Tools for Community Detection

Jérôme Galtier, Orange Labs

Image by Sarah Klan of the Young Creatives Network. The future's bright.

the search engines: a gateway to the web?

Share of searches	Jul 2007	May 2008
Google	55.2%	61.6%
Yahoo	23.5%	20.4%
Microsoft sites	12.3%	9.1%
AOL LLC	4.4%	4.6%
Ask network	4.7%	4.3%

www.searchenginegenie.com

in the US, (source: comScore qSearch)

Communities/12.03.2009/public/Jérôme Galtier

A massive set of data

Search engine	Reported size (mid 2005)	
Google	11.3 billion	
MSN	5.0 billion	
Yahoo	19.2 billion	
Ask Jeeves	2.5 billion	
	in number of pages	

our approach

 \rightarrow employ our graph theory background

our approach

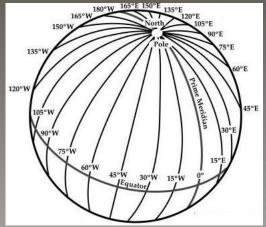
- \rightarrow employ our graph theory background
- \rightarrow give alternative approaches to search the web

our approach

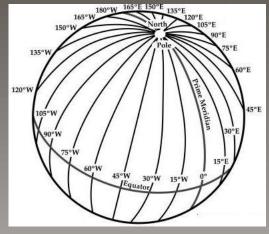
- \rightarrow employ our $graph\ theory\ background$
- \rightarrow give alternative approaches to search the web

the PACK 237: cartographie Pages Web

- brevet 04843 (A. Laugier) : randonnée
- brevet 05618 (A. Laugier, S. Raymond) : mineur
- brevet 05711 (J. Galtier) : webworld
- brevet 06448 (J. Galtier, A. Skoda, J. Fonlupt) : strength of graphs
- \rightarrow integrated in the PAC by PIV

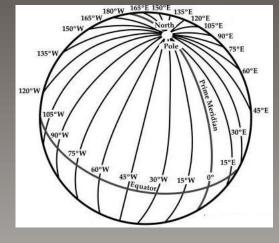


Communities/12.03.2009/public/Jérôme Galtier



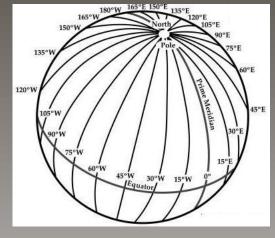
the documents are viewed as particules.

Communities/12.03.2009/public/Jérôme Galtier



the documents are viewed as particules.

2 particules attract each other if and only if theu are connected.



the documents are viewed as particules.

2 particules attract each other if and only if theu are connected. otherwise, they repel each other.

Communities/12.03.2009/public/Jérôme Galtier

we are given an undirected graph G = (V, E).

each edge $\{u, v\}$ is associated to a weight $w_{u,v} \in [0, 1]$, that emphasizes the **degree of connection between the pages**.

we are given an undirected graph G = (V, E).

each edge $\{u, v\}$ is associated to a weight $w_{u,v} \in [0, 1]$, that emphasizes the **degree of connection between the pages**.

we set
$$\delta$$
 as follows: $\delta_{u,v} = \begin{vmatrix} 1 & \text{if } \{u,v\} \notin E \\ 1 - w_{u,v} & \text{if } \{u,v\} \in E. \end{vmatrix}$

we are given an undirected graph G = (V, E).

each edge $\{u, v\}$ is associated to a weight $w_{u,v} \in [0, 1]$, that emphasizes the **degree of connection between the pages**.

we set
$$\delta$$
 as follows: $\delta_{u,v} = \begin{vmatrix} 1 & \text{if } \{u,v\} \notin E \\ 1 - w_{u,v} & \text{if } \{u,v\} \in E. \end{vmatrix}$

we associate to each vertex u a point X(u) in the 3D unit sphere.

we are given an undirected graph G = (V, E).

each edge $\{u, v\}$ is associated to a weight $w_{u,v} \in [0, 1]$, that emphasizes the **degree of connection between the pages**.

we set
$$\delta$$
 as follows: $\delta_{u,v} = \begin{vmatrix} 1 & \text{if } \{u,v\} \notin E \\ 1 - w_{u,v} & \text{if } \{u,v\} \in E. \end{vmatrix}$

we associate to each vertex u a point X(u) in the 3D unit sphere.

problem: maximize
$$\sum_{\{u,v\}\in E} \delta_{u,v} ||X(u) - X(v)||^2$$
.

Communities/12.03.2009/public/Jérôme Galtier

the algorithm used is **incremental**.

the algorithm used is **incremental**.

Each point of the sphere (corresponding to a document) is placed at its unique best position with respect to the others

the algorithm used is **incremental**.

Each point of the sphere (corresponding to a document) is placed at its unique best position with respect to the others

The processus is iterated. . .

the algorithm used is **incremental**.

Each point of the sphere (corresponding to a document) is placed at its unique best position with respect to the others

The processus is iterated. . .

 \rightarrow This procedure necessarily converges to an optimum. (no cyclic process)

the algorithm used is **incremental**.

Each point of the sphere (corresponding to a document) is placed at its unique best position with respect to the others

The processus is iterated. . .

 \rightarrow This procedure necessarily converges to an optimum. (no cyclic process)

in practice, **3** min are required to update 97.10^6 nodes.

the algorithm used is **incremental**.

the algorithm used is **incremental**.

we update each vertex u as follows:

the algorithm used is **incremental**.

we update each vertex u as follows:

• compute the value
$$Y(u) := \sum_{v \in V - \{u\}} \delta_{u,v} X(v)$$
,

the algorithm used is **incremental**.

we update each vertex u as follows:

• compute the value
$$Y(u) := \sum_{v \in V - \{u\}} \delta_{u,v} X(v)$$
,

• if $Y(u) \neq 0$, we perform the operation X(u) := -Y(u)/||Y(u)||,

the algorithm used is **incremental**.

we update each vertex u as follows:

• compute the value
$$Y(u) := \sum_{v \in V - \{u\}} \delta_{u,v} X(v)$$
,

• if $Y(u) \neq 0$, we perform the operation X(u) := -Y(u)/||Y(u)||,

• if Y(u) = 0, choose X(u) at random.

the algorithm used is **incremental**.

we update each vertex u as follows:

• compute the value
$$Y(u) := \sum_{v \in V - \{u\}} \delta_{u,v} X(v)$$
,

• if $Y(u) \neq 0$, we perform the operation X(u) := -Y(u)/||Y(u)||,

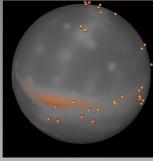
• if Y(u) = 0, choose X(u) at random.

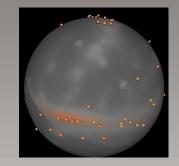
 \rightarrow we increase the estimated **Shannon** capacity for the graph.

Communities/12.03.2009/public/Jérôme Galtier

some results

the green parts of the planet represent the concentrated areas of sites, while the blue parts are the spase areas. the red bullets are the answers in voila.fr for the request.





request "orange" request "france telecom"

• Research started in 2003 with Alexandre Skoda PhD thesis.

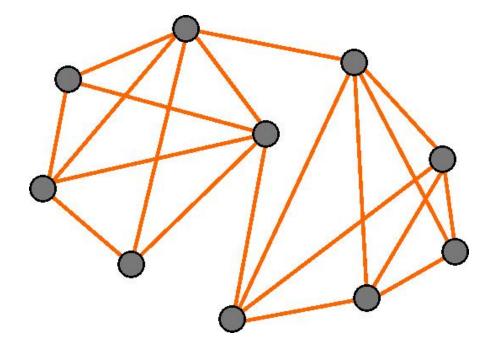
- Research started in 2003 with Alexandre Skoda PhD thesis.
- Goal: find a mathematical approach to detect communities.

- Research started in 2003 with Alexandre Skoda PhD thesis.
- Goal: find a mathematical approach to detect communities.
- Software already written.

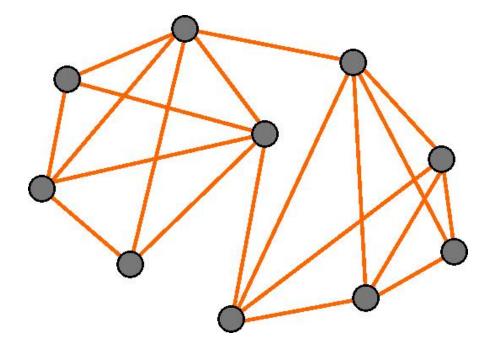
- Research started in 2003 with Alexandre Skoda PhD thesis.
- Goal: find a mathematical approach to detect communities.
- Software already written.

 \rightarrow it does not give the result of a heuristic but a 'photography' of properties of the set of documents. The more accurate, the more CPU time is required to compute it ($\times 2$ in precision $\Leftrightarrow \times 4$ in computation).

Strength of graphs: intuition



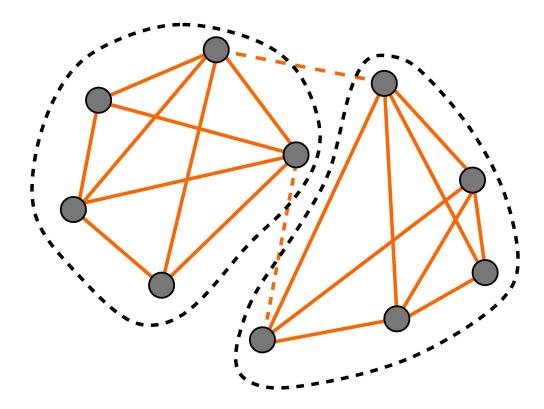
Strength of graphs: intuition



\rightarrow minimize the strength that is the ratio $\frac{\text{edges withdrawn}}{\text{created components}}.$

Communities/12.03.2009/public/Jérôme Galtier

Strength of graphs: intuition



 \rightarrow each sub-community that is not a singleton is then redivided and has provably a better strength.

Communities/12.03.2009/public/Jérôme Galtier

the Tutte Nash-Williams theorem (1961)

G contains k edge-disjoint spanning trees

 $\sigma(G) \ge k$

Communities/12.03.2009/public/Jérôme Galtier

a word on the bibliography

Strength of graph is linked to *graph partitionning* and serves as the underground algorithm to approximate the *minimum cut* of a graph in almost linear time.

Many algorithms use the maximum flow, which runs with best complexity $MF(n,m) = O(\min(\sqrt{m}, n^{2/3})m\log(n^2/m + 2))$ (Goldberg & Rao, 1998).

1984	Cunningham	$O(nm \ MF(n, n^2))$	Exact
1988	Gabow &	$O(\sqrt{\frac{m}{n}(m+n\log n)\log \frac{m}{n}})$	Integer
	Westermann	$O(nm\log\frac{m}{n})$	Integer
1991	Gusfield	$O(n^3m)$	Exact
1991	Plotkin et ali	$O(m\sigma(G)\log(n)^2/arepsilon^2)$	Within $1 + \varepsilon$
1993	Trubin	O(n MF(n,m))	Exact
1998	Garg & Konemann	$O(m^2\sigma(G)\log(n)/arepsilon^2)$	Within $1 + \varepsilon$
2008	Galtier	$O(m \log(n)^2 / \varepsilon^2)$	Within $1 + \varepsilon$

this presentation

• a first linear programming formulation of size polynomial in the size of the problem,

this presentation

- a first linear programming formulation of size polynomial in the size of the problem,
- sketch proof of the $1 + \varepsilon$ approximation in time $O(m \log(n)^2 / \varepsilon^2)$

an equivalence theorem

Let \mathcal{T} be the set of all spanning trees of the graph G.

$$\sigma(G) = \max\left(\sum_{T \in \mathcal{T}} \lambda_T : \forall T \in \mathcal{T} \ \lambda_T \ge 0 \text{ and } \forall e \in E \ \sum_{T \ni e} \lambda_T \le 1\right)$$

an equivalence theorem

Let \mathcal{T} be the set of all spanning trees of the graph G.

$$\sigma(G) = \max\left(\sum_{T \in \mathcal{T}} \lambda_T : \forall T \in \mathcal{T} \ \lambda_T \ge 0 \text{ and } \forall e \in E \ \sum_{T \ni e} \lambda_T \le 1\right)$$

By linear duality we can reformulate it as follows:

$$\sigma(G) = \min\left(\sum_{e \in E} y_e : \forall e \in E \ y_e \ge 0 \text{ and } \forall T \in \mathcal{T} \ \sum_{e \in T} y_e \ge 1\right).$$

Communities/12.03.2009/public/Jérôme Galtier

Groupe France Télécom

linearizing the problem. . .

Consider the set of \mathbb{R}^E given by:

$$\mathcal{S} = \left\{ z \in \mathbb{R}^E : \exists T \in \mathcal{T} \, \forall e \in E \, z_e = \chi_{\{e \in T\}} \right\},\$$

linearizing the problem. . .

Consider the set of \mathbb{R}^E given by:

$$\mathcal{S} = \left\{ z \in \mathbb{R}^E : \exists T \in \mathcal{T} \, \forall e \in E \, z_e = \chi_{\{e \in T\}} \right\},\$$

and note that $\exists A, b \quad conv(S) = \left\{ z : \exists f \quad A \cdot \begin{pmatrix} f \\ z \end{pmatrix} \le b. \right\}$

linearizing the problem. . .

Consider the set of \mathbb{R}^E given by:

$$\mathcal{S} = \left\{ z \in \mathbb{R}^E : \exists T \in \mathcal{T} \, \forall e \in E \, z_e = \chi_{\{e \in T\}} \right\},\$$

and note that
$$\exists A, b \quad conv(S) = \left\{ z : \exists f \quad A \cdot \begin{pmatrix} f \\ z \end{pmatrix} \le b. \right\}$$

Now we can say:

$$\sigma(G) = \min\left(\sum_{e \in E} y_e : \forall e \in E, y_e \ge 0, \forall z \in \mathcal{S}, \sum_{e \in E} z_e y_e \ge 1\right),\$$

Communities/12.03.2009/public/Jérôme Galtier

Groupe France Télécom

pushing further the decomposition

(i)
$$\sum_{e \in E} y_e z_e \ge 1 \quad \forall z \in \mathcal{S},$$

(ii)
$$\sum_{e \in E} y_e z_e \ge 1 \quad \forall z \in conv(\mathcal{S}),$$

(iii)
$$\sum_{e \in E} y_e z_e \ge 1$$
 $\forall (z, f)$ such that $A \cdot \begin{pmatrix} f \\ z \end{pmatrix} \le b$,

(iv) For all $\varepsilon > 0$, there are no solution for

$$\begin{cases} A \cdot \begin{pmatrix} f \\ z \end{pmatrix} \leq b \\ \sum z_e y_e \leq 1 - \varepsilon, \end{cases}$$

Communities/12.03.2009/public/Jérôme Galtier

Groupe France Télécom

(v) For all $\varepsilon > 0$, there exists a $x \ge 0$ such that

$$\begin{cases} x^t \cdot A + y = 0\\ x^t \cdot b + (1 - \varepsilon) < 0, \end{cases}$$

(vi) There exists a $x \ge 0$ such that

$$\begin{cases} x^t \cdot A + y = 0\\ x^t \cdot b + 1 \le 0. \end{cases}$$

linear formulation (Pick a "root" $r \in V$)

$$\begin{split} \sigma(G) &= \min \sum_{e \in E} y_e \\ &-\gamma_v^k + \gamma_w^k + \mu_{\overline{vw}}^k \ge 0, \qquad \qquad \forall \overline{vw} \in \vec{E}, \quad \forall k \in V - \{r\} \\ \varphi &- \sum_{k \in V - \{r\}} \mu_{\vec{e}}^k + y_e \ge 0 \qquad \qquad \forall \vec{e} \in \vec{E} \\ &- \sum_{k \in V - \{r\}} \gamma_r^k + \sum_{k \in V - \{r\}} \gamma_k^k + (n-1)\varphi \le -1 \\ \varphi &\ge 0, \mu_{\vec{e}}^k \ge 0 \qquad \qquad \forall \vec{e} \in \vec{E}, \quad \forall k \in V - \{r\}. \\ &(\text{variables } y_e, \ e \in E, \ \gamma_v^k, \ v, k \in V, \ \mu_{\vec{e}}^k, \ k \in V, \vec{e} \in \vec{E}, \text{ and } \varphi) \end{split}$$

Communities/12.03.2009/public/Jérôme Galtier

Groupe France Télécom

The algorithm as basis takes a pushing flow scheme.

(0) Each edge $e \in E$ receives a very small weight $w(e) = \delta = O\left(\frac{1}{nm^{\frac{1}{4\varepsilon}}}\right)$,

The algorithm as basis takes a pushing flow scheme.

(0) Each edge $e \in E$ receives a very small weight $w(e) = \delta = O\left(\frac{1}{nm^{\frac{1}{4\varepsilon}}}\right)$,

(1) At each step, compute a minimum spanning tree T with respect to w,

The algorithm as basis takes a pushing flow scheme.

(0) Each edge $e \in E$ receives a very small weight $w(e) = \delta = O\left(\frac{1}{nm^{\frac{1}{4\varepsilon}}}\right)$,

(1) At each step, compute a minimum spanning tree T with respect to w,

(2) For each $e \in T$, update $w(e) := w(e) * (1 + \varepsilon)$,

The algorithm as basis takes a pushing flow scheme.

(0) Each edge $e \in E$ receives a very small weight $w(e) = \delta = O\left(\frac{1}{nm^{\frac{1}{4\varepsilon}}}\right)$,

(1) At each step, compute a minimum spanning tree T with respect to w,

(2) For each $e \in T$, update $w(e) := w(e) * (1 + \varepsilon)$,

(3) If w(T) < 1 go to (1),

The algorithm as basis takes a pushing flow scheme.

(0) Each edge $e \in E$ receives a very small weight $w(e) = \delta = O\left(\frac{1}{nm^{\frac{1}{4\varepsilon}}}\right)$,

(1) At each step, compute a minimum spanning tree T with respect to w,

- (2) For each $e \in T$, update $w(e) := w(e) * (1 + \varepsilon)$,
- (3) If w(T) < 1 go to (1),

(4) Output $\sum_{e \in E} w(e)$.

The algorithm as basis takes a pushing flow scheme.

(0) Each edge $e \in E$ receives a very small weight $w(e) = \delta = O\left(\frac{1}{nm^{\frac{1}{4\varepsilon}}}\right)$,

(1) At each step, compute a minimum spanning tree T with respect to w,

(2) For each
$$e \in T$$
, update $w(e) := w(e) * (1 + \varepsilon)$,

```
(3) If w(T) < 1 go to (1),
```

(4) Output $\sum_{e \in E} w(e)$.

 \rightarrow this is an- $(1 + \varepsilon)$ approximation

(Plotkin, Shmoys, Tardos 1991, Young 1995).

Communities/12.03.2009/public/Jérôme Galtier

Brute analysis of the complexity

Each edge cannot be updated more that $\frac{\log(\delta)}{\log(1+\varepsilon)} = O(\frac{\log(n)}{\varepsilon^2})$,

Each step updates n-1 edges and runs in $O(m \log(n))$,

 \rightarrow the computation takes less than $O(\frac{m^2 \log(n)^2}{n \varepsilon^2})$.

Brute analysis of the complexity

Each edge cannot be updated more that $\frac{\log(\delta)}{\log(1+\varepsilon)} = O(\frac{\log(n)}{\varepsilon^2})$,

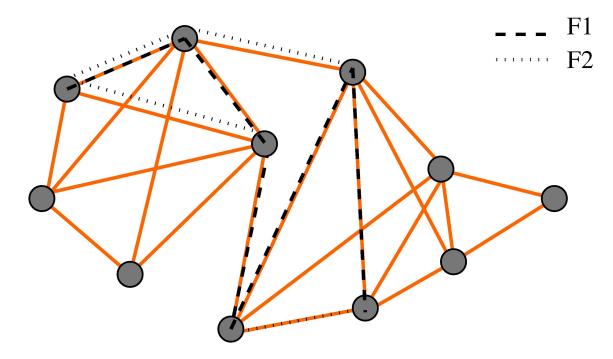
Each step updates n-1 edges and runs in $O(m \log(n))$,

 \rightarrow the computation takes less than $O(\frac{m^2 \log(n)^2}{n \varepsilon^2})$.

how can we gain the factor m/n ???

order on forests

A forest F_1 is more connecting than a forest F_2 ($F_1 \succeq F_2$) if the endpoints of any path of F_2 are connected in F_1 .



augment and connecting order

Let $e \in E$. We say that e is independent of forest F is there is no path in F between endpoints of e. Otherwise it is dependent.

Augmenting F by an independent edge e to $F : F := F \cup \{e\}$.

Remark: Suppose $F_1 \succeq F_2$ and e is independent of F_1 , then e is independent of F_2 .

idea: order the forests to add edges

 $F_1 \succeq F_2 \succeq \cdots \succeq F_p$

take $e \in E$.

augment the first F_i such that e is independent to F_i .

idea: order the forests to add edges

 $F_1 \succeq F_2 \succeq \cdots \succeq F_p$

take $e \in E$.

augment the first F_i such that e is independent to F_i .

 \rightarrow a tree will be built in $O(n \log(n) \log(p))$ in average.

idea: order the forests to add edges

 $F_1 \succeq F_2 \succeq \cdots \succeq F_p$

take $e \in E$.

augment the first F_i such that e is independent to F_i .

 \rightarrow a tree will be built in $O(n \log(n) \log(p))$ in average.

 \rightarrow this works also with weighted edges in increasing order.

idea: order the forests to add edges

 $F_1 \succeq F_2 \succeq \cdots \succeq F_p$

take $e \in E$.

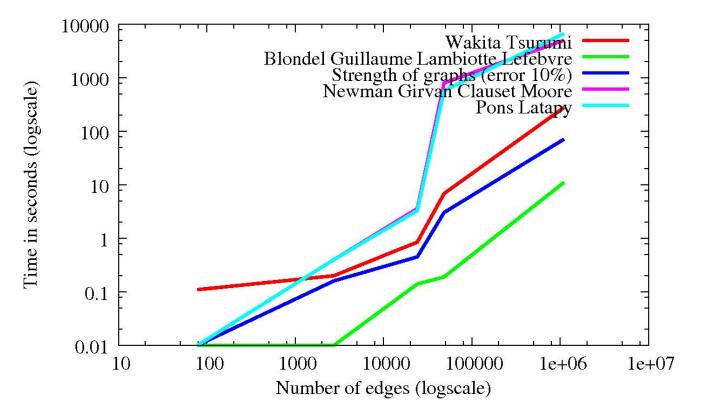
augment the first F_i such that e is independent to F_i .

- \rightarrow a tree will be built in $O(n \log(n) \log(p))$ in average.
- \rightarrow this works also with weighted edges in increasing order.

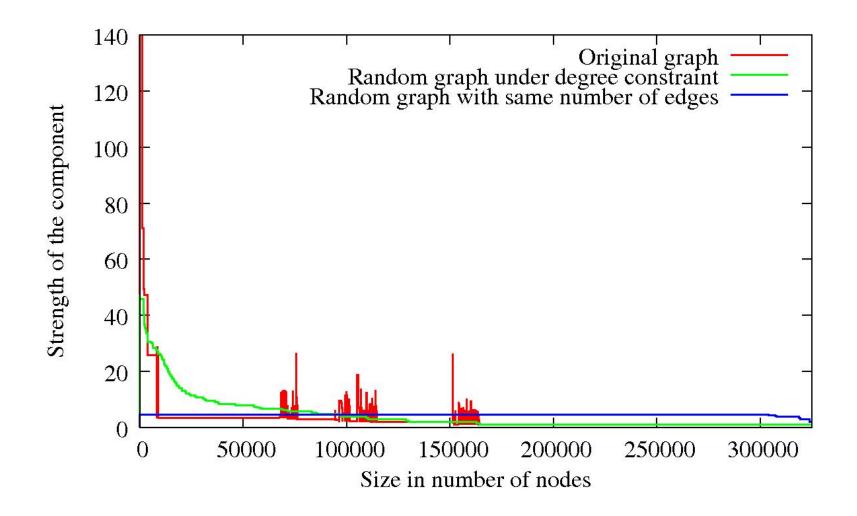
this gives an $O(m \log(n)^3 / \varepsilon^2)$ algorithm.

Computational linearity

The algorithm is almost linear with the number of links between documents. Here compared with popular heuristics and datasets:



Graph spectrum (web of Albert, Jeong, Barabasi)



Groupe France Télécom

Achievements

- Webworld is an efficient heuristic that gives a particule representation of data on a sphere. It has been tested successfully with networks of 240 millions of nodes and 640 millions of links.
- the strength of graph gives a photography of the connectivity of a network that can be computed in almost linear time. It has been tested on networks with as much as 326 000 nodes and 1.5 million of links (around one minute of computation for 10% precision).

What next?

\clubsuit Research questions: fiedler vector, modularity, k-densest subgraph. . .

What next?

- Research questions: fiedler vector, modularity, *k*-densest subgraph. . .
- ♣ Worl with Orange portail + orange labs

What next?

- **\clubsuit** Research questions: fiedler vector, modularity, k-densest subgraph...
- ♣ Worl with Orange portail + orange labs
- New ANR started

Thanks for your attention!

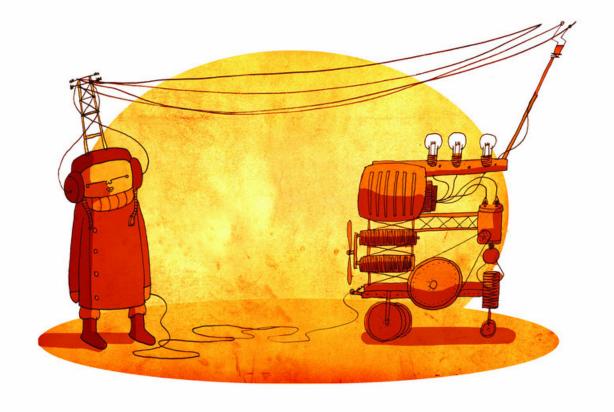


Image by Ben Scruton of the Young Creatives Network. The future's bright.