## Joint Optimization of Routing and Radio Configuration in Fixed Wireless Networks

David Coudert, Napoleão Nepomuceno, Hervé Rivano

Projet Mascotte, I3S(CNRS-UNSA) INRIA

Réunion Mascotte, March 2009



D. Coudert, N. Nepomuceno, H. Rivano

## Context

**Microwave radio links** have become a common preference over leased lines to build broadband communication networks.

- Economical equipment cost
- Easy installation
- Disaster resiliency
- High-bandwidth applications
- Very bursty traffic behaviors
- Tremendous rise of energy



## How to reduce operating costs ?

## Context

**Microwave radio links** have become a common preference over leased lines to build broadband communication networks.

- Economical equipment cost
- Easy installation
- Disaster resiliency
- High-bandwidth applications
- Very bursty traffic behaviors
- Tremendous rise of energy



## How to reduce operating costs ?

## Capacity & energy cost

#### Theoretical capacity:

$$C[bits/s] = B[Hz] * log_2(1 + \frac{S[W]}{N[W]})$$

Pratical bitrate:

$$C[bits/s] = B[Hz] * log_2(m), m = 2^n$$

In practice, as the modulation scheme changes to accommodate higher data rates, the SNR requirement increases to preserve the BER performance !



| 16-QAM |      |           | 64-QAM    |   |   |   |   |   |   |   |   |
|--------|------|-----------|-----------|---|---|---|---|---|---|---|---|
| 0000   | 0100 | 1100      | 1000      | • | • | • | ٠ | • | • | • | • |
| • •    | •••  | •         | ٠         | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |   |
| 0001   | 0101 | 1101      | 1001      | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
| •      | ·    |           |           | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
| 0011   | 0111 | 1111      | 1011      | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
|        |      |           |           | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
| 0010   | 0110 | 0110 1110 | 1010<br>• | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
|        |      |           |           | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |

D. Coudert, N. Nepomuceno, H. Rivano

## Capacity & energy cost

#### Theoretical capacity:

$$C[bits/s] = B[Hz] * log_2(1 + \frac{S[W]}{N[W]})$$

Pratical bitrate:

$$C[bits/s] = B[Hz] * log_2(m), m = 2^n$$

In practice, as the modulation scheme changes to accommodate higher data rates, the SNR requirement increases to preserve the BER performance !



| 16-QAM |           |      | 64-QAM |   |   |   |   |   |   |   |   |
|--------|-----------|------|--------|---|---|---|---|---|---|---|---|
| 0000   | 0100      | 1100 | 1000   | • | • | • | • | • | • | • | ٠ |
| •      | •         | •    | •      | ٠ | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |
| 0001   | 0001 0101 | 1101 | 1001   | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
| •      |           | •    |        | ٠ | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |
| 0011   | 0111      | 1111 | 1011   | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |
| •      | •         |      |        | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ |
| 0010   | 0110      | 1110 | 1010   | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |
| •      | •         | •    | •      | • | ٠ | ٠ | ٠ | • | ٠ | ٠ | ٠ |

## Power-efficient configuration

#### Power-efficient configuration

- Modulation scheme
- Transmission power level

#### Energy cost

• Step increasing energy cost functions on the links

For each modulation scheme, only the most right point of the curve represents a power-efficient configuration !





## Power-efficient configuration

#### Power-efficient configuration

- Modulation scheme
- Transmission power level

#### Energy cost

• Step increasing energy cost functions on the links

For each modulation scheme, only the most right point of the curve represents a power-efficient configuration !





## Problem description

#### Network's topology

- Nodes: radio base stations
- Arcs: radio links

#### Power-efficient configurations

- Link's capacity
- Link's energy cost

#### Traffic requirements



The network's configuration and flows that minimize the total energy expenditure, while handling all the traffic requirements.

## Problem description

#### Network's topology

- Nodes: radio base stations
- Arcs: radio links

#### Power-efficient configurations

- Link's capacity
- Link's energy cost

Traffic requirements



The network's configuration and flows that minimize the total energy expenditure, while handling all the traffic requirements.

## Mathematical Models

#### Exact formulation

- MCMCF with step increasing cost functions
- Large scale integer linear programs
- Very hard to solve in practice
- Optimal feasible solutions



## Mathematical Models

#### Model relaxation

- MCMCF with piecewise linear convex cost functions
- Large scale continuous linear programs
- Lower bounds on the energy consumption
- Feasible solutions based on the fractional optimum



Heuristic that assigns the lowest-level power-efficient configuration capable of routing the network's flows.

## Mathematical Models

#### Model relaxation

- MCMCF with piecewise linear convex cost functions
- Large scale continuous linear programs
- Lower bounds on the energy consumption
- Feasible solutions based on the fractional optimum





### Simulation parameters

- Channel Bandwidth: 28 MHz
- Operated Frequency: 13 GHz
- Antenna Gain: 30 dBi
- Receiver Sensitivity: -90 dBm
- Distance: 1000 m

| Modulation | Power    | Capacity | Marginal Cost | SNR      |
|------------|----------|----------|---------------|----------|
| QPSK       | 0.88 mW  | 28 Mbps  | 0.031 mW      | 14.21 dB |
| 16-QAM     | 4.20 mW  | 112 Mbps | 0.040 mW      | 21.02 dB |
| 32-QAM     | 11.10 mW | 140 Mbps | 0.247 mW      | 25.24 dB |
| 64-QAM     | 18.47 mW | 168 Mbps | 0.263 mW      | 27.45 dB |
| 128-QAM    | 42.81 mW | 196 Mbps | 0.869 mW      | 31.10 dB |
| 256-QAM    | 79.34 mW | 224 Mbps | 1.305 mW      | 33.78 dB |

### Simulation parameters

- Channel Bandwidth: 28 MHz
- Operated Frequency: 13 GHz
- Antenna Gain: 30 dBi
- Receiver Sensitivity: -90 dBm
- Distance: 1000 m

| Modulation | Power    | Capacity | Marginal Cost | SNR      |
|------------|----------|----------|---------------|----------|
| QPSK       | 0.88 mW  | 28 Mbps  | 0.031 mW      | 14.21 dB |
| 16-QAM     | 4.20 mW  | 112 Mbps | 0.040 mW      | 21.02 dB |
| 32-QAM     | 11.10 mW | 140 Mbps | 0.247 mW      | 25.24 dB |
| 64-QAM     | 18.47 mW | 168 Mbps | 0.263 mW      | 27.45 dB |
| 128-QAM    | 42.81 mW | 196 Mbps | 0.869 mW      | 31.10 dB |
| 256-QAM    | 79.34 mW | 224 Mbps | 1.305 mW      | 33.78 dB |

## Computational results



Heuristic performs well and allows solving instances that are not reachable with the exact model.

D. Coudert, N. Nepomuceno, H. Rivano

## Computational results



## Heuristic performs well and allows solving instances that are not reachable with the exact model.

D. Coudert, N. Nepomuceno, H. Rivano

## Conclusion & future work

#### Joint optimization of data routing and radio configuration

- An exact mathematical formulation
- A model relaxation
  - Lower bounds on the energy consumption
  - Heuristic feasible solutions

#### Future work

- More realistic scenarios
- Alternative relaxations and heuristics
- Decrease the gap to the exact solution

# Merci !

D. Coudert, N. Nepomuceno, H. Rivano

## Computational results

