A local bound on the chromatic number of a line graph

Andrew King

October 28, 2008

Reed conjectured that for any graph G, $\chi(G) \leq \lceil \frac{1}{2}(\Delta(G) + 1 + \omega(G) \rceil)$. This was proved for line graphs [1] not too long ago, then proved for quasi-line graphs and claw-free graphs very recently. I propose a stronger conjecture.

For a vertex v let $\omega(v)$ denote the size of the largest clique containing v. I conjecture that for any graph G, $\chi(G) \leq \max_v \lceil \frac{1}{2}(d(v) + 1 + \omega(v)) \rceil$. This was recently proved for claw-free graphs with $\alpha(G) \leq 3$. It seems like it will be easy to prove for all claw-free graphs if we can prove it for line graphs of multigraphs, and that is what I would like to do.

The natural approach is by minimum counterexample or induction. So the "Local Strenthening" of Reed's conjecture represents a strengthening of the induction hypothesis. It is sometimes easier to prove than Reed's conjecture and sometimes harder. The way we proved Reed's conjecture for line graphs is this: if the induction step does not go through easily, we can deduce that $\Delta(G)$ is at least $\frac{3}{2}\Delta(H) - 1$, where H is the underlying multigraph of the line graph G. We cannot say the same thing for a minimum counterexample to the Local Strengthening. That's where things stand now. It would lend a lot of credibility to the Local Strengthening if we can prove it for line graphs.

References

 A. King, B. Reed, and A. Vetta. An upper bound for the chromatic number of line graphs. European Journal of Combinatorics, 2007. doi:10.1016/j.ejc.2007.04.014.