

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche SOPHIA ANTIPOLIS - MÉDITERRANÉE

Network Provisioning for High Speed Vehicles Moving along Predictable Routes Part 1: Spiderman Handover

MASCOT

Join Project Team

INRIA-CNRS-UNSA. Sophia Antipolis. France

Juan-Carlos Maureira Diego Dujovne Olivier Dalle

Le Boréon – March 2009

Motivation

- Provide continuous network connectivity to highspeed mobiles (>150km/h)
 - Avoid disruptions in connectivity when handover from one AP to another.
 - Hide the handover time.
 - Simple and non-intrusive.
 - All done in layer 2.
 - Transparent for in-motion devices and the infrastructure network.
 - Fail-Tolerant and self-configured
 - Easy to manage (at least from the configuration point of view)
 - AP failures.

Our Proposal

- New Handover algorithm
 - Exploit two-radio hardware in order to hide handover.
 - Gratuitous ARP loop to ensure handover success.
- Wireless Bridge with Handover Capabilities
 - Keep the link and topology reconfigurations in layer 2.
- Wireless Switch Access Point.
 - The same as a regular layer 2 switch (L2 routing), but instead wired ports, we have wireless ports (associations).

Spiderman Device

Spiderman Simulation's Results

Simulation scenario of train trip with 50 on-board and 50 on-ground stations. 100 flows (2 each one (ICMP and UDP CBR). Train speed from 10 m/s up-to 70 m/s

ICMP Ping between on-board and on-ground stations

Spiderman Simulation's Results

Simulation scenario of train trip with 50 on-board and 50 on-ground stations. 100 flows (2 each one (ICMP and UDP CBR). Train speed from 10 m/s up-to 70 m/s

On going work

- Formalism
 - Found the maximal useful time (td).
 - Evaluate the *InputQueue* behavior.
- Simulation
 - Comparison against ways to do the same thing.
 - i.e. One radio simple client
 - Evaluate the handover algorithm with background traffic (inner city scenarios)
 - Generating realistic 802.11 interferences (background traffic) based on real measurements [DDM09]

On going work

- Experimentation
 - Build a testbed for development
 - Record real traces of received signal strength to evaluate the algorithm in static testbed.
 - Evaluate handover and connectivity provisioning on low-speed scenario.
 - Up to 80 km/h
 - Evaluate handover and connectivity provisioning on high-speed scenario.
 - Up to 180 km/h
 - Dream about to test it at 300 km/h

Formalism

Network Provisioning for High Speed Vehicles Moving along Predictable Routes Part 2: Infrastructure network

Further work

- Evaluate a mesh protocol considering:
 - Lineal topology
 - Gateways (Sinks, whatever) each 50 or 100 mesh nodes.
- OSLR (Batman?)
- Develop a proprietary protocol designed for linear topologies?
- Simulation
 - Simulate huge mesh networks (up to 4000 mesh nodes)
 - Future Event Set improvements?
 - Parallel/Distributed Simulation?