synchronizer).

Note that communication is asynchronous between distinct areas: the instant of recep-
tion is not necessarily the one of emission.

 Asynchronous broadcast of an event, between distinct areas

Reactive machines can dynamically connect to a synchronizer and disconnect from it
during execution. There are thus two ways for a machine to communicate with a remote
area: either by directly sending an event to the remote synchronizer (asynchronous
broadcast), or by connecting to it before sending the event (synchronous broadcast).

Determining ends of instants
Implementation is based on an algorithm decomposed in phases to determine ends of ins-
tants.

At the beginning of each phase, the synchronizer waits for all connected machines to
end execution for the current instant, or to suspend execution, awaiting some events.
During this, it stores events that are to be broadcast. When all machines have termina-
ted or are suspended, the synchronizer ends the phase by sending all events to be
broadcast to each suspended machine 2. At the end of a phase, when there is no event to
2 It is useless to send them to machines which have already terminated.

- 3-

broadcast, the synchronizer decides that the current instant is over and sends a signal
to all suspended machines to indicate that the next instant can start.

Disconnection of a machine from the synchronizer to which it is connected is postponed
to the end of the global instant. This guaranties that the machine always has a coherent
vision of events broadcast by the synchronizer and that there is no risk that it does not
receive an event because disconnection is too soon.

Connection of a free machine to a synchronizer is postponed to the beginning of the next
machine instant to let the machine and the synchronizer synchronize on the same ins-
tant.

3. SugarCubes

The aim of the reactive approach is to propose a flexible programming of reactive sys-
tems, especially those which are dynamic (that is, the number of components and their
connections are changing during execution). Informations on this approach can be found
on the Web at the URL http://www.inria.fr/meije/rc/.

The Reactive-C[] language was the first formalism developed following this approach.
Reactive-C is an extension of the C programming language to program reactive sys-
tems. The main Reactive-C primitives have recently been ported to Java as a set of
classes named SugarCubes[BS].

The two main notions of SugarCubes are the one of reactive instruction whose seman-
tics refer to instants, and the one of reactive machine whose purpose is to execute re-
active instructions in an environment made of instantaneously broadcast events.

The Class Instruction
The Instruction class implements reactive instructions. A reactive instruction can be
activated (method activ), reset (method reset) , or forced to terminate (method termina-
te). Each activation returns as result one of the three following values:

• TERM (for terminated) means that the instruction is completely terminated; nothing
remains to do for the current instant and also for future ones. Thus, to activate an
other time an instruction returning TERM has no effect and returns also TERM.

• STOP (for stopped) means that execution of the instruction is over for current
instant, but that code remains to be executed at next instants.

• SUSP (for suspended) means that execution of the instruction has not reached a
stable state and must be resumed during current instant. This is for example the
case for the instruction that waits for a not yet generated event (see below): exe-
cution is suspended to let the other components the possibility to generate the event
during current instant.

A call to method terminate forces the instruction to completely terminate and thus to

- 4-

return TERM when activated.

A call to method reset resets the instruction which thus returns in its initial state.

The basic reactive instruction of SugarCubes are:

• Stop, which stops execution for the current instant;

• Seq to put one reactive instruction in sequence with another one;

• Merge to put two reactive instructions in parallel;

• atoms to execute basic Java statements such as printing messages;

• Loop and Repeat, for cyclic executions;

• Generate to generate an event, and Await to wait for it.

The Class Machine
The class Machine implements reactive machines. A reactive machine executes a pro-
gram which is a reactive instruction. It has two main tasks to perform: first, to decide
the ends of instants, and second, to deal with broadcast events. Initially, the program
is the Nothing instruction which does nothing and terminates instantaneously. New ins-
tructions are dynamically added to the program (by calling the machine method add) and
executed in parallel with the previous ones.

Basically, a reactive machine detects the end of the current instant, that is when all
parallel instructions of the program are terminated or stopped. The behavior is as fol-
lows:

• The program is cyclically activated while there are suspended instructions in it
(that is, while its activation returns SUSP).

• The end of the current instant is effective when all the parallel instructions in the
program are terminated or stopped (no suspended instruction remains).

• At the end of each program activation, the machine tests if some new events were
generated during this execution. If it was not the case, then there is no hope that
future program activations will change the situation, and the end of the current
instant can be safely decided. Then, a flag is set to let suspended instructions stop,
knowing from that point that awaited events are absent.

Two variables move and endOfInstant are used to implement this behavior. The variable
move is set to true to indicate that a new event is generated (Generate statement); in
this case, the end of the current instant is postponed to allow the suspended receivers
awaiting the event (Await instruction) to resume. The endOfInstant variable is set to
true when the end of the current instant is decided by the machine, to let suspended re-

- 5-

ceivers know that awaited event are absent.

The method activation of the class Machine implements this behavior; the code is the
following:

program activation
in the machine (this)
while suspended

continue, if move is true

otherwise, decide the end of instant

new instant set

protected byte activation(Machine machine){
 byte res;
 endOfInstant = move = false;
 while(SUSP == (res = program.activ(this))){
 if(move) {move = false; continue;}
 endOfInstant = true;
 }
 setNewProgram();
 newInstant();
 return res;
}

In the following, the problem will be to adapt the processing of move and endOfInstant
to the case of distributed machines. Indeed, the move variable of a machine will have
the possibility to be set from outside it, when new events are broadcast by other ma-
chines. Also, all endOfInstant variables are to be set in a synchronized way in order to
implement the sharing of instants.

4. The synchronizer

One first define the interface Synchronizer, then the class Synchronizer_Impl of syn-
chronizers.

The Synchronizer Interface
The interface Synchronizer extends interface Remote (see [RMI]) and defines the fol-
lowing methods:

• connect connects the machine which is given as parameter. It returns a number
that identifies the machine.

• disconnect disconnects the machine whose number is given as parameter.

• broadcast broadcasts the event whose name is given as parameter to all connected
machines.

• suspended signals that the machine whose number is given as parameter is suspen-
ded.

• completed signals that the machine whose number is given as parameter has terminated its
execution for the current instant.

All these methods declare the exception RemoteException of JavaRMI.

The code of the interface Synchronizer is the following:
- 6-

MachineSync is the type of synchronized machines

all methods declare RemoteException

remote interface
public interface Synchronizer extends Remote
{
 public int connect(MachineSync mach) throws RemoteException;
 public void disconnect(int num) throws RemoteException;
 public void broadcast(String event) throws RemoteException;
 public void suspended(int num) throws RemoteException;
 public void completed(int num) throws RemoteException;
}

Synchronizer Implementation
Class Synchronizer_Impl implements the two interfaces Synchronizer and Runnable. It
starts by the definition of the maximum number of machines that can be connected si-
multaneously to the synchronizer (presently 5), and by the definition of four constants
to code machine states:

suspended machine
undefined status

execution of the machine is
terminated for the current
instant

disconnected status

 final static int MaxMachineNumber = 5;
 final static byte undef = 0;
 final static byte suspend = 1;
 final static byte completed = 2;
 final static byte disconnected = 3;

Note that the maximum number of simultaneously connected machines can be changed
without any problem.

The following fields are defined to deal with connected machines:

machine array

machine state array

number of machines actually connected

protected int numberOfMachines = 0;
protected MachineSync[] machines = new MachineSync[MaxMachineNumber];
protected byte status[] = new byte[MaxMachineNumber];

The vector broadcastDemand stores the broadcast demands received during the current
phase; the vector broadcastSum stores all broadcast demands received up to now since
the beginning of the current instant:

protected Vector broadcastDemands = new Vector();
protected Vector broadcastSum = new Vector();

vector of not yet done broadcast demands

 vector of all broadcast demands

- 7-

 Constructor
The unique constructor of Synchronizer_Impl assigns the value disconnected to all ele-
ments of the array status:

 public Synchronizer_Impl(){
 for(int i = 0; i < MaxMachineNumber; i++){
 status[i] = disconnected;
 }
 }

Connections and Disconnections
Disconnecting a machine simply means to put its status to disconnected:

 public synchronized void disconnect(int num){
 if (status[num] == disconnected) return;
 status[num] = disconnected;
 numberOfMachines--;
 }

Method disconnect must be synchronized because it changes the vector status which is
also used by the synchronizer, during its execution.

During connection, if the maximum number of simultaneously connected machines is not
exceeded, one takes the first free slots in the two arrays machines and status and pla-
ce in them the machine with the undef status. One also broadcast to the machine all
events contained in broadcastSum, broadcast during previous phases; thus, the new
connected machine has the same vision of broadcast events than the other connected
ones. Method connect must be synchronized for the same reasons disconnect is.

connection of the machine

too many connected machines

broadcast demands, during
the instant

it’s the only connected machine: reset of
previous broadcast demands

notification for restarting
the synchronizer

 public synchronized int connect(MachineSync machine){
 if (numberOfMachines != MaxMachineNumber){
 for(int i = 0; i < MaxMachineNumber; i++){

 if (status[i] == disconnected){
 machines[i] = machine;
 status[i] = undef;

 numberOfMachines++;
 if (numberOfMachines != 1 && broadcastSum.size()>0){
 try{ machines[i].generate(broadcastSum); }
 catch(RemoteException e){System.out.println(e);}
 }else{
 broadcastDemands.removeAllElements();
 broadcastSum.removeAllElements();
 notifyAll();
 }
 return i;

 }
 }
 }
 return DISCONNECTED;
 }

- 8-

Broadcast of Events
The method broadcast put the event to be broadcast into the vector broadcastDemands,
if it is the first time during the instant this demand is made (it is not an element of
broadcastSum). Actual event broadcast will be done later, at the end of the phase, by
the method broadcastProcessing.

Code for method broadcast is the following:

 public void broadcast(String event) {
 if (broadcastSum.contains(event)) return;
 broadcastSum.addElement(event);
 broadcastDemands.addElement(event);
 }

Method broadcastProcessing broadcast the same event vector (toSend) to all suspended
machines, and also gives them the status undef. Note that a copy of broadcastDemands
must be performed as machines can immediately make new demands, and thus trans-
form broadcastDemands, before the end of broadcastProcessing.

Code for broadcastProcessing is the following:

machine status set undefined

copy of broadcast demands

broadcast of demands

 public void broadcastProcessing() {
 Vector toSend = (Vector)broadcastDemands.clone();
 broadcastDemands.removeAllElements();
 for(int i = 0; i < MaxMachineNumber; i++){
 if (status[i] != disconnected && status[i] != completed){

 status[i] = undef;
 try{machines[i].generate(toSend);}

 catch(RemoteException e){System.out.println(e);}
 }
 }
 }

Method broadcastProcessing does not need to be synchronized as it is only called by
step (see below) which is.

Suspension and Completion
Methods completed and suspended associate the corresponding status to the machine gi-
ven as parameter. Here is the code for completed (the one for suspended is very simi-
l a r) :

 public synchronized void completed(int num){
 status[num] = completed;
 }

Methods connect and disconnect are both synchronized as they transform status which
is also used by the synchronizer.

- 9-

Execution Step
Method step is the central one which links up phases and instants. Event broadcast is
made after reception of the status from all connected machines. The global transition to
the next instant is performed when there is no more event to broadcast. Code for step
is the following:

all machines have sent their status

there is nothing to broadcast

end of the global instant

 protected synchronized void step(){
 for(int i = 0; i < MaxMachineNumber; i++){
 if (status[i] != disconnected && status[i] == undef) return;
 }
 if (broadcastDemands.size() > 0){
 broadcastProcessing();
 return;
 }
 broadcastSum.removeAllElements():
 instantIsOver();
 }

Method instantIsOver signals the end of the current global instant to each of the con-
nected machines and sets their status to undef:

signals the end of instant

reset of the machine status

 protected void instantIsOver(){
 for(int i = 0; i < MaxMachineNumber; i++){
 if (status[i] != disconnected){

 try { machines[i].instantIsOver(); }
 catch(RemoteException e){ System.out.println(e); }

 status[i] = undef;
 }
 }
 }

Note that instantIsOver is only called by step which is synchronized, and thus it does
not need to be so.

Running
The method run of the class Synchronizer is an infinite loop which suspends execution
while no machine is connected (method waitAtLeastOne), and which otherwise executes
step:

to let other threads the possibility to execute

 public void run (){
 while(true){ waitAtLeastOne(); step(); Thread.yield(); }
 }

The method waitAtLeastOne suspends the synchronizer execution while no machine is
connected. Execution resumes when a notification is sent by method connect (execution
of notifyAll).

- 10-

Code for waitAtLeastOne is the following:

waiting terminated by a connection

 protected synchronized void waitAlLeastOne (){
 if (numberOfMachines == 0){
 while (numberOfMachines == 0){
 try{wait();}
 catch(InterruptedException e){System.out.println(e);}
 }
 }
 }

Finally, the method launch launches a thread to execute run (recall that Synchronizer
implements Runnable):

 public void launch(){ new Thread(this).start(); }

5. New Instructions

One defines three new reactive instructions: Connect which asks for a connection to the
synchronizer associated to an URL, Disconnect which disconnects the machine, and
Broadcast which generates an event and broadcasts it to all the machines connected to a
synchronizer associated to an URL.

Instruction Disconnect asks for the disconnection and terminates at next instant.

Code for Disconnect is the following:

asks for disconnection

terminates at next instant

public class Disconnect extends Instruction
{
 protected byte activation(Machine machine){
 ((MachineSyncImplem)machine).askDisconnection();
 terminate();
 return STOP;
 }
}

Instruction Connect asks for the connection to the synchronizer whose URL is given as
parameter; it stops while the connection is not performed:

- 11-

termination when the
connection is done

stops in all cases

public class Connect extends Instruction
{
 protected String url;
 public Connect(String url){ this.url = url; }
 protected byte activation(Machine mach){
 MachineSyncImplem machine = ((MachineSyncImplem)mach;
 if (machine.connected()) terminate();
 else machine.askConnection(url);
 return STOP;
 }
}

The instruction Broadcast extends Generate and calls the method broadcast of the syn-
chronizer whose URL is given as parameter at construction:

finding the synchronizer

call to the synchronizer to broadcast the event

URL of the synchronizer

public class Broadcast extends Generate
{
 protected Synchronizer sync;
 protected String url;
 public Broadcast(String event,String url){
 super(event); this.url = url;
 }
 protected boolean findSynchronizer(){
 try{sync = (Synchronizer)Naming.lookup(url); return true;}
 catch(Exception e){System.out.println(“”); return false;}
 }
 protected void action(Machine machine){
 super.action(machine);
 if (sync == null && !findSynchronizer()) return;
 try { sync.broadcast(eventName); }
 catch(RemoteException e) { System.out.println(e); }
 }
}

We choose to determine the synchronizer at run time, when the instruction is executed.
An other solution would be to associate the synchronizer to the machine. This solution
would be more efficient (the synchronizer needs not to be computed at each execution
of the instruction) but less flexible (all instructions Broadcast would share the same
synchronizer).

6. Synchronized Machines

First, one defines the remote interface MachineSync then the class MachineSyncImplem
of synchronized reactive machines.

Interface MachineSync
Interface MachineSync extends Remote and defines the two following methods:

- 12-

• instantIsOver signals that instant is over to the machine.

• generate signals that the events elements of the vector given as parameter are
broadcast.

Code for MachineSync is:

public interface MachineSync extends Remote
{
 public void instantIsOver() throws RemoteException;
 public void generate(Vector eventList) throws RemoteException;
}

Implementation of Machines
The class MachineSyncImplem extends Machine and implements the two interfaces Ma-
chineSync and Runnable. The following fields are defined:

machine name
machine number

the associated
synchronizer and
its URL

 protected String name;
 protected int num = DISCONNECTED;
 protected Synchronizer synchronizer = null;
 protected String url;
 protected boolean connectionAsked = false,
 disconnectionAsked = false;

The method instantIsOver sets to true the field endOfInstant of the machine which
means that the current instant is over. The method generate generates the events
which are elements of the vector given as parameter, then sets move to true to indicate
that new events are present:

there is a change in the machine

event generation

list of events
to broadcast

 public void instantIsOver(){
 synchronized (this){ endOfInstant = true; notifyAll(); }
 }
 public void generate(Vector eventList){
 while(eventList.size() > 0){
 generate((String)eventList.firstElement());
 eventList.removeElementAt(0);
 }
 synchronized (this){ move = true; notifyAll();};
 }

Note that the two variables endOfInstant and move have to be protected because they are
also used by the machine.

Connections and Disconnections
The two methods for connection and disconnection are the following:

- 13-

• connect tries to connect the machine to the synchronizer which is in parameter.
The result indicates if the connection is performed or not.

• disconnect disconnects the machine from the associated synchronizer.

Here is the code for askConnection and connect (the one for the disconnection methods
is very similar and is not given):

finding the synchronizer

connection attempt

 connection done

 public void askConnection(String url){
 if (connected()) return;
 this.url = url; connectionAsked = true;
 }

 protected void connect(){
 try {
 synchronizer = (Synchronizer)Naming.lookup(url);
 int res = synchronizer.connect(this);
 if (res != DISCONNECTED) num = res;
 }catch(Exception e){}
 }

Act iva t ions
The method activation uses the field move to test if a new event is present, coming ei-
ther from the machine, or from the synchronizer by a call to generate . This implies
that move must be protected.

Code for method activation is the following:

waiting for the end of the
instant or for new events

waiting for the end of instant

possible connection at the beginning of the instant

possible disconnection at the end of the instant

 protected byte activation(Machine machine){
 byte res;
 endOfInstant = move = false;
 if (connectionAsked){connect(); connectionAsked = false;}
 while(SUSP == (res = program.activ(this))){
 synchronized (this){if(move) {move = false; continue;}}
 waitOverOrMove();
 }
 if (!endOfInstant) waitOver();
 setNewProgram();
 newInstant();
 if (disconnectionAsked){disconnect(); disconnectionAsked = false;}
 return res;
 }

Method waitOverOrMove signals machine suspension to the synchronizer and waits in re-
turn for a signal from it to indicate the end of the current instant or the generation of a
new event:

- 14-

signals
suspension
to the syn-
chronizer

end of instant if no synchronizer is present

waiting for the end of ins-
tant or a new event

protected void waitOverOrMove(){
 if (!connected()){ endOfInstant = true; return; }
 try { synchronizer.suspended(num); }
 catch(RemoteException e){ System.out.println(e); }
 synchronized(this){
 while (!endOfInstant && !move){
 try{wait();}
 catch(InterruptedException(e){System.out.println(e);}
 }
 }
}

Method waitOver is similar except that it signals the termination of the machine by
calling the method completed, instead of suspended, and only waits for the end of ins-
tant.

Running
The method run starts by calling the protected method init whose purpose is to initia-
lize the machine program, then it cyclically activates it.

After setting the machine name, method launch starts a thread to execute run:

 to let other threads execute

the program is put into the machine

starts a thread to execute run

 public void run (){
 init(); while (activ(this) != TERM) Thread.yield();
 }

 public void launch(String name){
 this.name = name; new Thread(this).start();
 }

Here is the example of a definition of init which adds to the machine an instruction that
runs five connection/disconnection steps, and that prints a message at each instant
(instruction PrintStep is not described):

- 15-

URL of the synchronizer

adds the instruction in the machine
protected void init(){
 add(new Repeat(5,
 new Seq(
 new Seq(
 new Connect(url),
 new Repeat(100,new Seq(new PrintStep(),new Stop()))),
 new Seq(
 new Disconnect(),
 new Repeat(100,new Seq(new PrintStep(),new Stop()))))));
}

7. System Execution

Using the previous classes and the Java RMI mechanism, one defines two new executa-
ble classes: Sync which implements synchronizer objects and Mach which implements
synchronized reactive machines. Both classes implements UnicastRemoteObject.

The Class Sync
When run, an object of type Sync receives as parameter the name of the physical ma-
chine on which the synchronizer is launched and its name. These two informations form
an URL of the form //syncMachine/syncName which identifies the synchronizer.

The method main of class Sync performs the following actions:

• Execution of a security manager.

• Creation of a synchronizer of type Synchroniser_Impl.

• Execution of the synchronizer (method launch).

• Export of the synchronizer (Synchroniser_Impl does not extends UnicastRemote-
Server; thus, the export must be explicit).

• Record of the synchronizer in the name server of RMI.

Code is as follows:

new synchronizer

launch of the synchronizer
export of the objet of type Synchronizer_Impl

records the
synchronizer in the
name server

installation of a new security manager
System.setSecurityManager(new RMISecurityManager());
try {
 Synchronizer_Impl sync = new Synchronizer_Impl();
 sync.launch();
 exportObject(sync);
 String url = “//”+syncMachine+”/”+syncName;
 Naming.rebind(url,sync);
}catch(Exception e){ System.out.println(e); }

- 16-

The class Mach
When executed, an object of the class Mach receives as parameter its name, the one of
the physical machine on which a synchronizer runs, and the name of it.

The method main of the class Mach performs the following actions:

• Creation of a synchronized machine.

• Export of this machine.

• Transmission to the machine of the synchronizer URL (method linkTo of the class
MachineSync_Impl).

• Launch of the machine (method launch).

The code is:

creation of a machine which extends MachineSyncImplem

machine linked to the synchronizer
the machine is launched

try {
 String url = “//”+syncMachine+”/”+syncName;
 MachineSync machine = new MachineSync_Impl();
 exportObject(machine);
 machine.linkTo(url);
 machine.launch(machineName);
}catch(Exception e){ System.out.println(e); }

Execution

Now, one describes the list of commands needed to run the executable files. First, one
launches the JavaRMI name server by the command rmiregistry. Second, the syn-
chronizer is run by a command of the form:

synchronizer name

java Sync urna.inria.fr synchroniseur

physical machine on which the synchronizer runs

Finally, synchronized machines are launched by commands of the form:

physical machine on which the synchronizer runs

synchronizer name
synchronized machine name

java Mach M1 urna.inria.fr synchroniseur

Note that the synchronized machines and the synchronizer can be run on distinct physi-
cal machines.

- 17-

8. Another Algorithm, another DPE

In this section, we present a different algorithm for implementing distributed instants
which can be implemented on distributed execution platforms others than RMI.

An Algorithm based on Counters
The basics of the protocol used by the algorithm are the followings:

• Each machine manages a counter of received messages from the synchronizer. A
message is a method invocation which signals the end of the current instant: method
instantIsOver, or a broadcast event: method generateBroadcast (note that one
uses a new method distinct from generate). The counter is reset when the machine
connects to the synchronizer.

• At the end of each phase, the machine sends a message to the synchronizer. This
message invokes one of the methods suspended or completed; as a parameter, it
contains the number of received messages from the synchronizer which have been
already processed during the phase.

• During execution of a phase, a machine can ask the synchronizer to broadcast one
event to other connected machines.

• For each connected machine, the synchronizer manages a counter of all messages
sent to it.

• The synchronizer proceeds broadcast event requests in the following way: the
event is sent to all connected machines (except the one that sends the event) having
(i) signalled the end of a phase, which means that the machine has processed all
messages sent to it, and (ii) is suspended (and thus can potentially use the event).

• The synchronizer sends the message indicating end of instant when (i) all connected
machine have signalled the end of a phase, and (ii) there is no more broadcast event
requests.

Several points must be noticed:

1 . This protocol does not need messages to be processed in a synchronous way as i n -
terrogations, and allows one to implement them as oneway invocations.

2 . However, a condition must be satisfied by the distributed processing environment:
messages must be processed by a server in the same order they are sent by a
client. This is crucial for the synchronizer to avoid deciding the end of the current
instant before having processed all broadcast demands. This order is automatically
preserved by interrogations (this is the case with RMI). If the platform does not
guaranty this, the method broadcast cannot be declared as oneway.

3 . As with the previous algorithm, this protocol does not support message loss. But by
contrast with the previous one that can be called “silent fail” (a message loss blocks

- 18-

execution), the new protocol can produce false results, if method bradcast is one-
way and a message for it is lost.

Algorithm Implementation
Some changes are needed in the previous implementation to deal with the new protocol.
We present the ones concerning the interface MachineSync and the class MachineSync-
Implem.

Interface MachineSync
Interface MachineSync becomes:

method called by the synchronizer

public interface MachineSync extends Remote {
 public void instantIsOver() throws RemoteException;
 public void generateBroadcast(String event) throws RemoteException;
}

Class MachineSyncImplem
The class MachineSyncImplem is changed as follows:

counter of awaited messages

counter of received messages

synchronized methods to use move

 protected int shouldReactTo = 0;
 protected int extMoves = 0;

 public synchronized void instantIsOver () {
 instantOver = true; notifyAll ();
 }
 public void generateBroadcast (String event){
 super.generate(event); newMoveB();
 }
 ...
 public synchronized void newMove() { move = true; notify ();}
 public synchronized void newMoveB() {
 extMoves += 1; move = true; notify ();
 }
 public synchronized int resetMove() {
 move = false;
 shouldReactTo += extMoves; extMoves = 0;
 return shouldReactTo;
 }
 public synchronized boolean hasMove() { return move;}

The methods waiting for signals from the synchronizer are changed to process the
counter value (one only give code for waitOverOrMove):

- 19-

number of awaited
messages

protected void waitOverOrMove(int no){
 if (connected()) {
 synchronized (this) {
 try { synchronizer.suspended(num, no); }
 catch (RemoteException e) { num = DISCONNECTED;}
 while (!instantOver && !hasMove()){
 try{wait();}
 catch(InterruptedException e){System.out.println(e);}
 }
 }
 if (instantOver) endOfInstant = true;
 }else endOfInstant = true;
}

The method to activate the machine is transformed in the same way to deal with coun-
ters and also to systematically send the message completed (in order to update the
synchronizer counter):

systematic sending of completed

value of the counter of
awaited messages

protected byte activation(Machine machine){
 byte res = TERM;
 boolean encore = true;
 int reactingTo = 0;
 endOfInstant = false;
 if (connectionAsked) { connect(); connectionAsked = false; }
 while (encore) {
 reactingTo = resetMove();
 res = program.activ(this);
 if (res == SUSP) {
 if (!hasMove ()) waitOverOrMove(reactingTo);
 } else encore = false;
 }
 waitOverAndReset (reactingTo);
 if (disconnectionAsked){ disconnect(); disconnectionAsked = false; }
 setNewProgram();
 return res;
}

Interface Synchronizer
The interface Synchronizer is simply changed to introduce counters:

public interface Synchronizer extends Remote
{
 ...
 public void suspended(int num, int no) throws RemoteException;
 public void completed(int num, int no) throws RemoteException;
}

Class Synchronizer_Impl
Introduction of counters induces changes in the code of class Synchronizer_Impl. For

- 20-

each machine, two variables are defined: shouldReactTo which counts messages sent to
the machine and reactedTo which stores the last value sent by the machine.

A method waitReacted is defined: if there exists at least one connected machine, it
waits that all connected machines have reacted to all sent messages; it returns a boo-
lean (true, if there exists a connected machine, false otherwise):

there exists connected machines

no connected machine

the machine has not fi-
nish to process messa-
ges sent

protected synchronized boolean waitReacted () {
 boolean mustWait;
 int cur = -1;
 while (true) {
 mustWait = false;
 if (numberOfMachines > 0) {
 for(int i = 0; i < MaxMachineNumber; i++){
 if ((status[i] != disconnected) &&
 (reactedTo[i] < shouldReactTo[i])){
 mustWait = true; cur = i; break;
 }
 }
 }else return false;
 if (mustWait){
 try{wait();}
 catch(InterruptedException e) {System.out.println(e);}
 }else break;
 }
 return true;
}

This method is used in the main loop of the thread in Synchronizer_Impl (broadcast de-
mands are put in the vector posted, and are processed by sendGenerate):

send end of instant to all machines

event broadcast

waiting a situation where all
machines have react to all
messages

public void run (){
 boolean hasWork;
 while(true){
 waitAtLeastOne ();
 hasWork = true;
 while (hasWork) {
 sendGenerate();
 hasWork = waitReacted();
 if (hasWork) hasWork = !posted.isEmpty ();
 else posted.removeAllElements ();
 }
 instantIsOver();
 }
}

Others methods of the class -connection, disconnection processing and event broadcast-
are not presented here.

- 21-

A different Platform
The RMI mechanism has many advantages: it is simple to use, freely distributed with
the JDK1.1 and relatively efficient as close to Java. However, it has some disadvanta-
ges: it does not allow cooperation with other DPE (at least in the present version) and
implements only synchronous communication (interrogations). As a consequence, the
client of an interface remains blocked while the invocation has not been processed by
the server, even if no result is needed. This is an obstacle to true concurrent execu-
tions of distributed applications as the one of synchronized reactive machines where
there are many interactions.

The presence of asynchronous method calls (notifications) in DPE increases parallelism
and concurrency. In CORBA compliant platforms methods can be declared oneway in in-
terfaces exported by servers objects. We have tested our implementation of synchro-
nized reactive machines in an experimental CORBA platform.

In CORBA, one describes server interfaces using the Interface Description Language
(IDL). The interfaces MachineSync and Synchronizer are described as follows:

module ReactiveMachines {
 interface MachineSync {

oneway void instantIsOver();
oneway void generateBroadcast (in string ev);

 };

 interface Synchronizer {
long connect(in MachineSync mach);
void disconnect(in long num);
oneway void broadcast(in string ev,in long from);
oneway void suspended(in long num, in long no);
oneway void completed(in long num, in long no);

 };
};

As previously said, method broadcast can only be declared as oneway if invocations
are processed in the order they are sent. This is true for the considered DPE on which a
unique thread is used to process invocations sent to one server. Invocations from the
same client are sent and received using one single TCP/IP connection and are thus pro-
cessed in the emission order by the unique thread in the server object.

The classes MachineSyncImplem and Synchronizer_Impl are modified to conform to (i)
interface implementations, and (ii) to the way remote interfaces are referenced in the
new platform. These minor changes are not presented here.

On the example of a simple application, one gets a gain of about 30% in the execution time
when using oneway methods. However, this result is to be considered with care as the
result could be different for others applications or others hardware configurations
(number of processors or of physical machines).

The use of another DPE has also shown a default of RMI. Indeed, when clients and server
of an interface are on the same address space (that is, the same Java virtual machine),

- 22-

RMI does not implement method invocation as a simple method call (which is possible
and sufficient), but executes the same procedure as for external invocations
(marshalling of arguments, execution of the transport protocol, etc...).

9. Related and Future Works

Termination Algorithms
The previously described algorithms for determining ends of instants are members of
the family of distributed termination algorithms (see [Ma] for a presentation). They
have the following characteristics:

• They are designed for structures having the form of “stars”, in which the syn-
chronizer has the key role of starting the end of instants detection algorithm.

• They are suited for dynamic systems in which machines can connect and disconnect
at every moment.

• The first algorithm is a synchronous one: JavaRMI remote method calls are syn-
chronous calls in which the caller waits for the callee termination to resume. Syn-
chronous algorithms are a priori simpler to implement than asynchronous ones; in
particular, messages need no to be counted (see [Ma]).

• The second algorithm which uses counters can also work in an asynchronous con-
text where remote methods are notified.

Synchronous Code Distribution
Synchronous code distribution has been studied for the language Lustre[HCPR] by Caspi
and Girault in [CG]. Their technique can be used for Esterel via the .oc format code
which is common to these languages. From an other point of view, the CRP
formalism[BRS] is an attempt to distribute Esterel code using rendezvous communica-
tions.

In the system Saturn[BA], developed at Cert/Onera, broadcasting of an information to
distributed synchronous modules always takes one instant. This simplifies implementa-
tion as the broadcast of an event becomes effective only at next instant.

Future Works
We plan to explore several points:

• Implementation of failure detection mechanisms (failures of connected machines
must not block the system).

• Time exceed detection, during reactions of machines connected to a synchronizer.
Actually, this is part of telecom research on quality of services[St].

- 23-

• Implementation of migration facilities to allow for example a reactive instruction
executed by a machine connected to a synchronizer to be transferred on an other
connected machine.

10. Conclusion

We have defined distributed reactive systems made of reactive machines which dyna-
mically connect to synchronizers and disconnect from them. Machines connected to the
same synchronizer all execute at the same pace and communicate using instantaneously
broadcast events (synchronous broadcast). A machine can also broadcast events to ma-
chines connected to a remote synchronizer (asynchronous broadcast).

Architectures of synchronized machines are dynamic ones (new machines and new syn-
chronizers can be added at each moment; machines can change their connections to syn-
chronizers at run time), but do not allow migration: reactive machines and synchroni-
zers all stay on the physical machine on which they have been launched. However, this
kind of programming, based on connections and disconnections, and on moves from one
reactive area to an other, is quite close from the one of agents migrating through the
network.

We have implemented distributed reactive systems with Java, using the SugarCubes,
on two distinct platforms: JavaRMI on which we use a synchronous distributed termi-
nation algorithm, and an experimental distributed execution platform on which we use
an asynchronous algorithm based on counters and notifications.

- 24-

Bibliography

[BG] G. Berry, G. Gonthier, The Esterel Synchronous Language: Design, Semantics,
Implementation, Science of Computer Programming, 19(2), 1992.

[BRS] G. Berry, S. Ramesh, R.K. Shyamasundar, Communicating Reactive Processes ,
Proc. 20th ACM POPL, Charleston, Virginia, 1993.

[BA] F. Boniol, M. Adelantado, Programming distributed reactive systems: a strong and
weak synchronous coupling, 7th International Workshop on Distributed Algorithms
WDAG’93, LNCS 725, 1993.

[Bo] F. Boussinot, Reactive-C: An extension of C to program reactive systems, Soft-
ware Practice and Experience, 21(4): 401-428, 1991.

[BS] F. Boussinot, J-F Susini, The SugarCubes Tool Box - Definition, Inria Research
Report 3247, available at the URL http://www.inria.fr/meije/ rc/SugarCubes/, 1997.

[CG] P. Caspi, A. Girault, Distributing reactive systems , International Conference on
Parallel and Distributed Computing Systems, Las Vegas, 1994.

[GJS] J. Gosling, B. Joy, G. Steele, The Java Language Specification , Addison-Wesley,
1996.

[HCPR] N. Halbwachs, P. Caspi, P. Raymond, Ch. Ratel, The Synchronous Dataflow Pro-
gramming Language Lustre, Proc. IEEE, 79(9), 1991.

[HP] D. Harel, A. Pnueli, On the Development of Reactive Systems , NATO ASI Series F,
Vol. 13, Springer-Verlag, 1985.

[Ma] F. Mattern, Algorithms for distributed termination detection , Distributed Comput-
ing, 2 :161-175, 1987.

[RMI] Java Remote Method Invocation Specification-JDK1.1 , 1997. The site for RMI is
at http://java.sun.com/products/jdk/rmi.

[St] J-B Stefani, Computational aspects of QoS in an object based distributed system
architecture, 3rd International Workshop on Responsive Computer Systems, Lincoln,
NH, USA, 1993.

- 25-

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - B.P. 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - B.P. 101 - 54602 Villers lès Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38330 Montbonnot St Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - B.P. 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, B.P. 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

