Dynamic Compact Routing Project

Kick-off meeting - Jan 16, 2009 INRIA Sophia-Antipolis

Dimitri Papadimitriou

Alcatel-Lucent BELL NV

dimitri.papadimitriou@alcatel-lucent.be

10h30-11h00: Introduction- 30min (All)11h00-12h00: Project overview, motivations and objectives- 60min (Dimitri)12h00-13h00: Technical Phase 1- 60min (Dimitri)

13h00-14h00: Lunch

14h00-15h00: Technical Phase 1	- 60min (Cyril)
15h00-17h00: Technical Phase 2	- 120min
17h00-17h45: Detailed work plan, phasing/milestones	- 45min
17h45-18h15: Wrap-up and Conclusions	- 30min

Introduction

1. Scientific project

- Context: (Future) Internet
- Topic: Distributed Dynamic Routing
- Approach: Science vs Engineering

2. Round Table

- Partners presentation/background
- Partners expectations

3. Administrative issues - if any remaining

4 | September 2008

Project Motivations and Objectives

The Internet routing system is facing challenges in terms of

- 1.Scalability
- 2. Routing system dynamics: stability and convergence

3.Security

Main reasons:

- Resulting from its expansion, the Internet routing system has to cope with a growing number of sites, routes, and Autonomous Systems (with increasing meshedness but steady average AS path length)
- \rightarrow Increasing number of RT entries whereas shortest path routing scales ~ n log(n)
- User/site addressing vs network addressing (overload of IP address space usage): topology independent address prefix allocation that impedes prefix aggregation
- \rightarrow Contribute BGP routing system instability (\rightarrow sustain higher dynamicity)
- Existing solutions to mobility, site multi-homing, and inter-domain TE (using address prefix de-aggregation) exacerbate the limitations of the current routing system

 \rightarrow Routing system must not only scale with increasing network size/number of hosts but also with growing set of constraints and functionality

6 | September 2008

Impacts:

- User vs network addressing space (<-> overload of IP addressing space usage) impacts TCP and other transport layer protocols/end-to-end communication
- Sub-linear scalability of routing system wrt to number nodes ideally ~ log(n)
 note: today scaling of routing system (shortest-path routing) ~ n log (n)
- Routing scalability not dissociable from routing system dynamics (stability and convergence properties)

Root Causes:

Cause 1: Topology vs aggregation

- Originally, host addresses assignment based on network topological location
- Conditions to achieve efficient address aggregation and relatively small routing tables (tradeoff routing information aggregation vs granularity) are not met
- Deterioration root causes: increased AS meshedness, host mobility (Mobile IP), site multi-homing (~25% of sites), traffic-engineering
- ⇒ Super-linear growth of Routing Table (RT) even if network itself would not be growing (*routing protocol must not only scale with increasing network size !*)

Cause 2: Inter-domain routing protocol (BGP)

- Protocol implementation specifics: may be circumvented
- Protocol architecture: BGP is a path-vector protocol (eliminates DV count-to-infinity problem) but subject to Path exploration that affects convergence time:

Theoretical convergence time: upper bound ~ O(N!) and lower bound = $W[(N-3) \times N]$

MRAI timer]

Observed convergence time: (Max_AS-Path - Min_AS-Path) x MRAI timer

Protocol usage: policy-based routing (- no policy distribution)

 \rightarrow inter-AS oscillations (policy conflicts: local preferences over shortest path

selection)

 $eptember_{\rightarrow} 2008$

Scaling of routing algorithm: Routing Table (RT) size growth rate > linear (super-linear)

- 1. Routing engine system resource consumption \Rightarrow cost growth rate ~ 1.2-1.3/2 years
 - Routing space size
- \uparrow #routing table entries \Rightarrow \uparrow memory
- \uparrow #routing table entries \Rightarrow \uparrow processing and searching (lookup)
 - Number of peering adjacencies between routers
- ↑ #peering adjacencies \Rightarrow ↑ memory (due to dynamics associated with routing information exchanges)
- 2. Exacerbates BGP convergence time
 - BGP convergence time is limited by access speeds of DRAM (used for RIB storage)
 - DRAM capacity growth rate: ~4x every 3.3 years (faster than Moore's law)
 - DRAM access speed growth rate: ~1.2x every 2 years
 - BGP convergence time degradation rate (estimation):

<u>RT growth rate [1.25-1.3]</u> ~ 10% per year DRAM access speed growth rate [1.1]

Note: speed limitations can be absorbed using parallelism 9 September 2008

BGP improvements	Compact Routing	
 BGP multi-path 	 Name dependent schemes: e.g. TZ scheme, BC scheme 	
 Fast re-routing 	 Name independent schemes: e.g. Abraham 	
 AS-path limit (diameter) 	scheme	
 Route cause notification 	as of today none can efficiently deal with topology dynamics such as the Internet (dynamic routing)	
Hybrid routing protocols	Others	
 Combination of LS/PV: Hybrid Link-state Path-vector (HLP) 	 Loc/ID separation (host-based: SHIM6, HIP - router-based: LISP, GSE) 	
Combination of LS/DV: LVA	 User-controlled multi-path routing (elimination) 	
	 Geographical routing 	

Objective

Routing problem space:

- Alternative 1 (evolutionary): BGP re-considered (is it possible ?) or new candidate protocol like HLP but no improvement possible on RT size scale from aggregation
- Alternative 2 (disruptive): topology-dependent compact routing on locators or move directly to topology-independent compact routing (same worst case)
 In both cases: how to account for topology dynamics ?

Bottom line:

- Routing requires coherent full-view (network graph topology or distance to destination) and support of topology dynamics ⇒ timely routing updates
- Routing information exchange and its processing cost cannot grow slower than linearly on Internet
- \rightarrow Challenge: compromise between routing scaling and dynamics

Construct in polynomial time a compact routing scheme that minimizes the stretch bound for Internet-like graph while i) requiring only o(n) bits of routing information per node and ii) minimizing communication costs

Project Overview

Tasks:

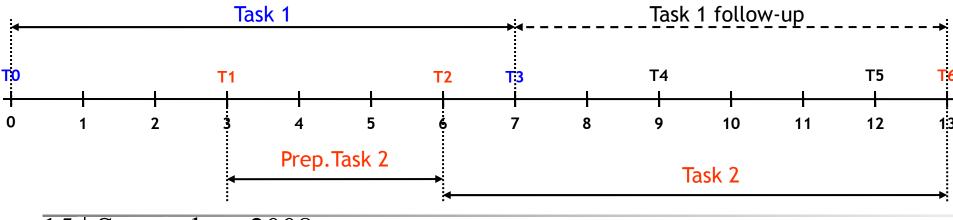
- Task 1 (Specification and formal verification): Dynamic compact routing scheme formal specification and verification (analytical)
- Task 2 (Experimentation): Dynamic compact routing scheme quantitative performance evaluation (in terms of number of routing table entries and memory size) on Internet-like graphs

Deliverables: to each task corresponds a specific deliverable

- Deliverable D1 for Task 1
- Deliverable D2 for Task 2

<u>Duration</u>: 13 months (1st Mar. 2009 -> 31th March. 2010) <u>Timeline</u>:

- T0 (March 1st 2009) : beginning of the study
- T1 (T0+03 months) : meeting(*) on progress on Task 1, start preparation of Task 2
- T2 (T0+06 months) : meeting(*) on progress on Task 1, start of Task 2 draft version of D1 available
- **T3 (T0+07** months) : first final version of D1 available
- T4 (T0+09 months) : meeting(*) on progress on Task 2
- **T5 (T0+12** months) : meeting(*) on progress on Task 2, draft version of D2 available
- T6 (T0+13 months) : final version of D2 available (and presentation at Alcatel-Lucent Bell Antwerp of the global results)

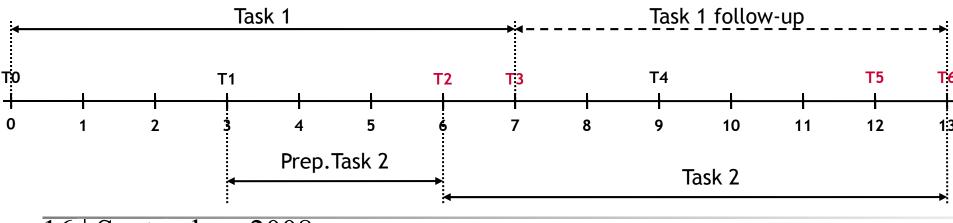

Note:

- Ad-hoc Interim meeting and/or conference calls on progress of either on Task 1 or Task 2 can further complement this timeline
- At T6 (T0+13), deliverable D1 can be object of a revision based on the results obtained as part of Task 2

Project Timeline: Tasks

Timeline:

- T0 (March 1st 2009) : beginning of the study
- T1 (T0+03 months) : meeting on progress on Task 1, start preparation of Task 2
- T2 (T0+06 months) : meeting on progress on Task 1, start of Task 2 draft version of D1 available
- **T3 (T0+07** months) : first final version of D1 available
- T4 (T0+09 months) : meeting on progress on Task 2
- **T5 (T0+12** months) : meeting on progress on Task 2, draft version of D2 available
- T6 (T0+13 months) : final version of D2 available

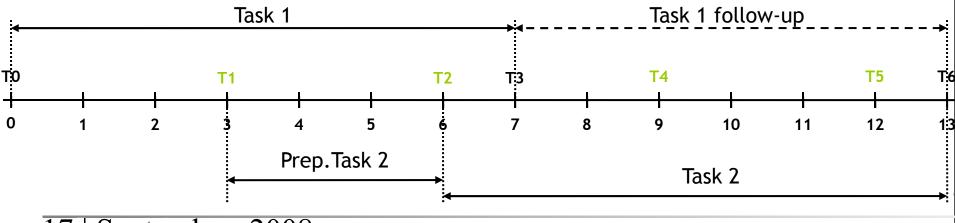

15 | September 2008

Timeline:

- T0 (March 1st 2009) : beginning of the study
- T1 (T0+03 months) : meeting(*) on progress on Task 1, start preparation of Task 2
- T2 (T0+06 months) : meeting(*) on progress on Task 1, start of Task 2

draft version of D1 available

- T3 (T0+07 months) : first final version of D1 available
- T4 (T0+09 months) : meeting(*) on progress on Task 2
- T5 (T0+12 months) : meeting(*) on progress on Task 2, draft version of D2 available
- T6 (T0+13 months) : final version of D2 available


16 | September 2008 (*) all partners present

All Rights Reserved © Alcatel-Lucent 2008

Project Timeline: Meetings

Timeline:

- T0 (March 1st 2009) : beginning of the study
- T1 (T0+03 months) : meeting(*) on progress on Task 1, start preparation of Task 2
- T2 (T0+06 months) : meeting(*) on progress on Task 1, start of Task 2 draft version of D1 available
- **T3 (T0+07** months) : first final version of D1 available
- T4 (T0+09 months) : meeting(*) on progress on Task 2
- T5 (T0+12 months) : meeting(*) on progress on Task 2, draft version of D2 available
- T6 (T0+13 months) : final version of D2 available

17 | September 2008 (*) all partners present

All Rights Reserved © Alcatel-Lucent 2008

Task 1 technically leadership by Universite de Bordeaux
 Duration Task 1: from T0 to T3
 Follow-up during period from T3 to T6

Task 2 technically leadership by INRIA/Sophia-Antipolis (projet MASCOTTE)
 Duration Task 2: from T1 to T2 (preparation), T2 to T6
 Note: preparation phase can start earlier e.g. at T0

Both tasks are under the technical supervision of Alcatel-Lucent Bell