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δ-Hyperbolicity (M. Gromov, 1987)

for any four points u, v , w , x of a metric space (X , d), the two larger of
the distance sums d(u, v) + d(w , x), d(u, w) + d(v , x),
d(u, x) + d(v , w) differ by at most 2δ.
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min{η, ξ} ≤ δ

δ-Hyperbolicity measures the local deviation of a metric from a tree
metric: a metric is a tree metric iff it is 0-hyperbolic.
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Goal and results

Our goal

To establish local-to-global results about the “ressemblance” of geodesic
δ-hyperbolic metric spaces and δ-hyperbolic graphs to trees.

Our results

(i) We show that approximating the diameter diam(S), the radius rad(S),
and the center C (S) of a subset S in a δ-hyperbolic geodesic space or
graph with an O(δ)-additive error can be done in the same way as for
trees. This leads to very simple algorithms for fast approximating (and in
some cases, for computing in linear time) of diam(S), rad(S), and C (S).

(ii) We present a simple linear-time construction of distance
approximating trees of δ-hyperbolic graphs with n vertices having the
same additive distortion O(δ log n) as Gromov’s construction.

(iii) We establish that several classes of geometrically defined graphs
have bounded hyperbolicity.
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Diameter, radius, and center

Diameter

Let S be a finite set of points of a metric space (X , d).
Diameter: diam(S) = max{d(u, v) : u, v ∈ S}.
Diametral pair: any pair of points x , y ∈ S such that d(x , y) = diam(S).

Furthest neighbors

The set F (x) of furthest neighbors of a point x ∈ X in S consists of all
points of S at the maximum distance from x . The eccentricity ecc(x) of
x ∈ X is the distance from x to any point of F (x).

Center and radius

The center C (S) of S is the set of points of X with minimum eccentricity.
The radius rad(S) of S is the eccentricity of central points, i.e., rad(S) is
the smallest radius of a ball of (X , d) enclosing all points of S (a ball
B(c , r) = {x ∈ X : d(c , x) ≤ r} consists of all points x ∈ X at distance
at most r to c).
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Known results

Fast computation of diameter, radius, and center

is a basic algorithmic problem in computational geometry and graph
theory with applications in operation research, data clustering, location
theory, and analysis of complex networks.

Spaces admitting fast algorithms

Linear O(n), O(n log n), and subquadratic algorithms are known for
trees, n-point sets in R

2 and R
3, simple polygons and simple rectilinear

polygons endowed with intrinsic geodesic or link metric, and some classes
of graphs (chordal graphs, cactus networks, some plane triangulations
and quadrangulations). Most of these algorithms are not simple.

Known algorithmic results about δ-hyperbolicity

The internet topology embeds with better accuracy into low-dimensional
hyperbolic space than into Euclidian space of comparable dimension.
PTAS for the Traveling Salesman Problem, efficient nearest neighbor
search, distance labeling schemes and routing schemes, and
approximation algorithms for covering and packing by balls.
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Tree-folklore

C. Jordan (1869)

C. Jordan established that the center of a tree is a single vertex or an
edge.

Diameter

The diameter diam(S) of a set S in a tree T can be found in linear time
by running the following folklore algorithm:

Algorithm 2FP

1 Pick an arbitrary point u of T

2 Find a furthest neighbor u of v in S

3 Find a furthest neighbor w of v in S

4 Return d(v , w) as diam(S) and v , w as a diametral pair of S

Center

To find the center of S it suffices to add the following step:

5 Return the midpoint c of the unique (v , w)-path of T
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Diameter

Proposition 1

For a finite subset S of a δ-hyperbolic space (X , d) and any u ∈ X , if
v ∈ F (u) and w ∈ F (v), then d(v , w) ≥ diam(S) − 2δ.
The pair {v , w} can be computed using O(|S |) distance calculations.

Lemma 1

Let u, v , x , y be four points in a δ-hyperbolic space (X , d). If we have
d(u, v) ≥ max{d(u, x), d(u, y)} then max{d(v , x), d(v , y)} ≥ d(x , y) − 2δ.
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v ∈ F (u)

w ∈ F (v)

y

x
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Radius

Proposition 2

For a finite set S of a δ-hyperbolic geodesic space,
diam(S)/2 ≤ rad(S) ≤ diam(S)/2 + 2δ.

Lemma 2

(Helly property for balls) If B(s, rs), i ∈ S , is a
family of pairwise intersecting balls of a
δ-hyperbolic geodesic space (or graph) then the
intersection

⋂
{B(s, rs) + 2δ) : s ∈ S} is nonempty.

Corollary 1

For a finite set S of a δ-hyperbolic geodesic space,
d(v , w)/2 ≤ rad(S) ≤ d(v , w)/2 + 3δ.
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Center I

v

w

u

C (S)

B(c, 5δ)

c

Proposition 3

For a finite set S of a δ-hyperbolic geodesic space, diam(C (S)) ≤ 4δ.

Let c be the middle of a geodesic [v , w ] between v and w .

Proposition 4

The inequality ecc(c) ≤ rad(S) + 5δ holds for all δ-hyperbolic geodesic
spaces and graphs. Moreover C (S) ⊆ B(c , 5δ) (C (G) ⊆ B(c , 5δ + 1) for
δ-hyperbolic graphs).
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Center II
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Corollary 2

For a finite subset S ⊆ V of a δ-hyperbolic graph G = (V , E ) with
maximum degree ∆(G) and δ bounded by a constant, a vertex c with
ecc(c) ≤ rad(S) + 2δ can be computed in O(|E |) time and the center
C (S) can be computed in O(|∆(G)|5δ+1|E |) time. If the degrees of
vertices of G are uniformly bounded, then C (S) can be computed in
linear O(|E |) time.
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Distance approximating trees I

Theorem (Gromov, 1987)

For any δ-hyperbolic metric space (X , d) on n points and any fixed
basepoint s ∈ X , there a tree T and a map ϕ : X → T such that

dT (ϕ(s), ϕ(x)) = d(s, x) pour tout x ∈ X ,

d(x , y) − 2δ log2 n ≤ dT (ϕ(x), ϕ(y)) ≤ d(x , y) for all x , y ∈ X .

The tree T can be constructed using O(n2) distance computations.

Proposition 5

For a δ-hyperbolic graph G = (V , E ) it is possible to construct in O(|E |)
time a tree T = (V , F ) which (16 + 12δ + 8δ log2 n)-approximate the
distances of G .
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Distance approximating trees II

s

A layering of G is the partition of V into the concentric spheres

Li = {u ∈ V : d(s, u) = i}, i = 0, 1, 2, . . . .

A layering partition of G is a partition of each Li into clusters Li
1, . . . , L

i
pi

:

u, v ∈ Li belong to the same cluster Li
j iff they can be connected by a

path outside the ball Bi−1(s) of radius i − 1 centered at s.



Preliminaries Known results Diameter, radius, and center Distance approximating trees

Distance approximating trees II
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Distance approximating trees II

s
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Distance approximating trees II

s

u

v

u′

v ′

dT (u, v) ≤ dG (u, v) ≤ dT (u, v) + dG (u′, v ′)

Claim. The diameter of each cluster Li
j of a δ-hyperbolic graph G

with n vertices is at most Λn := 16 + 12δ + 8δ log2 n.

Proposition 5

For a δ-hyperbolic graph G = (V , E ), this construction gives a tree
T = (V , F ) which Λn-approximate the distances of G .
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