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The probabilistic method is an efficient technique to prove the existence of combinatorial
objects having some specific properties. It is based on the probability theory but it can be used
to prove theorems which have nothing to do with probability. The probabilistic method is now
widely used and considered as a basic knowledge. It is now exposed in many introductory books
to graph theory like [8].

In these notes, we give the most common tools and techniques of this method. The interested
reader who would like to know more complicated techniques is referred to the books of Alon
and Spencer [5] and Molloy and Reed [21].

We assume that the reader is familiar with basic graph theory. Several books (see e.g.
[8, 11, 29]) give nice introduction to graph theory.

1 Basic probabilistic concept
A (finite) probability space is a couple (Ω,Pr) where Ω is a finite set called sample set, and Pr
is a function, called probability function, from Ω into [0,1] such that ∑ω∈Ω Pr(ω) = 1. We will
often consider a uniform distribution for which Pr(ω) = 1

|Ω| for all ω ∈Ω.
The set Gn of the labelled graphs on n vertices may be seen as the sample set of a probability

space (Gn,Pr). The result of the selection of an element G of this sample set according to the
probability function Pr is called a random graph.

The simplest example of such a probability space is the one with uniform distribution that is
for which all the graphs G ∈ Gn have the same probability. Since |Gn| = 2(

n
2), the probability

function Pr is Pr(G) = 2−(
n
2) for all G ∈ Gn. A natural way of seeing this probability space is to

consider the edges of the complete graph Kn one after another and to choose each of them for
E(G) with probability 1

2 , all these choices being made independently from each other. The result
of such a procedure is a spanning subgraph of Kn with all the G ∈ Gn occurring equally likely. A
more elaborate probability space over Gn can be obtained by fixing a real number p between
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0 and 1 and choosing each edge with probability p, all the choices being made independently.
Then 1− p is the probability of a given edge not to be chosen. Hence the probability function is
Pr(G) = pm(1− p)(

n
2)−m for all G ∈ Gn with m edges. This probability space is denoted Gn,p.

For example, G3,p has for sample set the 2(
3
2) = 8 spanning subgraphs of K3 depicted in Figure 1

with the indicated probability function.
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Figure 1: The probability space G3,p

Observe that the smaller p is, the larger the probability to have a graph with few edges.
To each graph property, like connectivity for example, corresponds the set of graphs of Gn

verifying this property. The probability of a random graph to satisfy this particular property is
the sum of the probability of the graphs of this subset of Gn. For example, the probability that
a random graph of G3,p is connected is 3p2(1− p)+ p3 = p2(3−2p), the probability that it is
bipartite is (1− p)3 +3p(1− p)2 +3(1− p)p2 = (1− p)(1+ p+ p2), and the probability that it
is both connected and bipartite is 3p2(1− p).

This is captured by the notion of event. In a probability space (Ω,Pr), an event is a subset A
of Ω. The probability of an event A is defined by

Pr(A) = ∑
ω∈A

Pr(ω).

By definition, we have

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B) (1)

In particular, Pr(A∪B)6 Pr(A)+Pr(B) and more generally,

Proposition 1. SUBADDIDIVITY OF PROBABILITIES

Pr(A1∪·· ·∪An)6 Pr(A1)+ · · ·+Pr(An).

The complement of an event A is the event A = Ω\A. Trivially Pr(A) = 1−Pr(A).
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1.1 Conditional probability and independence
Let A and B be two events. The (conditional) probability of A, given B, denoted Pr(A|B), is the
probability of A assuming that B has occurred. Formally, Pr(A|B) = Pr(A∩B)

Pr(B) (if Pr(B) = 0, then
Pr(A|B) = Pr(A)).

Intuitively, A is independent of B if knowing if B occurs or not does not affect the probability
that A occurs. Formally, A is independent of B if Pr(A|B) = Pr(A), that is if Pr(A∩B) =
Pr(A)Pr(B). Observe that it implies that Pr(B|A) = Pr(B), i. e. B is independent of A. Hence,
one can speak about independent events. Two non-independent events are said dependent.

For example, if A is the event that G is connected and B the event that G is bipartite in the
probability space G3,p, then (unless p = 0 or p = 1)

Pr(A)Pr(B) = p2(3−2p)(1− p)(1+ p+ p2) 6= 3p2(1− p) = Pr(A∩B).

So these two events are dependent. In other words, knowing that G is connected has an influence
on the probability of being bipartite, and vice-versa.

An event A is independent of a set of events {B j | j∈ J} if, for all subset J′ of J, Pr
(
A | ∩ j∈J′ B j

)
=

Pr(A). This condition is in fact equivalent to the following stronger condition: for all J1,J2 ⊂ J
such that J1∩ J2 = /0 then Pr

(
A |

⋂
j∈J1

B j∩
⋂

j∈J2
B j
)
= Pr(A).

Let Ai, i ∈ I be a (finite) set of events. They are pairwise independent if for all i 6= j Ai and
A j are independent. Events are mutually independent if each of them is independent from the set
of the others. It is important to note that events may be pairwise independent but not mutually
independent. (See Exercise 3.)

1.2 Random variables and expected value
A large part of graph theory concerns the study of basic parameters such as connectivity, clique
number or chromatic number. The values of these parameters give some information on the graph
and its properties. In the context of random graphs, such functions are called random variables,
because they depend on the graph which is selected. More generally, a random variable on a
probability space (Ω,Pr) is a function from the sample space into IR.

In the combinatorial context, random variables are frequently integer-valued. A typical
example is the one of indicator variables. Each event A in a probability space (Ω,P) has an
associated indicator variable XA, defined by

XA(ω) =

{
1, if ω ∈ A,
0, otherwise.

The expected value of a random variable X is

E(X) = ∑
ω∈Ω

Pr(ω)X(ω).

Intuitively, E(X) is the value that is expected if we make a large number of random trials and
take the average of the outcomes for X . For example, if X is the random variable which is
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equal to 1 with probability p and 0 with probability 1− p, then the expected value of X is
p×1+(1− p)×0 = p.

If X denotes the number of components G ∈ G3,p, then

E(X) = 3× (1− p)3 +2×3p(1− p)2 +1× (3p2(1− p)+ p3) = 3−3p+ p3.

If XA is the indicator variable associated to an event A, then

E(XA) = Pr(XA = 1) = Pr(A).

A very useful tool for calculating the expected value is its linearity.

Proposition 2. LINEARITY OF THE EXPECTED VALUE

If X = ∑
n
i=1 λi ·Xi, then E(X) = ∑

n
i=1 λi ·E(Xi).

Proof.

E(X) = E

(
n

∑
i=1

λi ·Xi

)
= ∑

ω∈Ω

Pr(ω)
n

∑
i=1

λi ·Xi(ω)

=
n

∑
i=1

λi

(
∑
ω

Pr(ω)×Xi(ω)

)
=

n

∑
i=1

λi ·E(Xi)

For example, in a graph of Gn,p, there are
(n

2

)
edges, each of them being present with

probability p. Thus the expected value of the number of edges is p
(n

2

)
.

This is a particular case of a more general paradigm that appears frequently. Many variables
are the sum of 0-1 variables and so their expected value can be calculated as the sum of the
expected values of these 0-1 variables. The random variable which is the sum of n 0-1 variables
equals to 1 with probability p and 0 with probability (1− p) is denoted BIN(n, p). The Linearity
of the Expected Value yields E(BIN(n, p)) = np.

It is important to emphasize that the Linearity of the Expected Value is valid whether or not
the random variables are independent.

2 Basic method
The general principle of the probabilistic method is the following. We want to show the existence
of a combinatorial object satisfying a given property P. To do this, we consider a random object
in a well chosen probability space and we compute the probability that such an objet satisfies the
property P. If we show that this probability is greater than 0, then we deduce that an object with
property P exists: indeed, if no object were satisfying P, then the probability would be 0.
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2.1 2-colouring hypergraph
Let us give a first simple example regarding proper 2-colouring of hypergraphs. A 2-colouring of
a hypergraph is a mapping from its vertex set into a set of two colours {red,blue}. A hyperedge is
monochromatic if all its vertices are coloured the same. A 2-colouring is proper if no hyperedge
is monochromatic. A hypergraph is 2-colourable if it admits a proper 2-colouring.

Theorem 3. If H is a k-uniform hypergraph with less than 2k−1 hyperedges then H is 2-
colourable.

Proof. Let us colour randomly and independently the vertices red with probability 1/2 and
blue with probability 1/2. In other words, we consider a uniform random 2-colouring. For
every hyperedge e, let Ae be the event that e is monochromatic. Then Pr(Ae) = 2×2−k = 21−k

because the probability of being monochromatic red (or blue) is 2−k. By the Subadditivity of
Probabilities, the probability that at least one of these events occurs is at most Pr

(⋃
e∈E(H)Ae

)
6

∑e∈E(H)Pr(Ae) = |E(H)|×21−k < 1. Hence the probability that none of these events occurs is

Pr
(⋂

e∈E(H)Ae

)
= 1−Pr

(⋃
e∈E(H)Ae

)
> 0.

2.2 The Crossing Lemma
In order to convince the reader of the power of the probabilistic method, we present a remarkably
simple application of this proof technique to crossing numbers of graphs. We obtain a lower
bound for the crossing number of a graph in terms of its order and size, and then use this bound
to derive a theorem in combinatorial geometry.

The crossing number cr(G) of a graph G is the least number of crossings in a plane embedding
of G. By Euler’s Formula, this parameter satisfies the trivial lower bound cr(G)> m−3n (in
fact cr(G)> m−3n+6 for n > 3. The following much stronger lower bound was given by Ajtai
et al. [1] and, independently, by Leighton [17]. Its very short probabilistic proof is due to Alon;
see [5].

Lemma 4. CROSSING LEMMA

Let G be a simple graph with m > 4n. Then

cr(G)>
1

64
m3

n2 .

Proof. Consider a planar embedding G̃ of G with cr(G) crossings. Let S be a random subset
of V obtained by choosing each vertex of G independently with probability p := 4n/m, and set
H := G〈S〉 and H̃ := G̃〈S〉.

Define random variables X ,Y,Z on Ω as follows: X is the number of vertices, Y the number
of edges, and Z the number of crossings of H̃. The trivial bound noted above, when applied
to H, yields the inequality Z > cr(H)> Y −3X . By Linearity of the Expected Value, E(Z)>
E(Y )−3E(X). Now E(X) = pn, E(Y ) = p2m (each edge having two ends) and E(Z) = p4cr(G)
(each crossing being defined by four vertices). Hence

p4cr(G)> p2m−3pn
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Dividing both sides by p4, we have:

cr(G)>
pm−3n

p3 =
n

(4n/m)3 =
1

64
m3

n2 .

Székely [24] realized that the Crossing Lemma could be used to derive very easily a number
of theorems in combinatorial geometry, some of which hitherto had been regarded as extremely
challenging. We now give the proof of one of them.

Consider a set of n points in the plane. Any two of these points determine a line, but it might
happen that some of these lines pass through more than two of the points. Specifically, given a
positive integer k, one may ask how many lines there can be which pass through at least k points.
For instance, if n is a perfect square and the points are in the form of a square grid, there are
2
√

n+2 lines which pass through
√

n points. Is there a configuration of points which contains
more lines through this number of points? The following theorem of [?] gives a general bound
on the number of lines which pass through more than k points.

Theorem 5. Let P be a set of n points in the plane, and let ` be the number of lines in the plane
passing through at least k+1 of these points, where 1 6 k 6 2

√
2n. Then ` < 32n2/k3.

Proof. Form a graph G with vertex set P whose edges are the segments between consecutive
points on the lines which pass through at least k+1 points of P. This graph has at least k` edges
and crossing number at most

(`
2

)
. Thus either k` < 4n, in which case ` < 4n/k 6 32n2/k3, or

`2/2 >
(`

2

)
> cr(G)> (k`)3/64n2 by the Crossing Lemma, and again ` < 32n2/k3.

3 The First Moment Method
The First Moment Method is the most fundamental tool of the probabilistic method. It is based
on two simple statements yet surprisingly powerful.

Theorem 6. FIRST MOMENT PRINCIPLE

If E(X)6 t, then Pr(X 6 t)> 0.

Proof. Intuitively, the expected value is the (weighted) average of X over all possible outcomes.
If all the outcomes are greater than t then the average is necessarily greater than t.

Formally, since the sample space is finite, X can only take a finite set I of values. Thus,
E(X) = ∑i∈I i× Pr(X = i). If Pr(X 6 t) = 0, then we have E(X) = ∑i>t i× Pr(X = i) >
t×∑i>t Pr(X = i) = t.

Similarly, one can show the following three statements also known as the First Moment
Principle:

• If E(X)> t, then Pr(X > t)> 0.

• If E(X) < t, then Pr(X < t)> 0.
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• If E(X)> t, then Pr(X > t)> 0.

Theorem 7. MARKOV’S INEQUALITY

For every non-negative random variable X, Pr(X > t)6
E(X)

t
.

Proof. Since E(X) = ∑i i×Pr(X = i) and because X is never negative, E(X)> ∑i>t i×Pr(X =
i)> t×Pr(X > t).

To apply the First Moment Method, we need to make a judicious choice of the random
variable X and to compute its expected value. Often X is a non-negative integer and we show
that E(X) is less than one. Hence either the First Moment Principle or Markov Inequality imply
that Pr(X = 0) = Pr(X < 1)> 0.

Since E(X) = ∑i i×Pr(X = i), one could think at first glance that to calculate E(X), one
has to calculate Pr(X = i) for all i, which is at least as difficult as calculating directly Pr(X 6 t).
However, the Linearity of the Expected Value often makes possible to calculate E(X) without
calculating all the Pr(X = i).

Theorem 3 may be proved using the First Moment Principle (or Markov’s Inequality) instead
of the Subadditivity of Probabilities.

Alternative proof of Theorem 3. Consider a uniform random 2-colouring of H. For all hyperedge
e, let Xe be the indicator random variable that is equal to 1 if e is monochromatic and equal to 0
otherwise. Then X = ∑e∈E(H)Xe is the number of monochromatic hyperedges of H. Since every
hyperedge is monochromatic with probability 21−k, then for all e ∈ E(H), E(Xe) = 21−k. Thus,
by the Linearity of the Expected Value, E(X) = ∑e∈E(H)E(Xe) = |E(H)|× 21−k < 1. Hence,
the First Moment Principle (or Markov’s Inequality) implies that the probability that X = 0 is
positive. In other words, the probability that H has no monochromatic hyperedge is positive.

In fact, the Subadditivity of Probabilities is a particular case of the First Moment Principle.
(See Exercise 4). The later one allows however sometimes to prove more general results. For
example, Theorem 3 can be generalised in the following way:

Theorem 8. A k-uniform hypergraph H with m hyperedges can be 2-coloured in such a way that
at most m

2k−1 hyperedges are monochromatic.

Proof. Let X be the random variable that is the number of monochromatic hyperedges in a
uniform random 2-colouring of H. The preceding calculation yields E(X) = m×21−k. Hence
by the First Moment Principle Pr(X 6 m×21−k)> 0.

In fact, this result can be slightly improved. Indeed, there exist 2-colourings that have strictly
more than E(X) = m×21−k monochromatic hyperedges. For example, in the two 2-colourings
for which all the vertices receive the same colour, all the hyperedges are monochromatic. Hence
we need some 2-colouring having fewer monochromatic than E(X) = m×21−k hyperedges to
“compensate” them.

Theorem 9. A k-uniform hypergraph H with m hyperedges can be 2-coloured in such a way that
strictly less than m

2k−1 hyperedges are monochromatic.
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This is a particular case of a variant of the First Moment Principle:

Proposition 10. If E(X)6 t and Pr(X > t)> 0, then Pr(X < t)> 0.

Proof. By the contrapositive. Assume that Pr(X < t) = 0. Then E(X) = t×Pr(X = t)+∑i>t i×
Pr(X = i). If Pr(X > t)> 0, then E(X)> t×Pr(X = t)+ t×Pr(X > t) = t.

4 Alteration
The basic probabilistic method described above works as follows: Trying to prove that a structure
with certain desired properties exists, one defines an appropriate probability space of structures
and then shows that the desired properties hold in this space with positive probability. However,
there are situations where the “random” structure does not have all the desired properties but may
have a few “blemishes”. With a small alteration we remove the blemishes, giving the desired
structure.

A stable set in a graph is a set of pairwise non-adjacent vertices. The stability number of a
graph G, denoted α(G), is max{|S| | S is a stable set}.

Theorem 11. Let d > 1 be a real number and let G be a graph with n vertices and nd/2 edges.
Then α(G)> n/2d.

Proof. In order to prove this theorem, we will consider a random subset S. But instead of proving
that with positive probability S is a stable set (i.e. G〈S〉 has no edges), we will show that the
number of edges in G〈S〉 is small compared to the number of vertices. We then remove one
endvertex of each edge in order to obtain a stable set.

Let S⊂V (G) be a random subset defined by Pr(v ∈ S) = p, p to be determined, the events
v ∈ S being mutually independent. Let X and Y be the number of vertices and edges, respectively,
in the graph G〈S〉.

Clearly, E(X) = np. Moreover, for each edge e = uv, let Ye be the indicator random variable
for the event e ∈ E(G〈S〉) (i.e. Ye = 1 if e ∈ E(G〈S〉) and 0 otherwise). For any such e, E(Ye) =
Pr({u,v} ⊂ S) = p2. So, by Linearity of the Expected Value, E(Y ) = ∑e∈E(G)E(Ye) =

nd
2 p2.

Again by Linearity of the Expected Value, E(X−Y ) = np− nd
2 p2. We set p = 1/d (here using

d > 1) to maximize this quantity, giving E(X−Y ) = n
2d .

By the First Moment Principle, there exists a specific S for which the number of vertices in
G〈S〉 minus the number of edges in G〈S〉 is at least n/2d. Select one vertex from each edge of
G〈S〉 and delete it. This leaves a set S′ with at least n/2d vertices, which is stable since all edges
have been destroyed.

A well-known example of the alteration method is the celebrated result of Erdős stating the
existence of graphs with arbitrarily large girth and chromatic number.

A colouring of a graph G = (V,E) is a mapping c : V → S. The elements of S are called
colours. If |S| = k, then we say that c is a k-colouring. A colouring is proper if c(u) 6= c(v)
for any edge uv ∈ E(G). A graph is k-colourable if it has a proper k-colouring. The chromatic
number χ(G) is the least k such that G is k-colourable. A proper k-colouring may also be seen
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as a partition of the vertex set of G into k disjoint stable sets Si = {v | c(v) = i} for 1 6 i 6 k.
Hence χ(G)> |V (G)|

α(G) .
The girth of a graph is the length of a smallest cycle or +∞ if the graph has no cycles.

Theorem 12 (Erdős [12]). For any two positive integers g and k , there exists a graph G with
girth larger than g and chromatic number larger than k.

Proof. Set θ < 1
g . Let n be sufficiently large and G be a random graph in Gn,p with p = nθ−1. Let

X be the number of cycles in G of length at most g. There are n!
2i(n−i)! potential cycles of length i

because there are n!
(n−i)! sequences of i distinct vertices and each cycle of length i corresponds

to 2i of these sequences. Furthermore, each potential cycle is in G with probability pi. Hence
according to the Linearity of the Expected Value

E(X) =
g

∑
i=3

n!
2i(n− i)!

pi 6
g

∑
i=3

nθi

2i
= o(n),

because θg < 1. So by Markov’s Inequality

Pr
(

X >
n
2

)
6

2E(X)

n
= o(1).

Set x =
⌈

3
p ln(n)+1

⌉
. We have

Pr(α(G)> x)6
(

n
x

)
(1− p)(

x
2).

But
(n

x

)
< nx and (1− p)t < exp(−pt). Hence,

Pr(α(G)> x)< (n · exp(−p(x−1)/2))x =
(

n×n−3/2
)x

= o(1).

Let n be large enough for the two above events to have probability less than 1
2 . Then there

exists a graph H with less than n/2 cycles of length at most g such that α(H)< x < 3n1−θ ln(n).
Let us remove from H one vertex per cycle of length at most g. This produces a graph G on at
least n/2 vertices with girth greater than g. Moreover α(G)6 α(H). Hence

χ(G)>
|V (G)|
α(G)

>
n/2

3n1−θ ln(n)+1
>

1
2
· nθ

6ln(n)
.

For n sufficiently large χ(G) is greater than k.
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5 Local Lemma
In typical proofs of combinatorial results, we generally have to show that the probability of
some event is positive. In lots of cases, we have a set of “bad events” Ai, i ∈ I and we want to
show that with positive probability none of them occurs, that is Pr

(⋂
i∈I Ai

)
> 0. For example,

assume we want to know if a graph G has a proper k-colouring. A naive approach would be to
randomly colour G in k colours and then examine whether this random k-colouring is a proper
colouring. This will be the case if the ends of each edge of G receive distinct colours. Therefore,
if we denote by Ae the event that the ends of e are assigned the same colour, we are interested in
the probability Pr

(⋂
e∈E(G)Ae

)
that none of these bad events occurs. If we can show that this

probability is positive, we have a proof that G is k-colourable.
One possibility is to use the Subadditivity of Probabilities which implies the result if

∑i∈I Pr(Ai)< 1. We can also conclude if the events are mutually independent (and with proba-
bility less than 1). Indeed, in this case,

Pr

(⋂
i∈I

Ai

)
= ∏

i∈I
Pr(Ai) = ∏

i∈I
(1−Pr(Ai))> 0.

Unfortunately, in general, the considered events are not mutually independent. The Local
Lemma, established by Erdős and Lovász in 1975, show that the probability Pr

(⋂
i∈I Ai

)
remains

strictly positive if the Ai are of small probability and, to some extent, sufficiently independent
to each other. There are many different variants of the Local Lemma. We present here the two
most common versions: the General Local Lemma and one of its corollary the Symmetric Local
Lemma. The other variants of the Local Lemma will not be discussed here. The Symmetric Local
Lemma is easy to handle and is enough for lots of proofs. Therefore it is the most commonly used.
It is presented with several applications in Subsection 5.1. However, sometimes the Symmetric
Local Lemma do not apply and we need to use the General Local Lemma. An example is given
in Subsection 5.2.

Lemma 13 (Erdős and Lovász [13]). GENERAL LOCAL LEMMA

Let Ai, i ∈ I be a set of events in a probability space (Ω,Pr), and let Ii, i ∈ I, be subsets of I.
Suppose that for all i ∈ I,

(i) Ai is independent of the set of events {A j | j /∈ Ii},

(ii) there exists a real number pi such that 0 < pi < 1 and Pr(Ai)6 pi ∏ j∈Ii(1− p j).

Then Pr
(⋂

i∈I Ai
)
> ∏i∈I(1− pi)> 0.

Proof. For any J ⊂ I we denote
⋂

j∈J A j by AJ . We prove by induction with respect to the
lexicographic order of the pair (|J1|, |J2|) that for any two disjoint subsets J1 and J2 of I,

Pr
(
AJ1 ∩AJ2

)
> Pr(AJ1) ∏

j∈J2

(1− p j).

For J1 = /0 and J2 = I, this is the desired result.
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If J2 = /0, then AJ2 = Ω and ∏ j∈J2(1− p j) = 1, so

Pr
(
AJ1 ∩AJ2

)
= Pr(AJ1)> Pr(AJ1) ∏

j∈J2

(1− p j).

If J2 = {i}, then AJ2 = Ai and ∏ j∈J2(1− p j) = 1− pi. Setting J′1 = J1 \ Ii and J′2 = J1∩ Ii,
we have:

Pr(Ai∩AJ1)6 Pr(Ai∩AJ′1
) = Pr(Ai)Pr(AJ′1

).

By assumption, and the fact that J′2 ⊂ Ii,

Pr(Ai)6 pi ∏
j∈Ii

(1− p j)6 pi ∏
j∈J′2

(1− p j).

Because |J′1|+ |J′2|= |J1|< |J1|+ |J2|, we have by induction,

Pr(AJ′1
) ∏

j∈J′2

(1− p j)6 Pr
(

AJ′1
∩AJ′2

)
.

Therefore,
Pr(Ai∩AJ1)6 pi Pr

(
AJ′1
∩AJ′2

)
and so

Pr(AJ1 ∩AJ2) = Pr(AJ1 ∩Ai) = Pr(AJ1)−Pr(Ai∩AJ1)

> Pr(AJ1)− pi Pr(AJ1) = Pr(AJ1)(1− pi).

If |J2|> 2, we consider a partition of J2 in two non-empty sets J′1 and J′2. Then

Pr(AJ1 ∩AJ2) = Pr(AJ1 ∩AJ′1∪J′2
) = Pr(AJ1 ∩AJ1 ∩AJ2 = Pr(AJ1∪J′1

∩AJ′2
).

We now apply induction twice. Because |J′2|< |J2|,

Pr
(

AJ1∪J′1
∩AJ′2

)
> Pr(AJ1∪J′1

) ∏
j∈J′2

(1− p j) = Pr(AJ1 ∩AJ′1
) ∏

j∈J′2

(1− p j)

and since |J1∪ J′1|< |J1∪ J2|,

Pr(AJ1 ∩AJ′1
)> Pr(AJ1) ∏

j∈J′1

(1− p j).

Hence

Pr(AJ1 ∩AJ2)> Pr(AJ1) ∏
j∈J′1

(1− p j) ∏
j∈J′2

(1− p j) = Pr(AJ1) ∏
j∈J2

(1− p j).
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5.1 Symmetric Local Lemma
We will denote by e the constant equal to exp(1).

Lemma 14. SYMMETRIC LOCAL LEMMA

Let Ai, i ∈ I be a set of events in a probability space (Ω,Pr) such that, for each i ∈ I,

(i) Pr(Ai)6 p and

(ii) Ai is independent of all other events but at most d.

If e p(d +1)6 1, then Pr
(⋂

i∈I Ai
)
> 0.

Proof. Set pi = p for all i ∈ I, in the General Local Lemma. Now set p = 1
d+1 in order to

maximize p(1− p)d and apply the inequality
( d

d+1

)d
=
(
1− 1

d+1

)d
> 1

e .

Theorem 15. Let H be a k-uniform hypergraph in which each hyperedge intersects at most d
other hyperedges. If e(d +1)6 2k−1, then H is 2-colourable.

Proof. Let us consider a uniform random 2-colouring of H in which every vertex is coloured
independently red with probability 1/2 and blue with probability 1/2. For every hyperedge e,
let Ae be the event that e is monochromatic. Then Pr(Ae) = 21−k = p.

Claim: Every Ae is independent of all the events A f such that e∩ f = /0.

This claim implies that every Ae is independent of all the events but at most d. Hence, if
e(d +1)6 2k−1, then e p(d +1)6 1 and the Symmetric Local Lemma yields the result.

It remains to prove the claim. Intuitively it seems clear but let us check it.
Set e = {v1, . . . ,vk}. Let f1, . . . , fr be edges that do not intersect e and Γ the set of 2-colourings
of H for which the event B = A f1 ∩·· ·∩A fr occurs. For each 2-colouring c of G−{v1, . . . ,vk},
let Tc be the set of the 2k different 2-colourings of G that extend c. It is easy to verify that for all
c, Γ contains either all the colourings Tc or none of them. Hence, there exist l and 2-colourings
c1, . . . ,cl such that Γ is the disjoint union Tc1 ∪·· ·∪Tcl . Thus Pr(B) = 2kl

2n .
Now in each Tc, there are exactly two 2-colourings for which e is monochromatic, and so
Pr(Ae∩B) = 2l

2n . Thus Pr(Ae|B) = ( 2l
2n )/Pr(B) = 2−(k−1) = Pr(Ae) as claimed.

The claim in the preceding proof is a particular case of a more general principle allowing to
show independence. In a very large majority of the proofs, the independence is proved with this
principle.

Theorem 16. INDEPENDENCE PRINCIPLE

Suppose that X = X1, . . . ,Xm is a sequence of independent random trials. Suppose moreover
that A1, . . . ,AN is a set of events such that each Ai is determined by Fi ⊂ X . If Fi∩

(⋃
j∈J Fj

)
= /0

then Ai is independent of {A j | j ∈ J}.

Proof. The proof of this principle is similar to the of the above claim. It is left in Exercise 17.
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A list-assignment of a graph G is an application L which assigns to each vertex v ∈V (G) a
prescribed list of colours L(v). A list-assignment is a k-list-assignment if each list is of size at
least k. An L-colouring of G is a colouring c such that c(v) ∈ L(v) for all v ∈V (G). A graph G
is L-colourable if there exists a proper L-colouring of G.

Theorem 17. Let L be an l-list assignment of a graph G. If for every vertex v every colour
i ∈ L(v) appears in the list of at most l

2e neighbours of v, then G is L-colourable.

Proof. Let us consider a random colouring of G for which every vertex v is assigned a colour of
its list uniformly (with probability 1/l). For each edge e = xy and each colour i ∈ L(x)∩L(y),
let Ae,i be the event that x and y are both coloured i. Let us denote by A the set of such events.
We will use the Symmetric Local Lemma to show that with positive probability no event of A
occurs and so the colouring is proper.

Firstly, for every e and i, Pr(Ae,i) =
1
l2 = p. Secondly, let us consider the dependence of the

events. If e = xy, then Ae,i is determined by the colours assigned to x and y uniquely. Hence,
setting Ax = {A f , j | x is an endvertex of f , j ∈ L(x)} and Ay = {A f , j | y is an endvertex of f , j ∈
L(y)}, by the Independence Principle, Ae,i is independent of all events of A \ (Ax∪Ay). Now
as L(x) has l elements and for all i ∈ L(x), x has at most l/2e neighbours coloured i, we have
|Ax|6 l2

2e . Similarly, |Ay|6 l2

2e and so |Ax∪Ay|6 l2

e . Since Ae,i is in Ax∪Ay, it is independent
of all other events but at most d = l2

e −1.
Now e p(d +1)6 1, so the Symmetric Local Lemma gives the result.

Molloy and Reed [21] conjectured that the l
2e in the above theorem can be replaced by l−1.

Conjecture 18 (Molloy and Reed [21]). Let L be an l-list assignment of a graph G. If for every
vertex v every colours i ∈ L(v) appears in the list of at most l− 1 neighbours of v, then G is
L-colourable.

Using different techniques, Haxell [15] has shown that the result holds if the value is l/2 and
by iteratively applying the Local Lemma, Reed and Sudakov [22] have shown that l−o(l) is
sufficient.

As it is often the case with the Local Lemma, once the bad events are chosen, the proof
is direct. However, choosing appropriate bad events is sometimes astute. For example, in
Exercise 16, we give definitions of two natural bad events for the proof of Theorem 17 which
yield no proof.

5.2 An application of the General Local Lemma
A cycle in a graph is hamiltonian if it contains all the vertices.

Conjecture 19 (Sheehan [23]). Every hamiltonian k-regular graph, k > 3, has at least two
hamiltonian cycles.

Sheehan’s Conjecture has been proved for odd k. (See Chapter 18 of [8].) Hence it can be
restricted without loss of generality to 4-regular graphs. For if C is a hamiltonian cycle of G,
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then the spanning subgraph G\E(C) is regular of positive even degree, and hence has a 2-factor
F , (i.e. a 2-regular spanning subgraph). The graph H := F ∪C is a 4-regular spanning subgraph
with a hamiltonian cycle C. If we could prove that H had a second hamiltonian cycle, then G
would also have this second hamiltonian cycle.

Theorem 20 (Thomassen [26]). For k 6 73, every hamiltonian k-regular graph has at least two
hamiltonian cycles.

The bound k > 73 in this theorem was reduced to k > 23 by Haxell et al. [16]. However,
Sheehan’s Conjecture remains open.

The proof of Theorem 20 uses a general sufficient condition for the existence of at least two
hamiltonian cycles in a graph having one. The argument is based on the following concepts.
Consider a (not necessarily proper) 2-edge-colouring of a graph G in red and blue. A set
S of vertices of G is called red-stable if no two vertices of S are joined by a red edge, and
blue-dominating if every vertex of V \S is adjacent by a blue edge to at least one vertex of S.

Lemma 21 (Thomassen [26]). Let G be a graph and let C be a hamiltonian cycle of G. Colour
the edges of C red and the remaining edges of G blue. If there is a red-stable blue-dominating
set S in G, then G has a second hamiltonian cycle.

Proof of Theorem 20. Let G be a hamiltonian k-regular graph, and let C be a hamiltonian cycle
of G. As in Lemma 21, we colour the edges of C red and the remaining edges of G blue. We now
select each vertex of G independently, each with probability p, so as to obtain a random subset
S of V . We show that, for an appropriate choice of p, this set S is, with positive probability, a
red-stable blue-dominating set. The theorem then follows on applying Lemma 21.

For each element of E(C)∪V (G), we define a “bad” event, as follows.

• Ae: both ends of edge e of C belong to S.

• Bv: neither vertex v of G nor any vertex joined to v by a blue edge belongs to S.

We have Pr(Ae) = p2 and Pr(Bv) = (1− p)k−1, because each vertex v has blue degree k−2.
The set Ae is determined by the two trials for its endvertices, and the set Bv is determined

by the trial of v and the neighbours to which it is linked by a blue edge. By the Independence
Principle, for every edge e = uv of C, the event Ae is independent of all events but the two A f
for f an edge having u or v has endvertex, and the 2k− 2 events Bw for w in {u,v} or joined
by a blue edge to either u or v. The k− 1 vertices determining Bv are each involved in two
events Ae, and are together involved in a total of at most (k−2)2 other events Bw. Thus, by the
Independence Principle, Bv is independent to all events except at most (2k−2) events A f and
(k−2)2 events Bw. In order to apply the Local Lemma, we must therefore select a value for p
and numbers x (associated with each event Ae) and y (associated with each event Bv) such that

p2 6 x(1− x)2(1− y)2k−2 and (1− p)k−1 6 y(1− x)2k−2(1− y)(k−2)2
.

We may simplify these expressions by setting x = a2 and y = bk−1:

p 6 a(1−a2)
(

1−bk−1
)k−1

and 1− p 6 b
(
1−a2)2

(
1−bk−1

)k−3
.
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Thus
1 6 a

(
1−a2)(1−bk−1

)k−1
+b
(
1−a2)2

(
1−bk−1

)k−3
.

For k > 73, a solution to this inequality is obtained by setting a = .25 and b = .89, resulting
in a value of .2305 for p.

6 Chernoff’s Bound
The binomial random variable BIN(n, p) is the sum of n independent zero-one random variables
where each is equal to 1 with probability p.

Chernoff’s Bound is an important result stating that BIN(n, p) is concentrated around its
expected value. See [18, 5].

Theorem 22. CHERNOFF’S BOUND

For every t ∈ [0,np],

Pr(|BIN(n, p)−np|> t)< 2exp
(
− t2

3np

)
.

There are other versions of the Chernoff’s Bound: for every t > 0,

Pr(|BIN(n, p)−np|> t)< 2exp
(

t− ln
(

1+
t

np

)
(np+ t)

)
.

Chernoff’s Bound is a tool to bound the probability of some events. It can be an element of
proofs following the First Moment Method as shown in the two following Subsections, but it is
also very convenient for the use of the Local Lemma as examplified in Section 6.3.

6.1 Hypergraph colouring
Let H be a hypergraph and let c be a 2-colouring of its vertices. For all hyperedge e, the
discrepancy of e is the absolute value of the difference between the number of vertices of e in
each colour class. The discrepancy of H with respect to c is the maximum discrepancy of a
hyperedge of H. The discrepancy of H, disc(H), is the minimum over all 2-colourings of the
vertex set of H, of the discrepancy of H with respect to the 2-colouring.

For example, if H is k-uniform, then disc(H)< k if and only if H is 2-colourable. In a certain
sense, disc(H) measure how “balanced” a 2-colouring we can obtain for H.

Theorem 23. Let H be a k-uniform hypergraph with k hyperedges. Then disc(H)6
√

8k ln(k).

Proof. We may assume k > 9 as if k 6 8, disc(H)6 k <
√

8k ln(k).
Consider a random 2-colouring of H with red and blue obtained by assigning to each vertex

a random colour with probability 1/2 for each colour, and where the choices corresponding
to different vertices are mutually independent. For any hyperedge e, the number of vertices
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of e which receive colour red is distributed like BIN(k, 1
2). Applying Chernoff’s Bound with

t =
√

2k ln(k), we get that the probability that the discrepancy of e is greater than 2t is at most:

Pr
(∣∣∣∣BIN

(
k,

1
2

)
− k

2

∣∣∣∣> t
)
< 2exp

(
− t2

3× k
2

)
= 2k−

4
3 <

1
k
.

Hence by Linearity of the Expected Value, the expected number of hyperedges with discrepancy
greater than 2t is less than 1. Thus with positive probability, there are no such hyperedges, and
the desired 2-colouring exists.

We refer the reader to [5] and [9] for a more thorough discussion of discrepancy.

6.2 Choosablity of complete multipartite graphs with equal colour classes
A graph G is k-choosable if it is L-colourable for every k-list-assignment L. The choice number,
choosability or list chromatic number of G, denoted ch(G), is the least k such that G is k-
choosable.

For two positive integers m and r, we denote by Km∗r the complete r-partite graph with m
vertices in each vertex class. The graph Km∗1 is a graph with m vertices and no edges and so
ch(Km∗1) = 1. The graph K1∗r is the complete graph on r vertices Kr, so ch(K1∗r) = r. Erdős,
Rubin and Taylor [14] showed that ch(K2∗r) = r for all r. Alon determined, up to a constant
factor, the choice number of all the remaining cases.

Theorem 24 (Alon [3]). There exist two positive constants c1 and c2 such that for every m > 2
and for every r > 2

c1r logm 6 ch(Km∗r)6 c2r logm.

Proof. Since ch(Km∗r) is a non-decreasing function of r, we will assume that r is a power of
2. Since ch(Km∗r) 6 rm and rm 6 c2r logm for all m 6 c2, we may assume that m > c2. Let
us denote by V1, . . .Vr the colour classes of Km∗r and V its vertex set. Let L be a c2r logm-list
assignment of Km∗r and S =

⋃
v∈V L(v) be the set of all colours.

We consider two possible cases.

Case 1: r 6 m. Let f : S→{1,2, . . . ,r} be a random function, obtained by choosing, for each
colour c ∈ S, randomly and independently, the value of f (c) according to a uniform distribution.
The colours c for which f (c) = i will be the ones to be used for colouring the vertices in Vi . To
complete the proof for this case, let us show that with positive probability for every i, 1 6 i 6 r,
and for every vertex v ∈Vi there is at least one colour c ∈ L(v) such that f (c) = i.

Fix an i and a vertex v∈Vi . The probability that there is no colour c∈ L(v) such that f (c) = i
is (

1− 1
r

)c2r logm

6 exp(−c2 logm)6
1

mc2
<

1
rm

,

where the last inequality follows from the fact that r 6 m and c2 > 2. There are rm possible
choices of i, 1 6 i 6 r and v ∈Vi, and hence, the probability that for some i and some v ∈Vi there
is no c ∈ L(v) so that f (c) = i is smaller than 1. This completes the proof of Case 1.
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Case 2: r > m. To prove this case we will use a (more or less standard) splitting trick. It was
first used in [2].

Set R1 = {1, . . . ,r/2} and R2 = {r/2+ 1, . . . ,r}. Let f : S→ {1,2} be a random function
obtained by choosing, for each c ∈ S randomly and independently, f (c) ∈ {1,2} according to a
uniform distribution. The colours c for which f (c) = 1 will be used for colouring the vertices
in

⋃
i∈R1

Vi, whereas the colours c for which f (c) = 2 will be used for colouring the vertices in⋃
i∈R2

Vi.
For every vertex v, set L0(v) = L(v) and define L1(v) = L0(v)∩ f−1(1) if v belongs to⋃

i∈R1
Vi and L1(v) = L0(v)∩ f−1(2) if v belongs to

⋃
i∈R2

Vi. Then the problem of finding a
proper L-colouring of Km∗r is decomposed into two independent problems: the ones of finding
proper colourings of the two complete r/2-partite graphs on the vertex classes

⋃
i∈R1

Vi and⋃
i∈R2

Vi, by assigning to each vertex v a colour from L1(v). Set l0 = c2r logm. Then |L1(v)| is a
binomial random variable BIN(l0,1/2). Hence by Chernoff’s Bound,

Pr
(
|L1(v)|<

1
2

l0−
1
2

l2/3
0

)
6 exp

(
−1

2
c1/3

2 r1/3(logm)1/3
)
.

The total number of vertices is rm < r2. Since r > m > c2 and c2 can be chosen to be a
sufficiently large constant (independent of r and m), one can easily check that for all r > m > c2:
r2 · exp

(
−1

2c1/3
2 r1/3(logm)1/3

)
<< 1. Hence for all sufficiently large c2, with high probability,

|L1(v)|>
1
2

l0−
1
2

l2/3
0

for all vertex v. Setting l1 = min{L1(v) | v ∈V}, we can make sure that l1 > 1
2 l0− 1

2 l2/3
0 . Hence

we have reduced the problem of showing that the choice number of Km∗r is at most l0 to that of
showing that the choice number of Km∗(r/2) is at most l1.

Repeating the above decomposition technique (which we can repeat as long as r/2i > m) we
obtain a sequence li , where l0 = c2r logm and

li+1 >
1
2

li−
1
2

l2/3
i .

In order to show that the choice number of Km∗r is at most l0, it suffices to show that for some
i, ch(Km∗(r/2i))6 li. Let the number of iterations j be chosen so that j is the minimum integer
satisfying r/2 j 6 m. Clearly, in this case, r/2 j > m/2 > c/2.

Claim 24.1. l j >
l0

2 j+1 .

Proof. Let us define zi = l1/3
i . Then for all 1 6 i 6 j,

z3
i+1 >

z3
i − z2

i
2

>
(zi−1)3

2
,

and so
zi+1 >

zi−1
21/3 .
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Let x = 1
21/3−1

< 4. Then x = 1+x
21/3 and set ti = zi + x. Then ti+1− x > ti−x−1

21/3 , so ti+1 >
ti

21/3 .
Hence

t j >
t0

2 j/3 =
z0 + x
2 j/3 >

z0

2 j/3 =

(
l0
2 j

)1/3

.

Therefore

l j = z3
j = (t j− x)3 >

((
l0
2 j

)1/3

− x

)3

=
l0
2 j −O

((
l0
2 j

)2/3
)
. (2)

Since r/2 j > m/2 > c2/2 and c2 > 4, it follows that l0
2 j =

c2r logm
2 j > c2

2 logm
2 > c2. Thus if c2 is

sufficiently large then the right hand side of (2) is at least l0/2 j+1.

Let us now show that the choice number of Km∗(r/2 j) is at most l j. We have r/2 j 6 m and
l j > l0/2 j+1 > c2

2
r
2 j logm. Hence for a succiently large c2 the result follows from Case 1. This

completes the proof.

6.3 Total colouring
A total colouring of G is a mapping f from V (G)∪E(G) into a set S of colours such that:

- adjacent vertices have different colours;

- incident edges have different colours;

- each edge and its endvertices have different colours.

If |S|= k then f is a k-total colouring. A graph is k-total colourable if it has a k-total colouring.
The total chromatic number χT (G) of a graph G is the least k such that G is k-total colourable.
The colour classes in a total colouring are called total stable sets.

Since a vertex and the edges incident to it need different colours, we have χT (G)> ∆(G)+1.
Using distinct colours for vertices and edges, we get χT (G)6 χ(G)+χ′(G). Hence applying

Brooks’ and Vizing’s Theorems and analyzing the case of odd cycles and complete graphs, we
obtain:

χ
T (G)6 2∆(G)+1.

This upper bound is clearly not the best possible and the following is conjectured.

Total Colouring Conjecture χT (G)6 ∆(G)+2.

Total colouring was introduced by Vizing [27, 28] and independently by Behzad [7]. They both
formulated the Total Colouring Conjecture.

Theorem 25. For any graph G with maximum degree ∆ sufficiently large, χT (G)6 ∆+2∆
3
4 .
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Proof. Since every graph with maximum degree ∆ is the subgraph of a ∆-regular graph, we may
assume that G is ∆-regular.

Set k =
⌊

∆
1
3

⌋
and l =

⌊
∆+∆

3
4

k

⌋
. Let us fix an edge-colouring of G with colours 1, . . . ,∆+1.

Such an edge-colouring exists by Vizing’s Theorem.
We then find a colouring of G with colours in {1, . . . ,kl} as follows. We first partition V (G)

into k subsets V1, . . . ,Vk such that

(i) for each vertex v and part i, |N(v)∩Vi|6 l−1,

(ii) for each vertex v, there are at most ∆
3
4 −2 edges e = uv such that u ∈Vi and the colour of

e belongs to Ci = {(i−1)l +1, . . . , il}.

Next we refine this partition into a proper colouring, assigning to the vertices of Vi a colour in
Ci. This is possible using the greedy algorithm because by (i), the subgraph induced by Vi has
maximum degree at most l−1.

We now have a proper vertex colouring and a proper edge-colouring. However, the union
of these two colourings may not yet be a total colouring because some edges may have the
same colour as one of its endvertices. Let R be the graph induced by such so called conflictuous
edges. By (ii), we have ∆(R)6 ∆

3
4 −1. Indeed, at each vertex v, at most ∆

3
4 −2 edges uv are

conflictuous because of u and at most one is conflictuous because of v. Hence one can recolour
the edges of R using at most ∆

3
4 new colours. We then obtain a total colouring of G with at most

kl +∆
3
4 6 ∆+2∆

3
4 colours.

It remains to prove that the partition satisfying (i) and (ii) actually exists. To do so, we assign
each vertex to a part uniformly at random, where these choices are made independently. For
every v ∈V (G) and every 1 6 i 6 k, let Av,i be the event that (i) fails to hold for (v, i) and let Bv
be the event that (ii) fails to hold for v. We shall use the Symmetric Local Lemma to show that
with positive probability none of these events occurs.

Bv and Av,i are determined by the colours of the vertices adjacent to v. Hence by the
Independence Principle, they are independent of all events but those concerning vertices at
distance at most two of v. Thus every event is independent of all events except at most (k+1)∆2 6
∆3−1. We shall prove that the probability of each event is at most 1

e∆3 . Thus, by the Symmetric
Local Lemma (Lemma 14), there exists a partition satisfying (i) and (ii).

Consider first the event Bv. Let Rv be the set of edges uv such that u ∈Vi and e has a colour
in Ci. Since there are k parts, the probability that this occurs for a given edge e is 1

k . Moreover,
the choices are made independently, so the size of Rv is the sum of ∆ independent 0-1variables,
each of which is 1 with probability 1

k . Hence Chernoff’s Bound applied to BIN
(
∆, 1

k

)
yields:

Pr
(∣∣∣∣|Rv|−

∆

k

∣∣∣∣> ∆

k

)
6 2exp

(
− ∆

3k

)
.

Since k =
⌊

∆
1
3

⌋
and ∆

3
4

2 > ∆

k , for ∆ sufficiently large, Pr(Bv)6 2exp
(
−∆1/2

)
< 1

e∆3 .
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Consider now Av,i. The size of N(v)∩Vi s the sum of ∆ independent 0-1variables, each of
which is 1 with probability 1

k . Hence applying Chernoff’s Bound as above, we obtain that for ∆

sufficiently large

Pr(Av,i)6 Pr

(∣∣∣∣|N(v)∩Vi|−
∆

k

∣∣∣∣> ∆
3
4

k

)
6 2exp

(
−∆1/6

3

)
<

1
e∆3 .

7 Other concentrations inequalities
Unfortunately, all the random variables are not binomial and in general we cannot use Chernoff’s
Bound to prove that a random variable is concentrated around its expected value. However, there
are many other concentration bounds that may be applied to random variable satisfying some
given properties. This bound are used in the same way as Chernoff’s Bound b ut for more general
type of random variables. We now list some of them.

The following is a simple corollary of Azuma’s Inequality [6, 21].

Theorem 26. SIMPLE CONCENTRATION BOUND

Let X be a non-negative random variable determined by the independent trials T1, ...,Tn. Suppose
that for every set of possible outcomes of the trials

(i) changing the outcome of any one trial can affect X by at most c.

Then

Pr(|X−E(X)|> t)6 2exp
(
− t2

c2n

)
.

Talagrand’s Inequality requires another condition, but often provides a stronger bound when
E(X) is much smaller than n. Rather than providing Talagrand’s original statement [25], we
present the following useful corollary [21].

Theorem 27. TALAGRAND’S INEQUALITY

Let X be a non-negative random variable determined by the independent trials T1, ...,Tn. Suppose
that for every set of possible outcomes of the trials

(i) changing the outcome of any one trial can affect X by at most c; and

(ii) for each s > 0, if X > s then there is a set of at most rs trials whose outcomes certify that
X > s.

Then for every t ∈ [0,E(X)],

Pr
(
|X−E(X)|> t +60c

√
r E(X)

)
6 4exp

(
− t2

8c2r E(X)

)
.
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McDiarmid extended Talagrand’s Inequality to the setting where X depends on independent
trials and permutations, a setting that arises in this paper. Again, we present a useful corollary [21]
rather than the original inequality [19].

Theorem 28. MCDIARMID’S INEQUALITY

Let X be a non-negative random variable determined by the independent trials T1, . . . ,Tn and m
independent permutations Π1, . . . ,Πm. Suppose that for every set of possible outcomes of the
trials

(i) changing the outcome of any one trial can affect X by at most c;

(ii) interchanging two elements in any one permutation can affect x by at most c; and

(iii) for each s > 0, if X > s then there is a set of at most rs trials whose outcomes certify that
X > s.

Then for every t ∈ [0,E(X)],

Pr
(
|X−E(X)|> t +60c

√
r E(X)

)
6 4exp

(
− t2

8c2r E(X)

)
.

In both Talagrand’s Inequality and McDiarmid’s Inequality, if 60c
√

r E(X)6 t 6 E(X) then
by substituting t/2 for t in the above bounds, we obtain the more concise

Pr(|X−E(X)|> t)6 4exp
(
− t2

32c2r E(X)

)
.

8 Exercises
Exercise 1. Calculate the expected value of the number of isolated vertices (i.e. incidents to no
edge) in a random graph in Gn,p.

Exercise 2. Let G ∈ Gn, 1
2
. For all S⊆V (G), let AS be the event that S is stable in G. Show that

if S and T are two distinct subsets of k vertices then AS and AT are independent if and only if
|S∩T |6 1.

Exercise 3. A random k-colouring fo a graph G is an element of the probability space (Ω,Pr)
where Ω is the set of all k-colourings (i.e. partition of V into k sets (V1,V2, . . . ,Vk)), all this
colourings being equally likely (so happening with probability k−n). For every edge e of G, let
Ae be the event that the two endvertices of e receive the same colour. Show that:

a) for any two edges e and f of G, the events Ae and A f are independent.

b) if e, f and g are three edges of a triangle of G, the events Ae, A f and Ag are dependents.

Exercise 4. Show the Subadditivity of Probabilities from the First Moment Principle.
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Exercise 5. Suppose k > 2 and let H be a k-uniform hypergraph with 4k−1 edges. Show that
there is a 4-colouring of V (H) such that no edge is monochromatic.

Exercise 6. Let H be a graph, and let n > |V (H)| be an integer. Assume there is a graph
on n vertices and t edges containing no copy of H, and assume that tk > n2 lnn. Show that
there is a colouring of the edges of Kn, the complete graph on n vertices by k colours with no
monochromatic copy of H.

Exercise 7. Show that there exists a 2-edge-colouring of Kn with at most
(

n
p

)
21−(p

2) monochro-

matic Kp.

Exercise 8. A tournament T is a digraph such that for all pair of distinct vertices x 6= y exactly
one of the arcs xy and yx is in E(T ). In other words, a tournament is the orientation of a complete
graph.

A tournament satisfies Property Pk if for every set of k vertices, there exists a vertex dominat-
ing all vertices of S.

a) Show that if
(n

k

)
(1− 2−k)n−k < 1, then there exists on tournament on n vertices which

satisfies Property Pk.

b) Deduce that there exists a tournament on
⌈
4k22k⌉ vertices which satisfies Property Pk.

Exercise 9. A random tournament on n vertices is the orientation of Kn such that every edge
xy is oriented from x to y with probability 1/2 and from y to x with probability 1/2, all these
choices being made independently.

a) Show that the expected number of hamiltonian paths in a random tournament of order n is
n! ·2−(n−1).

b) Deduce that, for all n > 1, there is a tournament on n vertices with at least n! · 2−(n−1)

hamiltonian paths.

Exercise 10. Let G = (V,E) be a graph and (v1,v2, . . . ,vn) an ordering of the vertices.
1) Prove that S = {vi | N(vi)⊂ {v1, . . . ,vi−1}} is stable.

2) Deduce that α(G)> ∑
v∈V

1
d(v)+1

.

3) Show that α(G)>
|V (G)|2

2|E(G)|+ |V (G)|
.

Exercise 11. Let G be a bipartite graph on n vertices and L a dlog2 ne-list assignment of G.
Prove G is L-colourable.

Exercise 12. Show that for n sufficiently large, there exists a graph with n vertices such that
χ(G) > n

2 and ω(G) 6 n3/4. (Hint: What can we say about the chromatic number of the
complement of a triangle-free graph?)
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Exercise 13. Show by the First Moment Principle that every graph having a matching of size m
has a bipartite subgraph with at least 1

2(|E(G)|+m) edges.
(Hint: how can we choose a random bipartition such that the edges of the matching have their
endvertices in opposite parts?)

Exercise 14. Let α and c be fixed with α > 5/6. Let p = n−α. The aim of the exercise is to
show that almost always every c

√
n vertices of G ∈ Gn,p is 3-colourable.

Let T be a minimal set such that G〈T 〉 is not 3-colourable.

1) Show that if T has t vertices then T has at least 3t/2 edges.

2) Conclude.

Hint: One could use the inequalities
(n

t

)
6
(ne

t

)t and
((t

2)
3t
2

)
6
( t e

3

)3t/2.

Exercise 15. Let G be a graph on n vertices which is not complete. The goal of this exercise is to
show the following result proved independently by Chetwynd and Häggkvist [10] and McDiarmid
and Reed [20]. If k! > n, then there is a total colouring of G with at most χ′(G)+ k+1 colours.

Set q = χ′(G).

1) Show that there exists a proper (vertex) colouring c with q colours.

2) Let M = {M1, . . . ,Mq} the set of q matchings which are the colour classes of a proper
q-edge-colouring of G. To every bijection Π : M →{1, . . . ,q}, we associate the conflict
graph RΠ which is the subgraph of G whose edges are the xy such that c(x) = Π(xy) or
c(y) ∈Π(xy).
Show that there exists Π such that ∆(RΠ)6 k.

3) Deduce χT (G)6 q+ k+1.

Exercise 16. Show what is wrong when we try to prove Theorem 17 by colouring each vertex
independently and uniformly with a random colour in its list and applying the Symmetric Local
Lemma to the following bad events:

1) For all vertex v, Av is the event that v receives the same colour as one of its neighbours.

2) For every edge e, Ae is the event that the two endvertices of e receive the same colour.

Exercise 17. Prove the Independence Principle.

Exercise 18. Let G be a graph and let (V1,V2, . . . ,Vk) be a partition of V (G) into k sets, each of
cardinality at least 2e∆(G). Show that there is a stable set S in G such that |S∩Vi|= 1, 1 6 i 6 k.

Exercise 19. Let D be a digraph with minimum outdegree δ+ and maximum indegree ∆− and
let k be an integer. Show that if e(∆−δ++ 1)(1− 1

k )
δ+ 6 1 then D contains a cycle of length

divisible by k. (Alon and Linial [4])

Exercise 20. Let H be a k-uniform hypergraph in which every hyperedge intersects at most d
others. Show that if d +1 6 2exp(l2/6k), then disc(H)6 l.
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Exercise 21. Using Chernoff’s Bound show that the probability that G ∈ Gn, 1
2

has a bipartite

subgraph with more than 1
8n2 +n3/2 edges is o(1).

Exercise 22. Show that there exists a positive constant c so that for every n there is a graph G
on n vertices such that ch(G)+ ch(G)6 c

√
n logn. (Hint: Use Theorem 24) (Alon [3])
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