Introduction	
Linear Programming Aproach	
Incremental Protocols for Gathering in the Path	
Sensor Networks: Gathering without buffer	
Round Weighting	
Congestion in Wireless Ad-Hoc Sensor Networks	

Thesis

Patricio Reyes

PROJET MASCOTTE - INRIA/I3S(CNRS-UNSA)

March 12, 2009

<ロ> (四) (四) (三) (三)

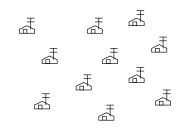
Linear Programming Aproach Incremental Protocols for Gathering in the Path Sensor Networks: Gathering without buffer Round Weighting Congestion in Wireless Ad-Hoc Sensor Networks

Table of Contents

1 Introduction

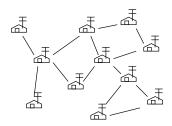
- 2 Linear Programming Aproach
- **3** Incremental Protocols for Gathering in the Path
- 4 Sensor Networks: Gathering without buffer
- 5 Round Weighting
- 6 Congestion in Wireless Ad-Hoc Sensor Networks

Linear Programming Aproach Incremental Protocols for Gathering in the Path Sensor Networks: Gathering without buffer Round Weighting Congestion in Wireless Ad-Hoc Sensor Networks


Motivation

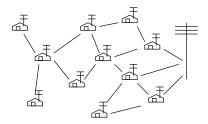
・ロン ・回と ・ヨン ・ヨン

Linear Programming Aproach Incremental Protocols for Gathering in the Path Sensor Networks: Gathering without buffer Round Weighting Congestion in Wireless Ad-Hoc Sensor Networks


Motivation

<ロ> (四) (四) (三) (三)

Linear Programming Aproach Incremental Protocols for Gathering in the Path Sensor Networks: Gathering without buffer Round Weighting Congestion in Wireless Ad-Hoc Sensor Networks


Motivation

イロト イヨト イヨト

Linear Programming Aproach Incremental Protocols for Gathering in the Path Sensor Networks: Gathering without buffer Round Weighting Congestion in Wireless Ad-Hoc Sensor Networks

Motivation

イロト イヨト イヨト

Linear Programming Aproach Incremental Protocols for Gathering in the Path Sensor Networks: Gathering without buffer Round Weighting Congestion in Wireless Ad-Hoc Sensor Networks

Gathering Problem


- The nodes have messages.
- There is a special node called gateway.
- Messages must be collected by the gateway.

イロト イヨト イヨト

- ∢ ≣ →

Interference

- All the nodes cannot transmit at the same time!
- Round: A set of simultaneous transmissions.

B >

Table of Contents

Introduction

- 2 Linear Programming Aproach
- 3 Incremental Protocols for Gathering in the Path
- 4 Sensor Networks: Gathering without buffer
- 6 Round Weighting
- 6 Congestion in Wireless Ad-Hoc Sensor Networks

Linear Program

- $\bullet \mbox{ messages} \rightarrow \mbox{flow demand}$
- constraints
 - Flow conservation
 - interference

<ロ> (四) (四) (三) (三)

Table of Contents

Introduction

2 Linear Programming Aproach

Incremental Protocols for Gathering in the Path

- 4 Sensor Networks: Gathering without buffer
- 5 Round Weighting
- 6 Congestion in Wireless Ad-Hoc Sensor Networks

Interference Model

- oriented interference. $a \leftarrow b$ $u \leftarrow v$
- d_T Transmission distance
- $d_l > d_T$ Interference distance

<ロ> (四) (四) (三) (三)

Example

Figure: A gathering protocol in the path when $d_T = 1$, $d_I = 2$ and every vertex has one message to send to the sink t = 0.

<ロ> (日) (日) (日) (日) (日)

- In general: NP-complete
- Admits 4-aproximation [JCB, Ralf, Nelson, Stephanne]
- Good protocols for specific cases.

イロト イヨト イヨト

< ∃⇒

Gathering in the path

- Path P_n : n-1 nodes + BS
- BS at the end of the path
- Interesting case: path P_n , with $n > d_I + d_T$

《曰》 《圖》 《臣》 《臣》

Results

Theorem

• Case: BS in an end vertex, unitary case

• Calculate the optimal protocol is poly in the length of the path.

《曰》 《圖》 《臣》 《臣》

Idea of the proof

• Simple Protocols

- Any call transmit a message
- Protocol only performs forward calls
- Only looong calls into the zone $BS \cdots d_I$ (size d_T)

イロト イヨト イヨト

- < E →

Idea of the proof

Lemma

• Given a simple protocol A for $P_n \rightarrow$ protocol B for P_{n+1} ?

• For
$$d_T > 0$$
 and $d_I = pd_T + q$
• $|A| = |B| + \begin{cases} p+1 \\ p+2 \end{cases}$

<ロ> (四) (四) (三) (三)

Example incremental protocol

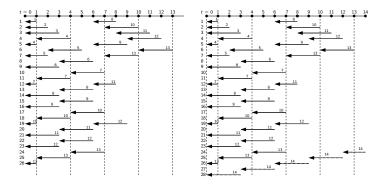


Figure: Incremental Protocol for P_{15} starting from P_{14} . $d_I = 4$, $d_T = 3$. p = 1

<ロ> (日) (日) (日) (日) (日)

Idea of the proof

- For P_{n_0} , with $n_0 = d_I$, compute all the posibilities of SIMPLE protocols
- We increment the protocol from P_{n_0} to P_{n_0+1} and so on...

《曰》 《圖》 《臣》 《臣》

Table of Contents

Introduction

- 2 Linear Programming Aproach
- Incremental Protocols for Gathering in the Path
- 4 Sensor Networks: Gathering without buffer
- 5 Round Weighting

6 Congestion in Wireless Ad-Hoc Sensor Networks

• Goal: Collect information into the BS

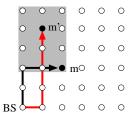
- 2D-grid with *BS* in (0,0).
- subset of nodes with messages.
- no buffering ← hot-potato routing.

Hardness

- NP-hard for general graphs
 - 2-approximation [Florens et al.]
- Best algo known for grids: 3/2-approximation [Revah & Segal]
- Our result: +1-approximation

イロト イヨト イヨト

Lower Bound


Lemma (Florens et al)

 $LB = \max_{min\mathcal{M}} d(m, BS) + |\{u \in \mathcal{M} \mid d(u, BS) \ge d(m, BS)\}| - 1$

イロン イヨン イヨン イヨン

- Gathering ← Personalized Broadcasting.
- Start the process from the furthest messages.
- Avoid collisions between two consecutive messages

イロト イポト イヨト イヨト

Possibilities

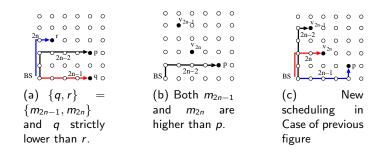


Figure: 2n - 2 messages have been scheduled, finishing with the one to $x \in \{v_{2n-2}, v_{2n-3}\}$. When the next two messages must be scheduled, two cases occur according to the position of v_{2n-1} and v_{2n} relatively to x. In the figures, an arrow with label i represents the route of the i^{th} message.

イロト イポト イヨト イヨト

Table of Contents

Introduction

- 2 Linear Programming Aproach
- 3 Incremental Protocols for Gathering in the Path
- 4 Sensor Networks: Gathering without buffer

6 Round Weighting

6 Congestion in Wireless Ad-Hoc Sensor Networks

Round Weighting

- We are only interested in the number of rounds needed, not in the order.
- To use a fraction of a round is allowed.

<ロ> (四) (四) (三) (三)

Table of Contents

Introduction

- 2 Linear Programming Aproach
- 3 Incremental Protocols for Gathering in the Path
- 4 Sensor Networks: Gathering without buffer
- 5 Round Weighting

6 Congestion in Wireless Ad-Hoc Sensor Networks

- Ralf Klasing, Nelson Morales, and Stéphane Pérennes.
 On the complexity of bandwidth allocation in radio networks.
 Theoretical Computer Science, 2008.
 To appear.
- Cristiana Gomes, Stéphane Pérennes, Patricio Reyes and Hervé Rivano.
 Bandwidth allocation in radio grid networks.

Algotel, 2008.

《曰》 《圖》 《臣》 《臣》