
Reconfiguration

Some open problems

D. Coudert1, F. Huc1,2, D. Mazauric1, N. Nisse1, J-S. Sereni3,4, and
R. Soares5

1- MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia, Sophia Antipolis, France

2- TCS-sensor lab, Centre Universitaire d’Informatique, Univ. Genève, Suisse

3- LIAFA, CNRS, Univ. D. Diderot, Paris, France

4- KAM, Faculty of Math. and Physics, Charles Univ., Prague, Czech Republic

5- Univ. Fortaleza, Brazil

D. Coudert et al. Mascotte @ Le Boréon 1/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA + A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Routing of request: A→ F

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Routing of request: A→ C

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Routing of request: E → F

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Removal of request: A→ F

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Routing of request: D → F

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Routing of request: A→ B

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA

Routing of request: B → E ? ?

+ A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



WDM networks with dynamic traffic
How to handle traffic changes ?

B C D E FA + A→ F
+ A→ C
+ E → F
− A→ F
+ D → F
+ A→ B
+ B → E

D. Coudert et al. Mascotte @ Le Boréon 2/23



What can we do ?

Reject the new request → blocking probabilities

Stop all requests and restart with new “optimal” routing

Sequence of switching to converge to new routing taquin

Find the most suitable route for incoming request with
eventual rerouting of pre-established connections

Our problem:

Inputs: Set of connection requests
+ current and new lightpaths (route+wavelength)

Output: Scheduling for switching connection requests from
current to new lightpaths

Constraint: A connection is switched only once

D. Coudert et al. Mascotte @ Le Boréon 3/23



What can we do ?

Reject the new request → blocking probabilities

Stop all requests and restart with new “optimal” routing

Sequence of switching to converge to new routing taquin

Find the most suitable route for incoming request with
eventual rerouting of pre-established connections

Our problem:

Inputs: Set of connection requests
+ current and new lightpaths (route+wavelength)

Output: Scheduling for switching connection requests from
current to new lightpaths

Constraint: A connection is switched only once

D. Coudert et al. Mascotte @ Le Boréon 3/23



GMPLS

Make-before-break:

Establish new path before switching the connection

=⇒ Destination resources must be available

Break-before-make:

Break connection before establishing the new path

=⇒ Traffic stopped while new path not established

D. Coudert et al. Mascotte @ Le Boréon 4/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

B C D E FA

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

B C D E FA

break ��

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

B C D E FA

break

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

B C D E FA

D. Coudert et al. Mascotte @ Le Boréon 5/23



Reconfiguration in WDM networks
Example

Dependency digraph

B C D E FA B C D E FA

Processing using 1 break-before-make and 1 make-before-break

B C D E FA

D. Coudert et al. Mascotte @ Le Boréon 5/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Possible objectives

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

∼ Graph searching problem, cops-and-robber game, pursuit,. . .

Process number, here 1

Gap with MFVS up to N/2

D. Coudert et al. Mascotte @ Le Boréon 6/23



Process number, pn

Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

p-process strategy = strategy to process a (di)graph using at most
p agents

Process number = smallest p s.t. G can be p-processed, pn(G )

D. Coudert et al. Mascotte @ Le Boréon 7/23



Example: DAG
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

D. Coudert et al. Mascotte @ Le Boréon 8/23



Example: DAG
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

D. Coudert et al. Mascotte @ Le Boréon 8/23



Example: DAG
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

D. Coudert et al. Mascotte @ Le Boréon 8/23



Example: DAG
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

D. Coudert et al. Mascotte @ Le Boréon 8/23



Example: DAG
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

D. Coudert et al. Mascotte @ Le Boréon 8/23



Digraphs with process number 1
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Th: pn(D) = 1 ⇔ ∀SCC , MFVS(SCC ) = 1 O(N + M)

D. Coudert et al. Mascotte @ Le Boréon 9/23



Digraphs with process number 1
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Th: pn(D) = 1 ⇔ ∀SCC , MFVS(SCC ) = 1 O(N + M)

D. Coudert et al. Mascotte @ Le Boréon 9/23



Digraphs with process number 1
Rules

R1 Put an agent on a vertex

= break/interrupt/route on temporary resources a connection

R2 Process a vertex if all its out-neighbors are either processed or
occupied by an agent

= (Re)route a connection when final resources are available

R3 An agent can be re-used after the processing of the vertex

Th: pn(D) = 1 ⇔ ∀SCC , MFVS(SCC ) = 1 O(N + M)

D. Coudert et al. Mascotte @ Le Boréon 9/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y’ Y
H Y DAG

digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y’ Y
H Y DAG

digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y’ Y
H Y DAG

digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y

Y DAG
digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y

Y DAG
digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y DAG
digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2

(2, a)-digraph = digraph that can be 2-processed starting from a

a a’
H’

Y DAG
digraph contraction

Y ′ 1-digraph
Strongly Connected
Components
+ test 1-digraph

H ′ (2, a′)-digraph

Th: pn(D) = 2 iff ∃ a s.t. D is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so
O(N2(N + M))

D. Coudert et al. Mascotte @ Le Boréon 10/23



Digraphs with process number 2
Example

a a’

Y’

YH

H’

D. Coudert et al. Mascotte @ Le Boréon 11/23



Process number: what is known
Related parameters

Pathwidth, pw [Robertson & Seymour, JCTB, 1983]

Node search number, ns [Kirousis & Papadimitriou, TCS, 1986]

Vertex separation, vs

Relations

pw(G ) = vs(G ) = ns(G )− 1

vs(D) ≤ pn(D) ≤ vs(D) + 1 [CPPS05, CoSe07]

Complexity

NP-Hard

Not APX

= No polynomial time constant factor approximation algorithm

Characterization of (di)graphs with process number 0, 1, 2

Distributed algorithm for trees

D. Coudert et al. Mascotte @ Le Boréon 12/23



Two classes of services

Priority connections

Refuse by contract (SLA) break-before-make

Impossibility

Direct cycle of priority connections in the dependency digraph

⇒ Small number of such connections

Partition into strongly connected components, O(N + M)

Transformation

⇒ Same problem to solve

D. Coudert et al. Mascotte @ Le Boréon 13/23



Example with priority connection d

cb

a
r

e

d

Routing 1

b

a

d
c

e
r

Routing 2

b

ca

d

Dependency digraph, pn = 1

b

a

c

Without d , pn = 2

D. Coudert et al. Mascotte @ Le Boréon 14/23



Previous heuristic [Jose and Somani, DRCN 03]

1 Compute all directed cycles using Johnson’s algorithm

2 Choose the vertex that belongs to the maximum number of
cycles

3 Remove that vertex and update set of cycles

4 Repeat 2-3 until remaining digraph is a DAG

5 Process DAG

6 Process removed vertices

Heuristic for MFVS

Complexity in O((n + m)(c + 1))

Exponential number of cycles ⇒ only for small digraphs

D. Coudert et al. Mascotte @ Le Boréon 15/23



Our heuristic / process number

1 Priority connections: impossibility and transformation

2 Choose of a candidate vertex to receive an agent (to be
removed) using a flow circulation method

3 Remove that vertex and process all possible vertices including
removed vertices and priority connections

4 Repeat 2-3 until processing of all vertices

b

a

c

1

1

1

b

a

c

1.66

0.66

0.66

b

a

c

1.43

0.77

0.77

b

a

c

1.5

0.73

0.73

D. Coudert et al. Mascotte @ Le Boréon 16/23



Our heuristic / process number

1 Priority connections: impossibility and transformation

2 Choose of a candidate vertex to receive an agent (to be
removed) using a flow circulation method

3 Remove that vertex and process all possible vertices including
removed vertices and priority connections

4 Repeat 2-3 until processing of all vertices

b

a

c

1

1

1

b

a

c

1.66

0.66

0.66

b

a

c

1.43

0.77

0.77

b

a

c

1.5

0.73

0.73

b

a

c
1

1

D. Coudert et al. Mascotte @ Le Boréon 16/23



Our heuristic / process number

1 Priority connections: impossibility and transformation

2 Choose of a candidate vertex to receive an agent (to be
removed) using a flow circulation method

3 Remove that vertex and process all possible vertices including
removed vertices and priority connections

4 Repeat 2-3 until processing of all vertices

Heuristic for the process number

Complexity in O(n2(n + m)) ⇒ large digraphs

D. Coudert et al. Mascotte @ Le Boréon 16/23



Simulation results: n × n grids

Jose & Somani

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

Exact value

nu
m

be
r 

of
 a

ge
nt

s 
re

qu
ire

d

square root of the number of nodes

This paper

Number of simultaneous agents
(break-before-make)

tim
e 

ne
ed

ed

0 2 4 6 8 10 12
0

50

100

150

square root of the number of nodes

Computation time

D. Coudert et al. Mascotte @ Le Boréon 17/23



Simulation results

This paper (better candidates)

50 100 150 200 250 300 350 400 450 500
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

nu
m

be
r 

of
 a

ge
nt

s 
re

qu
ire

d

number of nodes

This paper

2-digraphs

This paper (better candidates)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

number of nodes

nu
m

be
r 

of
 a

ge
nt

s 
re

qu
ire

d

Exact

This paper

Circular arc graphs

D. Coudert et al. Mascotte @ Le Boréon 18/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Directed graphs

Number of steps (Ronan Soares)

Fixed number of agents, minimize # steps
Fixed number of steps, minimize # agents
SLA with fixed or time dependent penalities

Variable number of agents

Use available temporary resources (lightpath).
Use protection resources: dedicated, shared, path, segment,...

More general dependency digraphs

Sub-wavelength (grooming), LSP

Parallel operations on a cycle ?

Smooth reconfiguration ?

How to compute best destination configuration ?

Extension to SOA ?

D. Coudert et al. Mascotte @ Le Boréon 19/23



Open problems
Undirected graphs

Characterization of graphs with process number 3

Relation/difference with node search number

Done for trees

D. Coudert et al. Mascotte @ Le Boréon 20/23



Graphs with process number 2

G minus a path = stars

Characterization: 15 excluded minors or a simple linear
algorithm

G s.t. pn(G ) = 3: at least 185.266 excluded minors

D. Coudert et al. Mascotte @ Le Boréon 21/23



Graphs with process number 2

G minus a path = stars

Characterization: 15 excluded minors or a simple linear
algorithm

G s.t. pn(G ) = 3: at least 185.266 excluded minors

D. Coudert et al. Mascotte @ Le Boréon 21/23



Graphs with process number 2

G minus a path = stars

Characterization: 15 excluded minors or a simple linear
algorithm

G s.t. pn(G ) = 3: at least 185.266 excluded minors

D. Coudert et al. Mascotte @ Le Boréon 21/23



Graphs with process number 2

G minus a path = stars

Characterization: 15 excluded minors or a simple linear
algorithm

G s.t. pn(G ) = 3: at least 185.266 excluded minors

D. Coudert et al. Mascotte @ Le Boréon 21/23



Graphs with process number 2

G minus a path = stars

Characterization: 15 excluded minors or a simple linear
algorithm

G s.t. pn(G ) = 3: at least 185.266 excluded minors

D. Coudert et al. Mascotte @ Le Boréon 21/23



Process number vs node search number

vertex separation vs(D) ≤ pn(D) ≤ vs(D) + 1
vs(G ) ≤ pn(G ) ≤ vs(G ) + 1

pathwidth pw(G ) ≤ pn(G ) ≤ pw(G ) + 1
node search number sn(G )− 1 ≤ pn(G ) ≤ sn(G )

pw(G)=2

sn(G)=3 sn(G)=4

pw(G)=3 pw(G)=4

sn(G)=5

pn(G)=3pn(G)=2

2 minors 110 minors > 122 millions minors

> 185.266 minors15 minors

D. Coudert et al. Mascotte @ Le Boréon 22/23



Process number vs node search number

vertex separation vs(D) ≤ pn(D) ≤ vs(D) + 1
vs(G ) ≤ pn(G ) ≤ vs(G ) + 1

pathwidth pw(G ) ≤ pn(G ) ≤ pw(G ) + 1
node search number sn(G )− 1 ≤ pn(G ) ≤ sn(G )

pw(G)=2

sn(G)=3 sn(G)=4

pw(G)=3 pw(G)=4

sn(G)=5

pn(G)=3pn(G)=2

2 minors 110 minors > 122 millions minors

> 185.266 minors15 minors

Open question: Characterize G s.t. pn(G ) = sn(G )

D. Coudert et al. Mascotte @ Le Boréon 22/23



Process number vs node search number

vertex separation vs(D) ≤ pn(D) ≤ vs(D) + 1
vs(G ) ≤ pn(G ) ≤ vs(G ) + 1

pathwidth pw(G ) ≤ pn(G ) ≤ pw(G ) + 1
node search number sn(G )− 1 ≤ pn(G ) ≤ sn(G )

pw(G)=2

sn(G)=3 sn(G)=4

pw(G)=3 pw(G)=4

sn(G)=5

pn(G)=3pn(G)=2

2 minors 110 minors > 122 millions minors

> 185.266 minors15 minors

Open question: Characterize G s.t. pn(G ) = sn(G )

→ done for trees (with Huc & Mazauric)

D. Coudert et al. Mascotte @ Le Boréon 22/23



D. Coudert et al. Mascotte @ Le Boréon 23/23


