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Why do we need algorithms for that

Counting, Generating why ?

Mesure probabilities, volumes : Area of a shape.

- Math solution : Triangulate, divide into
simplexes decompose into shapes for
which we have a formula.

- High dimension ? ⇒ Even a polytope do
have exponential number of vertices,
non practical.

- Can we get an efficient algorithm ?

- Example: Tree Polytope of G = (V ,E)

w : E =⇒ R+

∀V ′ ⊂ V ,w([V ′,V ′]) ≤ |V ′| − 1
w([V ,V ]) = |V | − 1

Polytope Vertices = The spanning trees

(How \ Can) we deal
with that ?
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Why do we need algorithms for that

Counting to Evaluate probabilities

(Discretes|finites Probabilities)⇐⇒ Counting

Question

- Network N = (V ,E), edges i.i.d failures (p = 1
2 ).

Compute B(N) = Prob(N gets disconnected ) ?

B(N) = Prob[∪S∈V ,S 6∈{∅,V}[S,S] fails ] ∼ ∪S∈V ,S 6∈{∅,V}2−|[S,S]|

Random N with a fixed support→ Probability of a property ?
Erdũs Reynii : (trivial) Case N = Kn → Formulas, theorems . . .
Other Random distributions: degree sequences, Euclidian, planar,
whatever . . .→ Again formulas.
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Why do we need algorithms for that

Generating and Sampling

Typical Questions

- Generate a random tree of G/
- Generate a random simple path from u to v .
- Generate a random failure scenario .
- Generate complex items for simulation or testing, but in a fair way.
- Make experiment on a random graph that looks like a typical case.

What about Enumerative Combinatorics?
- Usually about a fixed object (Kn or the Hypercube . . . )
- Fibbonacci, # partitions, “usual stuff” → 95 % of the time when we count

we build bijections.
- Many (most?) inductive counting argument→ inductive constructions.
- Often : Can count → Can Generate.
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Naive empiral integration is easy . . . deeper than it seems

Maths Sucks method (Naive Monte Carlo)

Monte Carlo Uber Generator
- Throw random points in the square

(we know how to sample it)
- point belongs to A ? → returns it.
- Great generator, works for any

NPproblem

Super Counting Algorithm

- Throw n random points in the
square, a(n) points lie in A

- Return Vol(P) = a(n)
n Vol(Square)

A

Works great if Vol(A)
Vol(Square) is not too small (ie polynomial)
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Naive empiral integration is easy . . . deeper than it seems

Math Reason, empirical mean often works . . .

Chernoff Bound

Z : Sum of n i.i.d Bernouilli variables X1,X2, . . .Xn (random (A,1− A) biased
coins) µ = E [Z ] = n · A,

Pr [|Z (ω)− µ| ≥ δµ] ≤ 2eδ
2µ/3

Almost good and quite sure ?

We want µ = 1
k

and 2e−δ
2µ/3 ≤ 1

2

So we want µ ≥ 3 ln 4δ2 So

n ∼Who care 1 barbu c’est un barbu et le deuxième momemnt suffit zzz

We need n of order vol(A)/Vol(Square), up to polylog things , indeed we
simply need to see events of A happening.
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Approx + Randomized + couting + generating
The ]P Class
A Variant of Cook Theorem
Toda Theorem Non proof ??

Some formalism (sorry for that)
Counting Algo.

Input : A ground set X and some predicate l( ∈ P)
output : an estimation of ]{x ∈ X |l(x) = True} def

= ]x
e.g. (Ham. cycle) : X = P(E), and f (x) is true if x is a Hamilton cycle

Random Algorithm

Uses fair independent random bits (don’t ask me how we get them)

Qualities

Approximation e−ρ]x ≤ output(x) ≤ eρ]x (ε− Approx)
Success ≥ τ Prob[to be ρ− approximated ] ≥ τ (1)

Sampling Algo.

Input : A finite Probability measure P(X ), over X
output : Algorithm returns X with proba : PAlgo(x)eρ ≤ P(X ) ≤ PAlgoe−ρ
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Counting→ Sampling ?

We need a bit more than couting
we Assume that we can still count when we fix a part of the solution
Classical usage of conditional expectations

Example

µ(G,F1,F0) = Number of matching in G containing F1 discarding F0

Nothing more than µ(H = f (G,F1,F0)) (here H = remove from G
vertices appearing in F and remove F0 from E)
Algo:

Compute N = µ(G, ∅) and p(e) = µ(G, {e}, {}) and
1− p(e) = µ(G, {}, {e})
Pick e with probability p(e), otherwise discard it
Procede inductively, either with (G, {e}, {}) or (G, {}, {e})

If µ() is exact→ Perfect Random Generator of matchings.
Error eε on µ→ Drift of etε (t steps) (gen. exp(

∑
i=0,...t εi ))
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Sampling→ Counting ?(Prince Albert Revenge)

Monte Carlo on nested areas (often works)

µ(An) = µ(An)
µ(An−1) . . .×

µ(A1)
µ(A0)µ(A0)

Pr [Ai+1|Ai ] = µ(Ai+1)/µ(Ai ) = αi

(1 + ε0) approx of αi takes likes 1
αiε0

n steps ε =
∑
εi , εi = ε

n

if αi ≥ β → around n2

βε

Direct : Pay like βn to observe one A0 in An

An

A0

A1

A2

A3

examples Matchings (add more and more edges) µ(G + {e}) ≤ 2µ(G),
forests, colorings with more than ∆ colors, knapsacks with cost less than C
. . .
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Some formalism : The ]P Class

What contains ]P ?

Unformaly :
Any Counting problem that can be associated to successful
computations of a Non Deterministic Turing Machine (in Polynomial
time)

Counting Prob in ]P

Elements of a Set S(x) Bijection {y | TM(x , y) says ok }
Elements of a Set S(x) Bijection Correct proofs that (x , y) ∈ S

Example

Ham. Cycle : x = (V ,E), S(x) = {Ham. Cycles of (V ,E)}, the proof is the
cycle itself. For SAT where x is the instance (the graph), y is the variable
assignement (set of edges) and the machine checks that it works.
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Cook theorem and ]P-completeness of 3SAT

Theorem (Fake)

]3SAT is ]P − complete.

Proof. Almost a tautology.
Correctness of a NdetTM computation can be captured by a (big) 3SAT formula.

It’s Cook’s Theorem, mostly says computation is local
3SAT variables bijection (Random) Choices of the NdetTM
3SAT Solutions bijection Sucessfull Choices of the NdetTM

Remarque

Indeed One says that Cook reduction is parsimonious.

Counting Solutions of NP-hard problems ?

- Not really interesting, Almost immediately ]P − complete
- No approximation theory (deciding 0 or 1 is hard,∞ ratio).
- Easy to amplify the number of solutions (add k fake binary clauses ×2k )
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Counting exactly is way too strong and complicated

Theorem (Toda 25-AM/1998)

Any problem in the Polynomial hierarchy can be solved using a counter.
Fancy Madmen notation is

PH ⊂ P]P

madness pays off

Let us be silly and get the godel prize !
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Valiant Vazirani, isolation lemma [11AM]

Theorem
If you can solve problem when they have unique solution you can solve SAT
(up to some randomization)

Detecting unique solutions

- 0 solution→ says 0
- 1 solution→ says 1
- > 1 output garbage, anything.

Idea :
Add linear constraints (see prob. in Z n

2 ).
Dichotomy, one contraint→ Should divide the solution state by 2
turn linear constraints into extra clauses (silly but needed)
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Isolation Lemma (2)

Theorem (Isolation)

- S any set of Z n
2

- pick constraints Hi = {x | vi .x = 0} randomly,
- let S0 = S,Si+1 = Si ∩ Hi .

Then with probability P ≥ 1
4 we have ∃i , |Si | = 1.

So with positive probability once can construct a SAT instance that is stonger
(more constrained) than the original one and that admits a single solution.
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Toda proof 3

Sorry No Godel Prize for you !
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Let’s try something simpler

We may still do something for . . .

- simple Path, trees
- Matchings
- Polytopes

About Matchings ? Fun situation

Counting exactly Matching is
]P-complete [Valiant 6-AM/79]

One can approx count (and
generate) Matchings [Jerrum
21-AM/95]
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Permanent, One factor, Matchings

Definition (Permanent, determinant)

Perm(A) =
∑
π∈Sn

ai,π(i) Det(A) =
∑
π∈Sn

sign(π)ai,π(i)

Term of the sum = 0⇐⇒ some
edge (i , π(i)) does not exist.
Term of the sum = 1 if all the edges
(i , π(i)) exist
⇒ The permanent counts One
Factors of G
It also counts Matchings in [G,G].

1

2

3

4

5

1

2

3

4

1

5 2

3

4

5

Weigthed version : Instead of 1 we count Πe∈F w(e) for a factor (a matching)
F ⊂ E

Formal version : Multivariate Generating serie of the Matchings
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Proof Structure

Proof Organisation

- # Weigthed Matchings
regular reduction

⇐⇒ # Exact Covers by Triples
- # Weighted Perfect Matchings→ Exact couting for Weigthed Matchings
- Emulating integral weights.
- #Perfect Matchings int. weigths→ Can count with any weights.
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A small Gadget

Main property

Perm(G(x2, x2, x3)) =
1 + x1x2x3

3

No term with degrees
1,2→ ∀A ⊂ {x1, x2, x3}

→ ]{M ∈ Matching|M ∩
{e1,e2,e3} = A} = 0 unless
A = {x1, x2, x3} or A = ∅

The Gadget (uses negative
weigth)

1/6

1

1/6

1

11

−5/3

1/6

x3

x1

x2

Graph G(x1, x2, x3)
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Just Checking Perm(G(1,1,0).

1) M contains two edges,
two cases : −5

3 × 1 and
1
6 × 1 (tot. −9

6 )
2) M contains one edge (4
cases) : − 5

3 + 1 + 1 + 1
6

(tot. 3
6 )

3) M is empty 1 (tot. +1)
total contribution is zero
similarly:
P(1,1,1) = −5

3 + 1 + 1 = 1
3

−5/3

1/6

1

1/6

1

11

−5/3

x1

x2

x3

1/6

1

1/6

1

1/6

1

11

−5/3

1/6

1
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Consequence

Property

When we attach the gadget H with its 3 ends to a graph, computing
Perm(G + H) compute the “number” of matchings that either contain
{e1,e2,e3} or do not intersect it.

Gadgets behave like a triple

S: Instance of cover-with-triples ,
3m elements (ground set).
Triples and gadgets ( Bijection )
What do we count ? The Exact
covers ? No! We count
triple-disjoint partial cover

k disjoints triple (+stuff):
( 1

3

)k

Perm(H(S)) =
∑ N(k)

3k , N(k)
number of disjoint k covers.

Gadget

Gadget

Triple

Ground Set
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Getting ride of partial Covers

Add pending leaves to vertices of
the ground set.
Edge weight is −1⇒ Graph H ′(S)

We count now 0 for a partial Cover.
We still count 1

3m for a perfect cover.
−1

−1

−1 −1

1

−1

Gadget

Gadget

Triple

Ground Set
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Perm(H ′(S)) =
number of exact covers

3m
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Some More gadgets

Matching→ Perfect Matching

∀k We count each k
matching (A− k)!(B − k)!
times

B − k vertices

A − k Vertices

A − k are uncovered

A

k Matching

B − k are uncovered

Simulating Integral weigths

e was not used, 1 solution

e was used, k solutions.

At the end 4 bad weights x = 1
6 , y = 5

3 , z − 1 Polynomial on a bounded
number (k = 4) of variables, degree n (polynomial), n4 coefficients→
can be computed.
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Even couting Simple walk is Difficult

Unless P = NP
Assume we can approx. Generate Simple Walk
Amplify probability of long walks
→ Can Solve Hamilton cycle.

Proposition

Generating unbiased (even very approx) simple walk, or couting them (even
very badly) is NP-hard

Weaker reduction (to NP) but similar idea can work for much more problems.
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Chains for Trees
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General framework

Ideas
- Move randomly in the state space (form Use Markov Chains)
- Ensure that moves are fair (the station. distribution is uniform)
- Want to be random fast (Ensure Rapid-Mixing)

Theorem (Perron Frobenius + some Folks)

A stochastic matrix M admits a unique fixed point (eigenvector with
eigenvalue 1) and everything else decays fast. i.e if u.1 = 0 (noise), then
M tu → 0

More or less: eigenvalues 1 = λ1, λ2, . . . λn

|M t (u)− u0| ≤ (1− λ2)t

Where λ2 < 1 depends on the structure of the chain M.
State space S it converges in log |S|

log2(1−λ2(M))
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Limitation, Difficulties

Design a Good Enough Chain ...
Prove that it converges fast
No way to compute λ2 numerically
State Space is of exponential size
Works only for symmetric chains (but you design it)
Stupid condition (non bipartite), solved making chain Lazy, loop half of
the time

Typical Fake-chain

Pick |V |2 edges,
if they form a matching return it
else play again

Mathematically sound, return unbiased matching
Mixes slowly (loops forever)
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Bad Guy: Cycle

Totally random moves, takes θ(n2)
to get random (unbiased random
walk with t steps move away from
zero lie θ(

√
t).

actual time to mix is n2

2π2 .

Very bad expansion, 2
n

n/2

n/2

4/N

Good Girl: De Bruijn

Binary chains, length n, shift and
inject a new bit.
random moves, takes n to exactly
anywhere with probably 1

2n

actual time to perfectly mix is
log2 |S| = n.
Good expansion, ∼ 1

log2n

N/2

N/2

N/log N
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Why do Liner Algebra Matter
How does the discrepancy evolve ?

Look how non uniform is a distribution X → δ(X ) =
∑

e=(u,v)∈E |Xu −Xv |2

I an Incidence matrix of the graph
δ(X ) = |IX |2 = XI t IX
L = II t is the Laplacian of G
L = ∆(G)−M (M adjacency matrix, ∆ diagonal of the degrees)
G is regular : L = ∆Id − II t .
Normalisation : divide by ∆

1− λ2 is the largest eigenvalue of Id−M
∆ which is a SDP matrix.
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Link with congested cuts

X indicator vector for S : Xu = 1,u ∈ S,Xu = −1u ∈ S
→ I t IX = 4|[S,S]

Definition (isoperimetric constant, conductance)

φ = Min
[S,S]

|S|

High Conductance = Rpid Mixing

φ2

2
≤ 1− λ2 ≤ 2φ (Cheeger inequality)

To prove rapid-mixing→ Prove that conductance is high.
Hum ? Need to have an idea of the ??
still complicated
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The cannonical Path Idea

Define a cannonical path between any pair of states
Hum ? just a routing indeed
Get low congestion of the edges of G

Here low means logarithmic in the state space size |S| (i.e indeed
polynomial).
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A “fast” Chain for matchings

M curent solution, select e ∈ E Randomly.

1) No extremity covered→ M ∪ {e}
2) 1 extremity cov. (by f )
→ M \ {f} ∪ {e}

3) 2 extremities cov., e 6∈ M → M
4) e ∈ M → M \ {e}
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A good routing

Take the symetric difference of the
two matchings.
Order the vertices, induce order on
the components
Process by component : for each
start from the “first” vertex and do
the augmenting path thing.

Init M1

M2

COUNTING, GENERATING, SAMPLING : ALGORITHMIC POINT OF VIEW 33/36



Introduction
Monte Carlo Method

Formalism, ]P
Counting Solutions of Easy Problems ?

Approximate Counting of Matchings (Approx the permanent)

The Markov Chain Approach
A rapid mixing chain for matchings
Chains for Trees
Polytope Sampling, Convex Volume integration

Case of Trees

Cayley formula : labeled trees on Kn(comp.graph)

Induction is ∀e = (u, v)N(G) = N(G \ {e}) + N(G[u = v ]).
Generalizes as a determinant for general G.

Markov Chain
Potentialy Rapidly Mixing Chain : Take an edge and flip it (like when
you look for the Min Cost Spanning Tree)
Prob. Mixes fast (need to check)
But there is Better . . .

Super Smart Generator

Move in G randomly add edges to your tree unless it makes a cycle.

Mixes perfectly

COUNTING, GENERATING, SAMPLING : ALGORITHMIC POINT OF VIEW 34/36



Introduction
Monte Carlo Method

Formalism, ]P
Counting Solutions of Easy Problems ?

Approximate Counting of Matchings (Approx the permanent)

The Markov Chain Approach
A rapid mixing chain for matchings
Chains for Trees
Polytope Sampling, Convex Volume integration

Sampling from inside a Polytope (Lovasz & Simonovits)
We are given a “Nice” Polytope (the solutions of a linear program)

Random Walk inside P
discrete : Divide into cells, make a discrete randomwalk.
conti: x → Move randomly inside B(x , ρ) ∩ P

Complicated :

If ρ big we haven’t done anything
ρ small→ No move (mixes slowly)
Continuous space, uniformity ?

D

δ

Mixing time :

Poincaré Inequality

Up to some conditon, for a convex body diameter D :

Congestion ≤ Θ(
D2n
δ

)

COUNTING, GENERATING, SAMPLING : ALGORITHMIC POINT OF VIEW 35/36



Introduction
Monte Carlo Method

Formalism, ]P
Counting Solutions of Easy Problems ?

Approximate Counting of Matchings (Approx the permanent)

The Markov Chain Approach
A rapid mixing chain for matchings
Chains for Trees
Polytope Sampling, Convex Volume integration

Stuff to Remember (Ubiquitous Take Home Slide)

Very few things we can do practically
Markov chains may work, hard to construct

More ?
David Aldous Book (future book)
http://www.stat.berkeley.edu/~aldous/RWG/book.pdf

Lázló Lovász papers, monographies :
http://matmod.elte.hu/~lovasz/randwalk-papers.html

Marc Jerrum & Alistair Sinclair work.
Fan Chung book (spectral graph theory)
Karp & Luby for DNF (easy, just cond. expectation), coupling from the
Past (exact simulation),
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