## Résumé de thèse

#### Ignasi Sau Valls

#### Directeurs: David Coudert, Jean-Claude Bermond

Mascotte - Boréon

12-13 mars 2009

Ignasi Sau Valls (Mascotte)

Résumé de thèse

12-13 mars 2009 1 / 28

A B F A B F

Plan de l'exposé (et de la thèse..)

- Partie I: Groupage de trafic
- Partie II: Sous-graphes avec contraintes sur le degré
- Partie III: Autres problèmes (plus ou moins reliés)
- Conclusions

## **Traffic Grooming**

Ignasi Sau Valls (Mascotte)

Résumé de thèse

12-13 mars 2009 3 / 28

### General idea

• WDM networks (Wavelength Division Multiplexing)

- 1 wavelength = up to 40 Gb/s
- 1 fiber = hundreds of wavelengths = Tb/s
- <u>Idea</u>: **Traffic grooming** consists in grouping low-speed traffic flows into higher speed streams

 $\longrightarrow$  we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
  - Efficient usage of bandwidth
  - Minimize network cost

A (10) A (10) A (10)

## General idea

• WDM networks (Wavelength Division Multiplexing)

- 1 wavelength = up to 40 Gb/s
- I fiber = hundreds of wavelengths = Tb/s
- <u>Idea</u>: **Traffic grooming** consists in grouping low-speed traffic flows into higher speed streams

 $\longrightarrow$  we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
  - Efficient usage of bandwidth
  - Minimize network cost

A (10) A (10)

## General idea

• WDM networks (Wavelength Division Multiplexing)

- 1 wavelength = up to 40 Gb/s
- I fiber = hundreds of wavelengths = Tb/s
- <u>Idea</u>: **Traffic grooming** consists in grouping low-speed traffic flows into higher speed streams

 $\longrightarrow$  we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
  - Efficient usage of bandwidth
  - Minimize network cost

## ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer)= adds-extracts a wavelength from a fiber
- **ADM** (Add/Drop Multiplexer)= add-extracts OC/STM (low speed signal) from a wavelength



 $\rightarrow$  we want to minimize the number of ADMs

| Ignasi Jau vans (mascolle) | Ignasi | Sau | Valls | (Mascotte) |
|----------------------------|--------|-----|-------|------------|
|----------------------------|--------|-----|-------|------------|

The Sec. 74

< 6 b

## ADM and OADM

Ionasi Sau Valls

- **OADM** (Optical Add/Drop Multiplexer)= adds-extracts a wavelength from a fiber
- **ADM** (Add/Drop Multiplexer)= add-extracts OC/STM (low speed signal) from a wavelength



→ we want to minimize the number of ADMs

|            |                 |  |      |          | _    |      |
|------------|-----------------|--|------|----------|------|------|
| (Mascotte) | Resume de these |  | 12-1 | 3 mars 2 | 2009 | 5/28 |

## Definitions

- **Request** (*i*, *j*): pair of nodes (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:



 Load of an arc on a wavelength: number of requests using this arc on this wavelength (≤ C)

## Definitions

- **Request** (*i*, *j*): pair of nodes (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:



 Load of an arc on a wavelength: number of requests using this arc on this wavelength (≤ C)

4 D N 4 B N 4 B N 4 B

## ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer)= adds-extracts a wavelength from a fiber
- ADM (Add/Drop Multiplexer)= add-extracts OC/STM (low speed signal) from a wavelength



 Idea: Use ADMs only at the endpoints of a request (lightpaths) to save as many ADMs as possible

Ignasi Sau Valls (Mascotte)

Résumé de thèse

## Model

#### Model:

| Topology                 | $\rightarrow$ | graph G                     |
|--------------------------|---------------|-----------------------------|
| Set of requests          | $\rightarrow$ | graph <i>R</i>              |
| Grooming factor          | $\rightarrow$ | integer C                   |
| Requests on a wavelength | $\rightarrow$ | edges of a subgraph of R    |
| ADM on a wavelength      | $\rightarrow$ | vertex of a subgraph of $R$ |

- An important case:  $G = \overrightarrow{C}_n$  (unidirectional ring)
- Typically, one considers symmetric requests

## Model

#### Model:

| Topology                 | $\rightarrow$ | graph G                   |
|--------------------------|---------------|---------------------------|
| Set of requests          | $\rightarrow$ | graph <i>R</i>            |
| Grooming factor          | $\rightarrow$ | integer C                 |
| Requests on a wavelength | $\rightarrow$ | edges of a subgraph of R  |
| ADM on a wavelength      | $\rightarrow$ | vertex of a subgraph of R |

• An important case:  $G = \overrightarrow{C}_n$  (unidirectional ring)

Typically, one considers symmetric requests

A (10) A (10) A (10)

## Model

#### Model:

| $\rightarrow$ | graph G                                                                                                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------|
| $\rightarrow$ | graph <i>R</i>                                                                                                        |
| $\rightarrow$ | integer C                                                                                                             |
| $\rightarrow$ | edges of a subgraph of R                                                                                              |
| $\rightarrow$ | vertex of a subgraph of R                                                                                             |
|               | $\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$ |

- An important case:  $G = \overrightarrow{C}_n$  (unidirectional ring)
- Typically, one considers symmetric requests

**A b** 

## Statement of the problem

| Traffic Groo | ming in Unidirectional Rings                                                                                                   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|
| Input        | A cycle $C_n$ on $n$ nodes (network);<br>An <i>undirected</i> graph $R$ on $n$ nodes (request set);<br>A grooming factor $C$ . |
| Output       | A partition of $E(R)$ into subgraphs $R_1, \ldots, R_W$ with $ E(R_i)  \le C$ , i=1,,W.                                        |

**Objective** Minimize  $\sum_{\omega=1}^{W} |V(R_{\omega})|$ .

э

Example: n = 4,  $R = K_4$ , and C = 3



Figure: Two valid partitions of  $K_4$  in a unidirectional ring for C = 3.

< 🗇 🕨

- Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*.
- Bidirectional rings
  With Jean-Claude Bermond and Xavier Mul
- 2-period traffic grooming in unidirectional rings With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi.
- Bounded degree request graph in unidirectional rings With *Xavier Muñoz* i *Zhentao Li*.
- Stars and trees...?

With Shmuel Zaks and Mordechai Shalom.

4 3 5 4 3

- Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*.
- Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz.

- 2-period traffic grooming in unidirectional rings With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi.
- Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li.
- Stars and trees...?

With Shmuel Zaks and Mordechai Shalom.

**BA 4 BA** 

- Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*.
- Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz.

- 2-period traffic grooming in unidirectional rings
  With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi.
- Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li.
- Stars and trees...?

With Shmuel Zaks and Mordechai Shalom.

**BAR 4 BA** 

- Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*.
- Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz.

- 2-period traffic grooming in unidirectional rings
  With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi.
- Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li.
- Stars and trees...?

With Shmuel Zaks and Mordechai Shalom.

**B** N A **B** N

- Hardness and approximation in rings and paths With Omid Amini and Stéphane Pérennes.
- Bidirectional rings

With Jean-Claude Bermond and Xavier Muñoz.

- 2-period traffic grooming in unidirectional rings With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi.
- Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li
- Stars and trees...?

With Shmuel Zaks and Mordechai Shalom.

## Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*

- The problem of finding the maximum number of edge-disjoint triangles in a tripartite graph is APX-hard.
- TRAFFIC GROOMING is APX-hard in rings and paths.
- Using a known algorithm for the *k*-DENSE SUBGRAPH problem, we provide an  $\mathcal{O}(n^{1/3} \log^2 n)$ -algorithm for any  $C \ge 1$ . This is the first approximation algorithm whose approximation guarantee and running times are independent of the grooming factor.

(*n* is the number of nodes of the network)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*

- The problem of finding the maximum number of edge-disjoint triangles in a tripartite graph is APX-hard.
- TRAFFIC GROOMING is APX-hard in rings and paths.
- Using a known algorithm for the *k*-DENSE SUBGRAPH problem, we provide an  $\mathcal{O}(n^{1/3} \log^2 n)$ -algorithm for any  $C \ge 1$ . This is the first approximation algorithm whose approximation guarantee and running times are independent of the grooming factor.

(*n* is the number of nodes of the network)

3

## Hardness and approximation in rings and paths With *Omid Amini* and *Stéphane Pérennes*

- The problem of finding the maximum number of edge-disjoint triangles in a tripartite graph is APX-hard.
- TRAFFIC GROOMING is APX-hard in rings and paths.
- Using a known algorithm for the *k*-DENSE SUBGRAPH problem, we provide an  $\mathcal{O}(n^{1/3} \log^2 n)$ -algorithm for any  $C \ge 1$ . This is the first approximation algorithm whose approximation guarantee and running times are independent of the grooming factor.

(n is the number of nodes of the network)

## **Bidirectional rings**

With Jean-Claude Bermond and Xavier Muñoz

- We consider the all-to-all case.
- Statement of the problem and general lower/upper bounds.
- Optimal solutions for some infinite families of values of *n*, *C*.

2-period traffic grooming in unidirectional rings With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi

- There is a subset of nodes that need more bandwidth ⇒ two grooming factors C, C', with 1 ≤ C' < C.</li>
- The problem consists in finding a partition of the edges of  $K_n$  that *embeds* another partition with different grooming factor.
- We solve the cases C = 4 and  $C' \in \{1, 2, 3\}$ .

-

不可能 不可能

2-period traffic grooming in unidirectional rings With Jean-Claude Bermond, Charles J. Colbourn, Lucia Gionfriddo and Gaetano Quattrocchi

- There is a subset of nodes that need more bandwidth ⇒ two grooming factors C, C', with 1 ≤ C' < C.</li>
- The problem consists in finding a partition of the edges of  $K_n$  that *embeds* another partition with different grooming factor.
- We solve the cases C = 4 and  $C' \in \{1, 2, 3\}$ .

3

4 E N 4 E N

## Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li

- We introduce a new model that allows the network to support dynamic traffic, as far as the maximum degree of the request graph is at most a constant Δ.
- The problem consists in finding the least integer M(C, Δ) such that the edges of any graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most M(C, Δ) subgraphs.
- We establish the value of *M*(*C*, △) for many more cases, leaving open only the case where △ ≥ 5 is odd, △ (mod 2*C*) is between 3 and *C* − 1, *C* ≥ 4, and the request graph does not contain a perfect matching.

ヘロト ヘアト ヘビト ヘビト

Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li

- We introduce a new model that allows the network to support dynamic traffic, as far as the maximum degree of the request graph is at most a constant Δ.
- The problem consists in finding the least integer M(C, Δ) such that the edges of any graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most M(C, Δ) subgraphs.
- We establish the value of *M*(*C*, △) for many more cases, leaving open only the case where △ ≥ 5 is odd, △ (mod 2*C*) is between 3 and *C* − 1, *C* ≥ 4, and the request graph does not contain a perfect matching.

Bounded degree request graph in unidirectional rings With Xavier Muñoz i Zhentao Li

- We introduce a new model that allows the network to support dynamic traffic, as far as the maximum degree of the request graph is at most a constant Δ.
- The problem consists in finding the least integer M(C, Δ) such that the edges of any graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges and each vertex appears in at most M(C, Δ) subgraphs.
- We establish the value of *M*(*C*, Δ) for many more cases, leaving open only the case where Δ ≥ 5 is odd, Δ (mod 2*C*) is between 3 and *C* − 1, *C* ≥ 4, and the request graph does not contain a perfect matching.

# Degree-constrained subgraph problems

モトィモト

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer *d*.

#### Output:

- ▶ a (*connected*) subgraph *H* of *G*,
- satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).

• Several problems in this broad family are classical widely studied NP-hard problems.

 They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

イロト イヨト イヨト イヨト

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- ▶ an integer *d*.

#### **Output:**

- ▶ a (*connected*) subgraph *H* of *G*,
- ► satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).

• Several problems in this broad family are classical widely studied NP-hard problems.

• They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- ▶ an integer d.

#### **Output:**

- ▶ a (*connected*) subgraph *H* of *G*,
- ▶ satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• A typical Degree-Constrained Subgraph Problem:

#### Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- ▶ an integer *d*.

#### **Output:**

- ▶ a (connected) subgraph H of G,
- ▶ satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

3

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- ▶ an integer *d*.

#### **Output:**

- ▶ a (connected) subgraph H of G,
- ▶ satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

3

#### • MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD<sub>d</sub>):

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ . **Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

• (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10) • (10)

#### • MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD<sub>d</sub>):

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ . **Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

4 **A** N A **B** N A **B** N

#### • MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD<sub>d</sub>):

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ . **Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

イロト イポト イラト イラト

#### • MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD<sub>d</sub>):

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ . **Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

4 3 5 4 3 5 5

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS<sub>*d*</sub>):

#### Input:

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\omega : \boldsymbol{E} \to \mathbb{R}^+$ .

#### Output:

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- ▶ is connected, and
- has maximum degree  $\leq d$ .
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS<sub>*d*</sub>):

#### Input:

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\omega : \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree**  $\leq d$ .
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).

• For fixed d = 2 it is the well known LONGEST PATH problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS<sub>*d*</sub>):

#### Input:

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\omega : \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree**  $\leq d$ .
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*

• If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).

• For fixed d = 2 it is the well known LONGEST PATH problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS<sub>*d*</sub>):

#### Input:

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\omega : \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree**  $\leq d$ .
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS<sub>*d*</sub>):

#### Input:

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\omega : \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- is connected, and
- has **maximum degree**  $\leq d$ .
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known **LONGEST PATH** problem.

Example with d = 3,  $\omega(e) = 1$  for all  $e \in E(G)$ 



э

Example with d = 3 (II)



æ

イロト イヨト イヨト イヨト

Example with d = 3 (III)



æ

イロト イヨト イヨト イヨト

Example with d = 3 (IV)



æ

・ロト ・ 四ト ・ ヨト ・ ヨト

- Parameterized complexity of MSMD<sub>d</sub> With *Omid Amini* and *Saket Saurabh*.
- Hardness and approximation of degree-constrained subgraph problems

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh.

 Subexponential parameterized algorithms for bounded-degree connected subgraph problems on planar graphs
 With *Dimitrios M. Thilikos*.

 Non-crossing partitions and dynamic programming in graphs on surfaces

With Dimitrios M. Thilikos and Juanjo Rué.

- Parameterized complexity of MSMD<sub>d</sub>
  With Omid Amini and Saket Saurabh.
- Hardness and approximation of degree-constrained subgraph problems

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh.

 Subexponential parameterized algorithms for bounded-degree connected subgraph problems on planar graphs
 With *Dimitrios M. Thilikos*.

 Non-crossing partitions and dynamic programming in graphs on surfaces

With Dimitrios M. Thilikos and Juanjo Rué.

3

- Parameterized complexity of MSMD<sub>d</sub>
  With Omid Amini and Saket Saurabh.
- Hardness and approximation of degree-constrained subgraph problems

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh.

 Subexponential parameterized algorithms for bounded-degree connected subgraph problems on planar graphs
 With *Dimitrios M. Thilikos*.

 Non-crossing partitions and dynamic programming in graphs on surfaces

With Dimitrios M. Thilikos and Juanjo Rué.

Ignasi Sau Valls (Mascotte)

- Parameterized complexity of MSMD<sub>d</sub>
  With Omid Amini and Saket Saurabh.
- Hardness and approximation of degree-constrained subgraph problems

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh.

- Subexponential parameterized algorithms for bounded-degree connected subgraph problems on planar graphs
   With *Dimitrios M. Thilikos*.
- Non-crossing partitions and dynamic programming in graphs on surfaces

With Dimitrios M. Thilikos and Juanjo Rué.

Ignasi Sau Valls (Mascotte)

# **Other problems**

Ignasi Sau Valls (Mascotte)

Résumé de thèse

12-13 mars 2009 25 / 28

э

4 3 > 4 3

#### • Packet routing problems in plane grids

- Permutation routing in triangular grids
  With Janez Zerovnik.
- (l, k)-routing in plane grids
  With Omid Amini, Florian Huc and Janez Zerovnii

#### • Tolerance graphs

- New intersection model and improved coloring and maximum clique algorithms
  - With George Mertzios and Shmuel Zaks.
- The recognition of tolerance and bounded tolerance graphs is NP-complete

With George Mertzios and Shmuel Zaks.

#### • Packet routing problems in plane grids

- Permutation routing in triangular grids With Janez Zerovnik.
- (l, k)-routing in plane grids
  With Omid Amini, Florian Huc and Janez Zerovnik.

#### Tolerance graphs

- New intersection model and improved coloring and maximum clique algorithms
  - With George Mertzios and Shmuel Zaks.
- The recognition of tolerance and bounded tolerance graphs is NP-complete

With George Mertzios and Shmuel Zaks.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### • Packet routing problems in plane grids

- Permutation routing in triangular grids With Janez Zerovnik.
- (l, k)-routing in plane grids
  With Omid Amini, Florian Huc and Janez Zerovnik.

#### Tolerance graphs

New intersection model and improved coloring and maximum clique algorithms

With George Mertzios and Shmuel Zaks.

 The recognition of tolerance and bounded tolerance graphs is NP-complete

With George Mertzios and Shmuel Zaks.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### • Packet routing problems in plane grids

- Permutation routing in triangular grids With Janez Zerovnik.
- (l, k)-routing in plane grids
  With Omid Amini, Florian Huc and Janez Zerovnik.

#### Tolerance graphs

New intersection model and improved coloring and maximum clique algorithms

With George Mertzios and Shmuel Zaks.

 The recognition of tolerance and bounded tolerance graphs is NP-complete

With George Mertzios and Shmuel Zaks.

#### Packet routing problems in plane grids

- Permutation routing in triangular grids With Janez Zerovnik.
- (l, k)-routing in plane grids
  With Omid Amini, Florian Huc and Janez Zerovnik.

#### Tolerance graphs

New intersection model and improved coloring and maximum clique algorithms

With George Mertzios and Shmuel Zaks.

 The recognition of tolerance and bounded tolerance graphs is NP-complete

With George Mertzios and Shmuel Zaks.

4 E N 4 E N

#### • Tunnels in GMPLS networks

The case of the path

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes, Hervé Rivano and Fernando Solano.

Hardness and approximation in general networks

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes and Fernando Solano.

• Self-duality of branchwidth in graphs of bounded genus With *Dimitrios M. Thilikos.* 

 Edge-simple circuits through 10 ordered vertices in square grids

With David Coudert and Frédéric Giroire.

Weighted coloring in P<sub>4</sub>-sparse graphs
 With Julio-Cesar Araujo and Claudia Linhares-Sales

#### • Tunnels in GMPLS networks

The case of the path

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes, Hervé Rivano and Fernando Solano.

Hardness and approximation in general networks

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes and Fernando Solano.

- Self-duality of branchwidth in graphs of bounded genus With *Dimitrios M. Thilikos*.
- Edge-simple circuits through 10 ordered vertices in square grids

With David Coudert and Frédéric Giroire.

• Weighted coloring in P<sub>4</sub>-sparse graphs With Julio-Cesar Araujo and Claudia Linhares-Sales

#### • Tunnels in GMPLS networks

The case of the path

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes, Hervé Rivano and Fernando Solano.

Hardness and approximation in general networks

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes and Fernando Solano.

• Self-duality of branchwidth in graphs of bounded genus With *Dimitrios M. Thilikos*.

Edge-simple circuits through 10 ordered vertices in square grids

With David Coudert and Frédéric Giroire.

• Weighted coloring in *P*<sub>4</sub>-sparse graphs

With Julio-Cesar Araujo and Claudia Linhares-Sales

#### • Tunnels in GMPLS networks

The case of the path

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes, Hervé Rivano and Fernando Solano.

Hardness and approximation in general networks

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes and Fernando Solano.

• Self-duality of branchwidth in graphs of bounded genus With *Dimitrios M. Thilikos*.

Edge-simple circuits through 10 ordered vertices in square grids

With David Coudert and Frédéric Giroire.

• Weighted coloring in *P*<sub>4</sub>-sparse graphs

With Julio-Cesar Araujo and Claudia Linhares-Sales.

#### • Tunnels in GMPLS networks

The case of the path

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes, Hervé Rivano and Fernando Solano.

Hardness and approximation in general networks

With Jean-Claude Bermond, David Coudert, Joanna Moulierac, Stéphane Pérennes and Fernando Solano.

• Self-duality of branchwidth in graphs of bounded genus With *Dimitrios M. Thilikos*.

Edge-simple circuits through 10 ordered vertices in square grids

With David Coudert and Frédéric Giroire.

• Weighted coloring in *P*<sub>4</sub>-sparse graphs

With Julio-Cesar Araujo and Claudia Linhares-Sales.

#### Conclusions

#### • Expected defense: October 2009.

• And after...??

Ignasi Sau Valls (Mascotte)

э

#### Conclusions

• Expected defense: October 2009.

• And after...??

э