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The Round Weighting Problem !

Definition:
@ Joint d-distance weighted edge coloring and routing problem.

o Input:

@ Network graph G (sources and destinations),
o Routers bandwidth demands (units/W),
o Interference distance d.

@ Output: a routing (edge weights with flow conservation) that
requires the minimum quantity of colors W (time units).

1Klasing,Perennes,MoraIes

C. Gomes Mascotte'09

2/33



The Round Weighting Problem

Objective: Minimize the weight of the rounds covering the routing.
Round: a collection of links that can be simultaneously activated
in the network, for example d =1 (matching in G) or d =2
(induced matching in G).
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The Round Weighting Problem

Network Characteristics

@ Continuous traffic;

@ Time division multiple access (TDMA).
Specificity of our case

@ Binary interference model (any two links either interfere with
each other, or they can be active simultaneously, e.g. Rounds
= induced matchings);

@ Convergent traffic;
@ Application: Wireless Mesh Network;

@ Fractional Flow.
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Resolution Methods
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Column Generation (CG)

CG is used to avoid dealing with the whole exponential set of
rounds.

RWP Decomposition 2:
@ Master problem: Routing problem (polynomial);

@ Sub-problem: Maximum weighted round problem (reduced to
the max. weighted independent set).

%based on Zhang et al [ZWZLO05]
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Column Generation (CG)

Mathematical Formulation 3
Master problem: Routing problem
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i€V, /(i,j)EE keV/(j,k)eE
S = S ZONijEE
rerR vev,

Sub-problem: Maximum weighted round problem

max E : (i J) Y(i )

(ij)eE

ugi jy + U(k’/) 1+ F (Ij V(I J) €E V(k /) cE

*Implementation: AMPL (script), CPLEX (solver)
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Column Generation and Multi-objective Analysis *

Minimize the communication time (RWP objective)
@ maximizing equally the bandwidth of the routers,
obj; = min Z Wy.
reR
Minimize the maximum load (Load balancing)
@ increasing the security in case of failure,

bj> = mi ly).
obj> mln‘r)’éa\}f(v)

*C. Gomes, G. Huiban [GHO07]
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Column Generation and Multi-objective Analysis
Results: Pareto set obtained by the e-restricted technique.

Mesh network with 39 nodes
Test networks: 39, 54, 65 nodes
1,2,3 and 5 gateways
1 gateway
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Column Generation and Multi-objective Analysis

Results: Pareto set obtained by the e-restricted technique.
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Column Generation and Multi-objective Analysis

Results:

@ Each disruption is due to a saturation of a new node;
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Column Generation and Multi-objective Analysis

Results:
@ Each disruption is due to a saturation of a new node;
@ The saturated nodes (bottleneck) are usually located around
the gateway(s);
@ The relation between the maximum load and the transmission
time is convex and piecewise linear (Pareto set).
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Branch and Price Algorithm ©
BnP combines Branch-and-bound (BnB) with Column Generation °
R e

New added
7 constrain

Supposed
[T integer variables

[ Chosen variable
to branch

BnB node

(father) fiew round

Column Generation

e
procedure

[vo<=lz_fathet] [v2>=[¥i_fathen]

CC BnB node

(right child)

BnB node
(left child)

new round new round

@ Motivation: Mono-routing (integer flow b(v)=1) to avoid
dealing with the packet-reordering problem.
@ Approach: Depth-First.

®Implementation: AMPL, Concert Tecnology (Java), CPLEX (solver)
¢ Gomes °C. Gomes, H. Rivano, S. Perennes [GPROS] Mascotte'09
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Branch and Price Algorithm
Results (d=2, b(v)=1):

Network | Gateways Nodes Edges Whrac Wine
A 1 11 34 16 16
A 2 11 34 9.5 10
B 1 12 18 15 15
C 1 15 22 17.666 18
C 3 15 22 7.71428 8
D 1 16 49 18.5 19
D 3 16 49 6.6666 7
E 1 25 45 54 54
E 3 25 45 14.5 15
F 1 28 41 38 38
G 1 39 172 49 49

o Interger round-up property seems to hold for the RWP in
our tests results, Wine = [Whacl;

@ The bottleneck remains at the gateway in our tests.
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Bounds
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Lower Bound: MinMax weighted clique ’

The clique is given by the best routing in a localized region
(probable bottleneck region).

@ A clique is a set of interfering calls (edges).
@ It is known that w(G) < xf(G) for any graph G (W=x¢(G,));
"C. Gomes, H. Rivano, S. Perennes [GPRO8]
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Lower Bound: MinMax weighted clique

The clique is given by the best routing in a limited region (the
probable bottleneck region).
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Lower Bound: MinMax weighted clique

The clique is given by the best routing in a limited region (the
probable bottleneck region).
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Critical Region (CR): definition for general graphs 8

CR is a definition of the bottleneck region.

3

8Current work (C. Gomes, P. Reys, J. Yu, J.C. Bermond)
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Critical Region (CR): definition for general graphs 8
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Critical Region (CR): definition for general graphs 8

CR is a definition of the bottleneck region.
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Critical Region (CR): definition for general graphs
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Results:

o Call-clique is a LB;
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Critical Region (CR): definition for general graphs

Results:
. o Call-clique is a LB;

@ Bounds for individual nodes;
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Critical Region (CR): definition for general graphs

Results:

o Call-clique is a LB;
@ Bounds for individual nodes;

* o VVIoca/(CR) < W
(Call-clique< x¢(CRy)).
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Lower Bound formulas for grid graphs °

Considering:
o Gateway placed at the center;
o Uniform traffic;
@ Any interference distance d.
General formula:
W = (B — |Kgl)p(v ¢ Ko) + p(v € Kp).
o Grid with odd d ;
(V21— (S ai gl + Sl a2 v arg)
o Grid with even d

(V2 —1— L2 an ) 4 s lE]

°Current work (C. Gomes, P. Reys, J. Yu, J.C. Bermond)
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Lower Bound is tight for grid graphs

Protocol Description (Upper Bound)
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Lower Bound is tight

Network Characteristics:

C. Gomes

@ Disjoint paths guarantee the paths are completely covered by
the colors of the critical region.

a)

@ At least one edge of the critical region is contained in each

Round.

Mascotte'09
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Lower Bound: MinMax weighted clique

Sparse demands and other bottleneck positions:
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Lower Bound: MinMax weighted clique

Sparse demands and other bottleneck positions:
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Figure: Cost to send one unit of
flow from each position

individually to the gateway
(d=2).
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Lower Bound: MinMax weighted clique
Dominant Edges:

G
a) 2
2
jo
1
.
b) G 1
1
1
1

fe=1

1 fo=1

el

da=1 Fractional coloring dual problem

dg =0

o max ), dijfi)
dp=1 .. ,

0 (iJ)eE(G)

Yierwi =4

. > dijy<LVRER
d(_—:% (IzJ)ER

do =3 d(’d) OV(I j)EE(G)
de =3

Pierwi =3

@ Traffic (routing) that causes highly loaded edges (dominant
edges) in a localized region (e.g. cumulative traffic).

C. Gomes
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Lower Bound: MinMax weighted clique
Sparse demands and other bottleneck positions
Multi-objective Analysis:

MinMax Utilization x Min Time (RWP objective)
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@ Dual weights spread to other areas of the network
(W — Wioear(CR) increases);
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Lower Bound: MinMax weighted clique
Sparse demands and other bottleneck positions
Multi-objective Analysis:

MinMax Utilization x Min Time (RWP objective)
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@ Dual weights spread to other areas of the network

(W — Wioear(CR) increases);
@ Without dominant edges = strong trade-off time x utilization;
@ With dominant edges = weak trade-off time x utilization

(almost shortest path routing).
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Another interference model (considering SINR)
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Optimal and Fair Transmission Rate Allocation Problem 1°

The problem is how to define the cumulative utility functions
U, () for each relay node in a way to represent the utility
functions Ug(p¢) of its relayed terminals.

Free zone Free zone
?:-Eiiftfa_fi'dn STl
g gk Critical zone--.__

&

Figure: Multi-hop cellular
Figure: Multi-hop cellular network reduced in
network. single-hop.

Objective: Max the sum of utility functions over all the nodes.

Current work (C. Gomes, J. Galtier)
C. Gomes Mascotte'09 27/33




Optimal and Fair Transmission Rate Allocation Problem

Optimal rate allocation model 11

max Z U (o) (7)

rer
subject to

Pr,b8r,b _
QY < m = SINRr,Vr eER
ZrER Pr.,b < KNo~

“mplementation: AMPL, Interior Point OPTimizer (IPOPT) - COIN-OR.
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Optimal and Fair Transmission Rate Allocation Problem

Technical assumption and hypothesis:

@ The mobiles’ utility functions U;(.) are assumed to be strictly
increasing concave functions and satisfy the condition

1

Ue (x) < ;*21?
@ All terminal nodes in 7, pass by an unique relay node r € R;

@ We only consider interferences between the relay nodes in R.
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Optimal and Fair Transmission Rate Allocation Problem

Optimal rate allocation model
Problem (P,)

U (ay) = max Z Ut(pt) subject to oy = Z pe,Vr € R.
te7, te7,

Problem (P}): local version of P,

max Z Ut(Brarr) subject to

{ ,Bt >=0,Vt € 7,
te7,

ZteTr fe =1
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Optimal and Fair Transmission Rate Allocation Problem

Problem (P!): local version of P, (fixed feasible )

. >=0,Vte 1,
max Z Ue(Bearyr) subject to { %teT B =1

teT,

The Lagrangian of P/

LB) =Y U(Bear)= > Ae (—Be)—n (Z Be - 1) —v (Z —Bet 1)

teT, te7; te7, te7,

!

As 3* = (g . p(‘;[r' ) (0" = (py, ...,p]m)) is necessarily a vector of
optimal solutlons for the Lagrangian. So it verifies KKT's
optimality conditions and we obtain: U;(p;) = C,Vt € 7, where C

is a constant.
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Optimal and Fair Transmission Rate Allocation Problem

Cumulative utility function U, (o, ):

he(C) = Bra, + ... + ,B(Tr‘a, =
C=htar)
he(C) = hy o h7Y(a,)
P/t = hy o h (o)
Ue(py) = Ur o he o b (ar)

> Ui(py) =D Uroheoh (o)

teT, te7,

C. Gomes Mascotte'09

32/33



Optimal and Fair Transmission Rate Allocation Problem

Fairness

Utility function :U;(x) =

C. Gomes

RATE

14 £

124 -

0.8
0.6
04}

0.2}

term1=relayl (3xUt, GAIN=2)- -

term2 relayl (4xUt, GAIN=2) = |

term3 relayl (5xUt, GAIN=2) =
term4=relay4 (1xUt, GAIN=2)

term5 relay4 (2xUt, GAIN=2)-+- 4

2 3 4

k (Walrand)
11—k
—- [Walrand00].
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