Reconfiguration Some open problems

D. Coudert¹, F. Huc^{1,2}, D. Mazauric¹, N. Nisse¹, J-S. Sereni^{3,4}, and R. Soares⁵

1- MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia, Sophia Antipolis, France

2- TCS-sensor lab, Centre Universitaire d'Informatique, Univ. Genève, Suisse

3- LIAFA, CNRS, Univ. D. Diderot, Paris, France

4- KAM, Faculty of Math, and Physics, Charles Univ., Prague, Czech Republic

5- Univ. Fortaleza, Brazil

How to handle traffic changes ?

 $\begin{array}{c} + A \rightarrow F \\ + A \rightarrow C \\ + E \rightarrow F \\ - A \rightarrow F \\ + D \rightarrow F \\ + A \rightarrow B \\ + B \rightarrow E \end{array}$

How to handle traffic changes ?

 $\begin{array}{rrr} + & A \rightarrow F \\ + & A \rightarrow C \\ + & E \rightarrow F \\ - & A \rightarrow F \\ + & D \rightarrow F \\ + & A \rightarrow B \\ + & B \rightarrow E \end{array}$

Routing of request: $A \rightarrow F$

How to handle traffic changes ?

 $\begin{array}{c} + & A \rightarrow F \\ + & A \rightarrow C \\ + & E \rightarrow F \\ - & A \rightarrow F \\ + & D \rightarrow F \\ + & A \rightarrow B \\ + & B \rightarrow F \end{array}$

Routing of request: $A \rightarrow C$

How to handle traffic changes ?

Routing of request: $E \rightarrow F$

How to handle traffic changes ?

Removal of request: $A \rightarrow F$

How to handle traffic changes ?

Routing of request: $D \rightarrow F$

How to handle traffic changes ?

Routing of request: $A \rightarrow B$

How to handle traffic changes ?

Routing of request: $B \rightarrow E$? ?

How to handle traffic changes ?

 $+ B \rightarrow E$

What can we do ?

- $\bullet~$ Reject the new request $\rightarrow~$ blocking probabilities
- Stop all requests and restart with new "optimal" routing
- Sequence of switching to converge to new routing taquin
- Find the most suitable route for incoming request with eventual rerouting of pre-established connections

Our problem:

Inputs: Set of connection requests + current and new lightpaths (route+wavelength) Output: Scheduling for switching connection requests from current to new lightpaths

Constraint: A connection is switched only once

What can we do ?

- $\bullet~$ Reject the new request $\rightarrow~$ blocking probabilities
- Stop all requests and restart with new "optimal" routing
- Sequence of switching to converge to new routing taquin
- Find the most suitable route for incoming request with eventual rerouting of pre-established connections

Our problem:

Inputs: Set of connection requests + current and new lightpaths (route+wavelength) Output: Scheduling for switching connection requests from current to new lightpaths

Constraint: A connection is switched only once

GMPLS

Make-before-break:

- Establish new path before switching the connection
- \implies Destination resources must be available

Break-before-make:

- Break connection before establishing the new path
- \implies Traffic stopped while new path not established

Dependency digraph

Processing using 1 break-before-make and 1 make-before-break

Dependency digraph

Dependency digraph

Dependency digraph

Dependency digraph

Dependency digraph

Dependency digraph

Dependency digraph

Dependency digraph

Dependency digraph

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

- $\sim\,$ Graph searching problem, cops-and-robber game, pursuit, \dots
- Process number, he

Gap with MEVS up to N/2

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

- $\sim\,$ Graph searching problem, cops-and-robber game, pursuit, \dots
- Process number
- \sim Gap with MEVS up to N/2

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

Minimize number of simultaneous break-before-make

- $\sim\,$ Graph searching problem, cops-and-robber game, pursuit,...
- Process number, here 1

• Gap with MFVS up to N/2

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

- $\sim\,$ Graph searching problem, cops-and-robber game, pursuit,...
- Process number, here 1
- Gap with MFVS up to N/2

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

- $\sim\,$ Graph searching problem, cops-and-robber game, pursuit,...
- Process number, here 1
- Gap with MFVS up to N/2

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

- \sim Graph searching problem, cops-and-robber game, pursuit,...
- Process number, here 1
- Gap with MFVS up to N/2

Minimize overall number of break-before-make

= Minimum Feedback Vertex Set (MFVS), here 4

- $\sim\,$ Graph searching problem, cops-and-robber game, pursuit,...
- Process number, here 1
- Gap with MFVS up to N/2

Process number, pn

Rules

- R_1 Put an agent on a vertex
 - $= \ {\rm break/interrupt/route} \ {\rm on} \ {\rm temporary} \ {\rm resources} \ {\rm a} \ {\rm connection}$
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available
- R_3 An agent can be re-used after the processing of the vertex

p-process strategy = strategy to process a (di)graph using at most *p* agents
Process number = smallest *p* s.t. *G* can be *p*-processed, *pn*(*G*)

Rules

- R_1 Put an agent on a vertex
 - = break/interrupt/route on temporary resources a connection
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available

 R_3 An agent can be re-used after the processing of the vertex Direct path

Rules

- R_1 Put an agent on a vertex
 - = break/interrupt/route on temporary resources a connection
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available

 R_3 An agent can be re-used after the processing of the vertex Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

Rules

- R_1 Put an agent on a vertex
 - = break/interrupt/route on temporary resources a connection
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available

 R_3 An agent can be re-used after the processing of the vertex Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

Rules

- R_1 Put an agent on a vertex
 - = break/interrupt/route on temporary resources a connection
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available

 R_3 An agent can be re-used after the processing of the vertex Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

Rules

- R_1 Put an agent on a vertex
 - $= \ break/interrupt/route \ on \ temporary \ resources \ a \ connection$
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available

 R_3 An agent can be re-used after the processing of the vertex Direct path, DAG

Th: If D is a DAG, then pn(D) = 0

Rules

- R_1 Put an agent on a vertex
 - = break/interrupt/route on temporary resources a connection
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available
- R_3 An agent can be re-used after the processing of the vertex

The The The Test of the Test o

Th: $pn(D) = 1 \Leftrightarrow \forall SCC, MFVS(SCC) = 1$

135 MASCOTTE

9/23

Mascotte @ Le Boréon

Rules

- R_1 Put an agent on a vertex
 - = break/interrupt/route on temporary resources a connection
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available
- R_3 An agent can be re-used after the processing of the vertex

The The The Test of the Test o

Th: $pn(D) = 1 \Leftrightarrow \forall SCC, MFVS(SCC) = 1$

135 MASCOTTE

9/23

Mascotte @ Le Boréon

Rules

- R_1 Put an agent on a vertex
 - $= \ {\rm break/interrupt/route} \ {\rm on} \ {\rm temporary} \ {\rm resources} \ {\rm a} \ {\rm connection}$
- R_2 Process a vertex if all its out-neighbors are either processed or occupied by an agent
 - = (Re)route a connection when final resources are available
- R_3 An agent can be re-used after the processing of the vertex

Th: $pn(D) = 1 \Leftrightarrow \forall SCC, MFVS(SCC) = 1$

$$O(N+M)$$

(2, a)-digraph = digraph that can be 2-processed starting from a

Y DAG

digraph contraction

Y' 1-digraph

Strongly Connected Components + test 1-digraph

H' (2, a')-digraph

Th: pn(D) = 2 iff $\exists a \text{ s.t. } D$ is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so $O(N^2(N + M))$

(2, a)-digraph = digraph that can be 2-processed starting from a

Y DAG

Y' 1-digraph

H'(2, a')-digraph

(2, a)-digraph = digraph that can be 2-processed starting from a

- Y DAG
- Y' 1-digraph Strongly Connected Components + test 1-digraph
- H'(2, a')-digraph

(2, a)-digraph = digraph that can be 2-processed starting from a

Y DAG digraph contraction

- Y' 1-digraph Strongly Connected Components + test 1-digraph
- H' (2, a')-digraph

Th: pn(D) = 2 iff $\exists a \text{ s.t. } D$ is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so $O(N^2(N + M))$

(2, a)-digraph = digraph that can be 2-processed starting from a

Y DAG

- digraph contraction
- Y' 1-digraph Strongly Connected Components
 - + test 1-digraph
- H'(2, a')-digraph

(2, a)-digraph = digraph that can be 2-processed starting from a

Y DAG

digraph contraction

- Y' 1-digraph Strongly Connected Components
 - + test 1-digraph
- H'(2, a')-digraph

(2, a)-digraph = digraph that can be 2-processed starting from a

Y DAG

digraph contraction

- Y' 1-digraph Strongly Connected Components
 - + test 1-digraph
- H' (2, a')-digraph

Th: pn(D) = 2 iff $\exists a \text{ s.t. } D$ is a (2, a)-digraph

Complexity: (2, a)-digraph in time O(N(N + M)), so $O(N^2(N + M))$

Digraphs with process number 2 Example

Process number: what is known

Related parameters

- Pathwidth, pw [Robertson & Seymour, JCTB, 1983]
- Node search number, *ns* [Kirousis & Papadimitriou, TCS, 1986]
- Vertex separation, vs

Relations

•
$$pw(G) = vs(G) = ns(G) - 1$$

•
$$vs(D) \le pn(D) \le vs(D) + 1$$

[CPPS05, CoSe07]

Complexity

- NP-Hard
- Not APX
 - No polynomial time constant factor approximation algorithm
- Characterization of (di)graphs with process number 0, 1, 2
- Distributed algorithm for trees

Two classes of services

Priority connections

• Refuse by contract (SLA) break-before-make

Impossibility

- Direct cycle of priority connections in the dependency digraph
- \Rightarrow Small number of such connections
 - Partition into strongly connected components, O(N + M)

Transformation

 \Rightarrow Same problem to solve

Example with priority connection d

Dependency digraph, pn = 1

Without d, pn = 2

Mascotte @ Le Boréon

14/23

MINRIA

Previous heuristic

- 1 Compute all directed cycles using Johnson's algorithm
- 2 Choose the vertex that belongs to the maximum number of cycles
- 3 Remove that vertex and update set of cycles
- 4 Repeat 2-3 until remaining digraph is a DAG
- 5 Process DAG
- 6 Process removed vertices

- Heuristic for MFVS
- Complexity in O((n+m)(c+1))
- Exponential number of cycles \Rightarrow only for small digraphs

Our heuristic / process number

- 1 Priority connections: impossibility and transformation
- 2 Choose of a candidate vertex to receive an agent (to be removed) using a *flow circulation method*
- 3 Remove that vertex and process all possible vertices including removed vertices and priority connections
- 4 Repeat 2-3 until processing of all vertices

Our heuristic / process number

- 1 Priority connections: impossibility and transformation
- 2 Choose of a candidate vertex to receive an agent (to be removed) using a *flow circulation method*
- 3 Remove that vertex and process all possible vertices including removed vertices and priority connections
- 4 Repeat 2-3 until processing of all vertices

MASCOTTE

NRIA

Mascotte @ Le Boréon

16/23

Our heuristic / process number

- 1 Priority connections: impossibility and transformation
- 2 Choose of a candidate vertex to receive an agent (to be removed) using a flow circulation method
- 3 Remove that vertex and process all possible vertices including removed vertices and priority connections
- 4 Repeat 2-3 until processing of all vertices
- Heuristic for the process number
- Complexity in $O(n^2(n+m)) \Rightarrow$ large digraphs

Simulation results: $n \times n$ grids

MASCOTTE

135

Simulation results

MASCOTTE

135

MINRIA

Mascotte @ Le Boréon

18/23

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration a
- How to compute best destination configuration ?
- Extension to SOA ?

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration ?
- How to compute best destination configuration ?
- Extension to SOA ?

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration ?
- How to compute best destination configuration ?
- Extension to SOA ?

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration ?
- How to compute best destination configuration ?
- Extension to SOA ?

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration ?
- How to compute best destination configuration ?
- Extension to SOA ?

Directed graphs

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration ?
- How to compute best destination configuration ?

• Extension to SOA ?

- Number of steps (Ronan Soares)
 - Fixed number of agents, minimize # steps
 - Fixed number of steps, minimize # agents
 - SLA with fixed or time dependent penalities
- Variable number of agents
 - Use available temporary resources (lightpath).
 - Use protection resources: dedicated, shared, path, segment,...
- More general dependency digraphs
 - Sub-wavelength (grooming), LSP
- Parallel operations on a cycle ?
- Smooth reconfiguration ?
- How to compute best destination configuration ?
- Extension to SOA ?

Open problems Undirected graphs

- Characterization of graphs with process number 3
- Relation/difference with node search number
 - Done for trees

- *G* minus a path = stars
- Characterization: 15 excluded minors or a simple linear algorithm

- G minus a path = stars
- Characterization: 15 excluded minors or a simple linear algorithm

- G minus a path = stars
- Characterization: 15 excluded minors or a simple linear algorithm

G s.t. pn(G) = 3: at least 185.266 excluded minors

- G minus a path = stars
- Characterization: 15 excluded minors or a simple linear algorithm

• G s.t. pn(G) = 3: at least 185.266 excluded minors

- G minus a path = stars
- Characterization: 15 excluded minors or a simple linear algorithm
- G s.t. pn(G) = 3: at least 185.266 excluded minors

Process number vs node search number

Process number vs node search number

Open question: Characterize G s.t. pn(G) = sn(G)

Process number vs node search number

Open question: Characterize G s.t. pn(G) = sn(G) \rightarrow done for trees (with Huc & Mazauric)

D. Coudert et al.