Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks

David Coudert, Napoleão Nepomuceno, Hervé Rivano

Projet Mascotte, I3S(CNRS-UNSA) INRIA

Réunion Mascotte, March 2009
Microwave radio links have become a common preference over leased lines to build broadband communication networks.

- Economical equipment cost
- Easy installation
- Disaster resiliency
- High-bandwidth applications
- Very bursty traffic behaviors
- Tremendous rise of energy

How to reduce operating costs?
Microwave radio links have become a common preference over leased lines to build broadband communication networks.

- Economical equipment cost
- Easy installation
- Disaster resiliency
- High-bandwidth applications
- Very bursty traffic behaviors
- Tremendous rise of energy

How to reduce operating costs?
Capacity & energy cost

Theoretical capacity:

\[C[\text{bits/s}] = B[\text{Hz}] \times \log_2 \left(1 + \frac{S[W]}{N[W]} \right) \]

Practical bitrate:

\[C[\text{bits/s}] = B[\text{Hz}] \times \log_2 (m), \quad m = 2^n \]

In practice, as the modulation scheme changes to accommodate higher data rates, the SNR requirement increases to preserve the BER performance!
Capacity & energy cost

Theoretical capacity:

\[C[\text{bits/s}] = B[\text{Hz}] \times \log_2\left(1 + \frac{S[W]}{N[W]}\right) \]

Practical bitrate:

\[C[\text{bits/s}] = B[\text{Hz}] \times \log_2(m), \quad m = 2^n \]

In practice, as the modulation scheme changes to accommodate higher data rates, the SNR requirement increases to preserve the BER performance!
Power-efficient configuration

- Modulation scheme
- Transmission power level

Energy cost

- Step increasing energy cost functions on the links

For each modulation scheme, only the most right point of the curve represents a power-efficient configuration!
Power-efficient configuration

- Modulation scheme
- Transmission power level

Energy cost
- Step increasing energy cost functions on the links

For each modulation scheme, only the most right point of the curve represents a power-efficient configuration!
Problem description

Network’s topology
- Nodes: radio base stations
- Arcs: radio links

Power-efficient configurations
- Link’s capacity
- Link’s energy cost

Traffic requirements

The network’s configuration and flows that minimize the total energy expenditure, while handling all the traffic requirements.
Problem description

Network’s topology
- Nodes: radio base stations
- Arcs: radio links

Power-efficient configurations
- Link’s capacity
- Link’s energy cost

Traffic requirements

The network’s configuration and flows that minimize the total energy expenditure, while handling all the traffic requirements.
Mathematical Models

Exact formulation
- MCMCF with step increasing cost functions
- Large scale integer linear programs
- Very hard to solve in practice
- Optimal feasible solutions
Mathematical Models

Model relaxation

- MCMCF with piecewise linear convex cost functions
- Large scale continuous linear programs
- Lower bounds on the energy consumption
- Feasible solutions based on the fractional optimum

Heuristic that assigns the lowest-level power-efficient configuration capable of routing the network’s flows.
Mathematical Models

Model relaxation

- MCMCF with piecewise linear convex cost functions
- Large scale continuous linear programs
- Lower bounds on the energy consumption
- Feasible solutions based on the fractional optimum

Heuristic that assigns the lowest-level power-efficient configuration capable of routing the network’s flows.
Simulation parameters

- **Channel Bandwidth**: 28 MHz
- **Operated Frequency**: 13 GHz
- **Antenna Gain**: 30 dBi
- **Receiver Sensitivity**: -90 dBm
- **Distance**: 1000 m

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Power</th>
<th>Capacity</th>
<th>Marginal Cost</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>0.88 mW</td>
<td>28 Mbps</td>
<td>0.031 mW</td>
<td>14.21 dB</td>
</tr>
<tr>
<td>16-QAM</td>
<td>4.20 mW</td>
<td>112 Mbps</td>
<td>0.040 mW</td>
<td>21.02 dB</td>
</tr>
<tr>
<td>32-QAM</td>
<td>11.10 mW</td>
<td>140 Mbps</td>
<td>0.247 mW</td>
<td>25.24 dB</td>
</tr>
<tr>
<td>64-QAM</td>
<td>18.47 mW</td>
<td>168 Mbps</td>
<td>0.263 mW</td>
<td>27.45 dB</td>
</tr>
<tr>
<td>128-QAM</td>
<td>42.81 mW</td>
<td>196 Mbps</td>
<td>0.869 mW</td>
<td>31.10 dB</td>
</tr>
<tr>
<td>256-QAM</td>
<td>79.34 mW</td>
<td>224 Mbps</td>
<td>1.305 mW</td>
<td>33.78 dB</td>
</tr>
</tbody>
</table>
Simulation parameters

- Channel Bandwidth: 28 MHz
- Operated Frequency: 13 GHz
- Antenna Gain: 30 dBi
- Receiver Sensitivity: -90 dBm
- Distance: 1000 m

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Power</th>
<th>Capacity</th>
<th>Marginal Cost</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>0.88 mW</td>
<td>28 Mbps</td>
<td>0.031 mW</td>
<td>14.21 dB</td>
</tr>
<tr>
<td>16-QAM</td>
<td>4.20 mW</td>
<td>112 Mbps</td>
<td>0.040 mW</td>
<td>21.02 dB</td>
</tr>
<tr>
<td>32-QAM</td>
<td>11.10 mW</td>
<td>140 Mbps</td>
<td>0.247 mW</td>
<td>25.24 dB</td>
</tr>
<tr>
<td>64-QAM</td>
<td>18.47 mW</td>
<td>168 Mbps</td>
<td>0.263 mW</td>
<td>27.45 dB</td>
</tr>
<tr>
<td>128-QAM</td>
<td>42.81 mW</td>
<td>196 Mbps</td>
<td>0.869 mW</td>
<td>31.10 dB</td>
</tr>
<tr>
<td>256-QAM</td>
<td>79.34 mW</td>
<td>224 Mbps</td>
<td>1.305 mW</td>
<td>33.78 dB</td>
</tr>
</tbody>
</table>
Computational results

Grid 5 × 5

Grid 10 × 10

Heuristic performs well and allows solving instances that are not reachable with the exact model.
Heuristic performs well and allows solving instances that are not reachable with the exact model.
Conclusion & future work

Joint optimization of data routing and radio configuration

- An exact mathematical formulation
- A model relaxation
 - Lower bounds on the energy consumption
 - Heuristic feasible solutions

Future work

- More realistic scenarios
- Alternative relaxations and heuristics
- Decrease the gap to the exact solution
Merci !
Computational results

Grid 5 × 5

Grid 10 × 10