Cooperative colouring

Frédéric Havet

November 2008

Let $\mathcal{G}=(G_1,\ldots,G_k)$ be a collection of graphs on the same vertex set V. A cooperative colouring of \mathcal{G} is a family of subsets I_i , $1 \leq i \leq k$ of V such that I_i is stable in G_i and $\bigcup i=1^kI_i=V$. According to a result of Haxell on independent system of representatives, if $k \geq 2\Delta(\mathcal{G})$ with $\Delta(\mathcal{G})=\max\Delta(G_i)$ then there is a cooperative colouring of \mathcal{G} . Aharoni, Haxell and Holzman conjectured that if $k \geq \Delta(\mathcal{G})+2$ then there is a cooperative colouring of \mathcal{G} . This would be tight as Holzman showed a collection G of k graphs of maximum degree at most k-1 without cooperative colouring. This conjecture is trivaillay true if $\Delta(\mathcal{G})+1$ of the G_i are the same. It is not difficult to see that it also holds if $\Delta(\mathcal{G})$ of them are the same. The next step would be to show that it holds if $\Delta(\mathcal{G})-1$ of the G_i are the same. In particular, if these $\Delta(\mathcal{G})-1$ graphs are union of cliques one need to show the following. If G_1, G_2 and G_3 are three graphs of degree at most k on the same vertex set V and (V_1,\ldots,V_m) is a partition of V such that $|V_i|=k+1$ for every $1\leq i\leq m$ then there exists I_1,I_2 and I_3 three independent sets of G_1,G_2 and G_3 respectively such that $|(I_1\cup I_2\cup I_3)\cap V_i|\geq 2$ for every $1\leq i\leq m$.