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1 Introduction

The aim of exact algorithms is to exactly solve NP-hard problems in the smallest possible
(exponential) worst-case running time. This field dates back to the sixties and seventies,
and it has started to attract a growing interest in the last two decades. There are several
explanations to the increasing interest in exact algorithms:

• There are certain applications that require exact solutions of NP-hard problems, al-
though this might only be possible for moderate input sizes. This holds in particular
for NP-complete decision problems.

• Approximation algorithms are not always satisfactory. Various problems are hard to
approximate. For example, maximum independent set is hard to approximate within
O(n1−ε), for any constant ε > 0, unless P = NP [25].

• A reduction of the base of the exponential running time, say from O(2n) to O(1.9n),
increases the size of the instances solvable within a given amount of time by a constant
multiplicative factor; running a given exponential algorithm on a faster computer can
enlarge the mentioned size only by a (small) additive factor.

• The design and analysis of exact algorithms leads to a better understanding of NP-hard
problems and initiates interesting new combinatorial and algorithmic challenges.

1.1 Branch & Reduce algorithms

One of the major techniques in the design of exact algorithms is Branch & Reduce, which
traces back to the paper of Davis and Putnam [5] (see also [4]). A typical Branch & Reduce
algorithm for a given problem P works as follows. If P is a base instance, the problems is solved
directly in polynomial time. Otherwise the algorithm transforms the problem by applying a
set of polynomial-time reduction rules. Then it branches, in polynomial-time, on two or more
subproblems P1, . . . ,Ph, according to a proper set of branching rules. Such subproblems are
solved recursively, and the partial solutions obtained are eventually combined, in polynomial
time, to get a solution for P.

∗Dipartimento di Informatica, Sistemi e Produzione, Università di Roma Tor Vergata, via del Politecnico
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Branch & Reduce algorithms are usually analyzed with the bounded search tree technique.
Suppose we wish to find a time bound for a problem of size n. Assume that the depth of the
search tree is polynomially bounded (which is trivially true in most cases). It is sufficient to
bound the maximum number P (n) of base instances generated by the algorithm: the running
time will be O∗(P (n))1. If P is a base instance, trivially P (n) = 1. Otherwise, consider a
possible branching step b, generating subproblems Pb

1, . . . ,P
b
h(b), and let n − δb

j < n be the

size of subproblem Pb
j . The vector δb = (δb

1, . . . , δ
b
h(b)) is sometimes called branching vector.

It follows that

P (n) ≤

h(b)
∑

j=1

P (n − δb
j).

Consider function

f b(x) = 1 −

h(b)
∑

j=1

x−δb
j .

This function has a unique positive root λb = bf(δb) (branching factor of δb). Branching
factors can be easily computed numerically (see Appendix A). It turns out that P (n) ≤ λn,
where λ = maxb{λ

b}.
We say that a branching vector δ dominates a branching vector δ′ if δ ≤ δ′, i.e. δ is

component-wise not larger than δ′. It is not hard to see that, when δ ≤ δ′, bf(δ) ≥ bf(δ′).
Hence, with respect to the running time analysis, it is sufficient to consider a dominating set
of branching vectors. In other words, each time we replace the branching vector of a feasible
branching with a branching vector dominating it, we obtain a pessimistic estimate of the
running time. These properties will be extensively used in these notes.

1.2 Measure & Conquer

Branch & Reduce algorithms have been used for more than 40 years to solve NP-hard prob-
lems. The fastest known such algorithms are often very complicated. Typically, they consist
of a long list of non-trivial branching and reduction rules, and are designed by means of a
long and tedious case distinction. Despite that, the analytical tools available are still far from
producing tight worst-case running time bounds for this kind of algorithms.

In these notes we present an improved analytical tool, that we called Measure & Conquer.
In the standard analysis, n is both the measure used in the analysis and the quantity in
terms of which the final time bound is expressed. However, one is free to use any, possibly
sophisticated, measure m in the analysis, provided that m ≤ f(n) for some known function
f . This way, one achieves a time bound of the kind O∗(λm) = O∗(λf(n)), which is in the
desired form. The idea behind Measure & Conquer is focusing on the choice of the measure.
In fact, a more sophisticated measure may capture phenomena which standard measures are
not able to exploit, and hence lead to a tighter analysis of a given algorithm.

We apply Measure & Conquer to a toy algorithm mis for MIS. According to a standard
analysis, the running time of this algorithm is O∗(1.33n). Thanks to a better measure, we
prove that the same algorithm has indeed running time O∗(1.26n). This result shows that
a good choice of the measure can have a tremendous impact on the time bounds achievable,

1Throughout this paper we use a modified big-Oh notation that suppresses all polynomially bounded factors.
For functions f and g we write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial.
Also while speaking about graph problems, we use n to denote the number of nodes in the graph.
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comparable to the impact of improved branching and reduction rules. Hence, finding a good
measure should be at first concern when designing Branch & Reduce algorithms.

2 The Maximum Independent Set Problem

Let G = (V,E) be an n-node undirected, simple graph without loops. Sometimes, we also
use V (G) for V and E(G) for E. The (open) neighborhood of a node v is denoted by N(v) =
{u ∈ V : uv ∈ E}, and its closed neighborhood by N [v] = N(v) ∪ {v}. We let d(v) = |N(v)|
be the degree of v. By Nx(v) we denote the set of nodes at distance x from v. In particular,
N1(v) = N(v). Given a subset V ′ of nodes, G[V ′] is the graph induced by V ′, and G − V ′ =
G[V \ V ′]. We use G − v for G − {v}.

A set S ⊆ V is called an independent set for G if the nodes of S are pairwise non adjacent.
The independence number α(G) of a graph G is the maximum cardinality of an independent
set of G. The maximum independent set problem (MIS) asks to determine α(G).

Suppose that the considered algorithm, at a given branching or reduction step, decides
that a node v belongs or does not belong to the optimum solution. In the first case we say
that v is selected, and otherwise discarded.

Let us describe some simple properties of maximum independent sets.

Lemma 1 Let G be a graph with a connected component C ⊂ G. Then

α(G) = α(C) + α(G − C).

Lemma 2 Let G be a graph and v and w two nodes of G with N [w] ⊆ N [v] (w dominates
v), then

α(G) = α(G − v).

Lemma 3 Let G be a graph and v any node of G. Then there exists a maximum independent
set either containing v or at least two of its neighbors N(v).

Exercise 1 Prove Lemmas 1, 2, and 3.

We will use the following folding operation, which is a special case of the struction oper-
ation defined in [6], and which was introduced in the context of exact algorithm for MIS in
[1, 3]. A node v is foldable if N(v) = {u1, u2, . . . , ud(v)} contains no anti-triangle2. Folding a
given foldable node v of G is the process of transforming G into a new graph Gv by:

(1) adding a new node uij for each anti-edge uiuj in N(v);

(2) adding edges between each uij and the nodes in N(ui) ∪ N(uj) \ N [v];

(3) adding one edge between each pair of new nodes;

(4) removing N [v].

Note that nodes of degree at most two are always foldable. Examples of folding are given in
Figure 1. The following simple property holds.

2An anti-triangle is a triple of nodes which are pairwise not adjacent. Similarly, an anti-edge is a pair of
non-adjacent nodes.
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Figure 1 Examples of folding.
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Lemma 4 Consider a graph G, and let Gv be the graph obtained by folding a foldable node
v. Then

α(G) = 1 + α(Gv).

Exercise 2 Prove Lemma 4. Hint: use Lemma 3

We eventually introduce the following useful notion of mirror defined in [11, 13]. Given
a node v, a mirror of v is a node u ∈ N2(v) such that N(v) \ N(u) is a (possibly empty)
clique. We denote by M(v) the set of mirrors of v. Examples of mirrors are given in Figure 2.
Intuitively, when we discard a node v, we can discard its mirrors as well without modifying

Figure 2 Example of mirrors: u is a mirror of v.
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v

u

v

u

v

u

the maximum independent set size. This intuition is formalized in the following lemma.

Lemma 5 For any graph G and for any node v of G,

α(G) = max{α(G − v − M(v)), 1 + α(G − N [v])}.

Exercise 3 Prove Lemma 5. Hint: use Lemma 3

3 A Simple MIS Algorithm

In this section we describe a toy algorithm mis for MIS, and show that its running time is
O∗(1.33n) via a standard analysis. Algorithm mis is described in Figure 3. When the graph
is empty (base case) the algorithm simply returns 0. Otherwise it applies, when possible, the
Folding Lemma 4 to a node v of degree at most 2, considering nodes of smaller degree first
in case of ties:

mis(G) = 1 + mis(Gv).

As a last choice, the algorithm greedily takes a node v of maximum degree, and branches by
either discarding v or selecting v (and discarding its neighbors)

mis(G) = max{mis(G − v), 1 + mis(G − N [v])}.

Theorem 1 Algorithm mis solves MIS in O∗(1.33n) time.
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Figure 3 Algorithm mis for the maximum independent set problem.

int mis(G) {
if (G = ∅) return 0; //Base case
//Folding
Take v of minimum degree
if (d(v) ≤ 2) return 1 + mis(Gv);
//“Greedy” branching
Take v of maximum degree;
return max{ mis(G − v), 1 + mis(G − N [v]) };

}

Proof. Let P (n) be the number of base instances generated by the algorithm to solve
an instance of size n. The depth of the recursion is O(n) since in each step the number of
nodes decreases at least by one. Moreover, the algorithm takes polynomial time, excluding
the time needed for the recursive calls. It follows that the running time of the algorithm is
O(P (n)nO(1)) = O∗(P (n)).

We next show by induction that P (n) ≤ λn for λ < 1.33. In the base case n = 0 and
P (0) = 1 ≤ λ0 for every λ > 0. When the algorithm folds a node, the number of nodes
decreases at least by one. Hence, for every λ ≥ 1,

P (n) ≤ P (n − 1) ≤ λn−1 ≤ λn.

When the algorithm branches at a node v with d(v) ≥ 4, in one subproblem it removes 1
node (i.e. v), and in the other it removes 1 + d(v) ≥ 5 nodes (i.e. N [v]). Let λ1 = bf(1, 5) =
1.32 . . . < 1.33 be the positive root of 1 − x−1 − x−5. For λ ≥ λ1 we obtain

P (n) ≤ P (n − 1) + P (n − 5) ≤ λn−1 + λn−5 ≤ λn.

Otherwise, the algorithm branches at a node v of degree exactly 3, hence removing either
1 or 4 nodes. However, in the first case a node of degree 2 is folded afterwards, with the
removal of at least 2 more nodes. Let λ2 = bf(3, 4) = 1.22 . . . < 1.23 be the positive root of
1 − x−3 − x−4. For λ ≥ λ2,

P (n) ≤ P (n − 3) + P (n − 4) ≤ λn−3 + λn−4 ≤ λn.

The claim follows. �

The time bound above is the best one can achieve via a standard analysis. We will see how
a non-standard analysis can provide much better time bounds.

4 A Refined Analysis via Measure & Conquer

The classical approach to improve on mis would be designing refined branching and reduction
rules. In particular, one tries to improve on the tight recurrences. We next show how to get
a much better time bound thanks to a better measure of subproblems size (without changing
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Figure 4 Case analysis of folding for m = n≥3.

d(u) d(w) d(uw) m′

2 2 2 m
2 ≥ 3 ≥ 3 m − 1 + 1
≥ 3 ≥ 3 ≥ 4 m − 2 + 1

the algorithm!). We will start by introducing in Section 4.1 an alternative, simple, measure.
This measure does not immediately give a better time bound, but it will be a good starting
point to define a really better measure.

4.1 An Alternative Measure

Nodes of degree at most 2 can be removed without branching. Hence they do not really
contribute to the size of the problem. For example, if the maximum degree is 2, then mis

solves the problem in polynomial time! In view of that, let us define the size of the problem
to be number of nodes of degree at least 3.

More formally, let ni denote the number of nodes of degree i, and n≥i =
∑

j≥i nj. We
define the size of the problem to be m = n≥3 (rather than m = n). We remark that, since
m = n≥3 ≤ n, if we prove a running time bound of type O∗(λm), we immediately get a O∗(λn)
time bound.

Let us give an alternative proof of Theorem 1.
Proof. (Theorem 1) Let us define G a base instance if the maximum degree in G is 2
(which implies m = n≥3 = 0). Let moreover P (m) be the number of base instances generated
by the algorithm to solve an instance of size m. By the usual argument the running time is
O∗(P (m)). We prove by induction that P (m) ≤ λm for λ < 1.33, which implies the claim
being m ≤ n. In the base case m = 0. Thus

P (0) = 1 ≤ λ0.

Let m′ be the size of the problem after folding a node v. It is sufficient to show that m′ ≤ m,
from which

P (m) ≤ P (m′) ≤ λm′

≤ λm

for λ ≥ 1. This condition trivially holds when folding only removes nodes. In the remaining
case, N(v) = {u,w} with uw /∈ E. In this case we remove {v, u,w} and add a node uw with
d(uw) ≤ d(u) + d(w) − 2. By case analysis (see Figure 4) m′ ≤ m also in this case.

Suppose now that we branch at a node v with d(v) ≥ 4. Note that all the nodes of the
graph have degree ≥ 3 (since we do not fold). Hence by the standard argument

P (m) ≤ P (m − 1) + P (m − 5) ≤ λm−1 + λm−5 ≤ λm.

Recall that the inequality above is satisfied for λ ≥ 1.33.
Eventually, consider branching at v, d(v) = 3. In this case we remove either 1 or 4 nodes

of degree 3. However, in the first case the degree of the 3 neighbors of v drops from 3 to 2,
with a consequent further reduction of the size by 3:

P (m) ≤ P (m − 4) + P (m − 4) ≤ λm−4 + λm−4 ≤ λm.
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The inequality above is satisfied for λ ≥ bf(4, 4) = 1.18 . . .. The claim follows. �

4.2 A Better Measure

When we branch at a node of large degree, we decrement by 1 the degree of many other
nodes. This is beneficial on long term, since we can remove nodes of degree at most 2 without
branching. We are not exploiting this fact to its full extent in the current analysis.

An idea is then to attribute a larger weight ωi ≤ 1 to nodes v of larger degree i, and
let the size of the problem be the sum of node sizes. This way, when the degree of a node
decreases, the size of the problem decreases as well. More formally, for a constant ω ∈ (0, 1]
to be fixed later, we let

ωi =











0 if i ≤ 2;

ω if i = 3;

1 otherwise.

We also use ω(v) for ωd(v). The size m = m(G) of graph G = (V,E) is

m =
∑

v∈V

w(v) = ω · n3 + n≥4.

Thanks to this new measure of subproblems size, we are able to refine the analysis of mis.

Theorem 2 Algorithm mis solves MIS in O∗(1.29n) time.

Proof. With the usual notation, let us show that P (m) ≤ λm for λ < 1.29. In the base
case m = 0, and thus

P (0) = 1 ≤ λ0.

In case of folding of node v, let m′ = m(Gv) be the size of the corresponding subproblem.
Also in this case it is sufficient to show that m′ ≤ m. This condition is satisfied when nodes
are only removed (being the weight increasing with the degree). The unique remaining case
is N(v) = {u,w}, with u and w not adjacent. In this case we remove {v, u,w}, and add a
node uw with d(uw) ≤ d(u) + d(w) − 2. Hence it is sufficient to show that

ω(v) + ω(u) + ω(w) − ω(uw) = ω(u) + ω(w) − ω(uw) ≥ 0.

By a simple case analysis (see Figure 5), it follows that this condition holds for ω ≥ 0.5.
Consider now the case of branching at a node v, d(v) ≥ 5. Let di be the degree of the ith

neighbor of v (which thus has weight ωdi
). Then

P (m) ≤ P (m − ωd(v) −

d(v)
∑

i=1

(ωdi
− ωdi−1)) + P (m − ωd(v) −

d(v)
∑

i=1

ωdi
)

≤ P (m − 1 −
5

∑

i=1

(ωdi
− ωdi−1)) + P (s − 1 −

5
∑

i=1

ωdi
).

Observe that we can replace di ≥ 6 with di = 5. In fact in both cases ωdi
= 1 and ωdi

−ωdi−1 =
0. Hence we can assume di ∈ {3, 4, 5}. This is crucial to obtain a finite number of recurrences!
We obtain the following set of recurrences

P (m) ≤ P (m − 1 − t3(ω − 0) − t4(1 − ω) − t5(1 − 1)) + P (m − 1 − t3 ω − t4 − t5),
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Figure 5 Case analysis of folding for m = ωn3 + n≥4.

d(u) d(w) d(uw) ω(u) + ω(w) − ω(uw) ≥ 0

2 2 2 0 + 0 − 0 ≥ 0
2 3 3 0 + ω − ω ≥ 0
2 ≥ 4 ≥ 4 0 + 1 − 1 ≥ 0
3 3 4 ω + ω − 1 ≥ 0
3 ≥ 4 ≥ 4 ω + 1 − 1 ≥ 0
≥ 4 ≥ 4 ≥ 4 1 + 1 − 1 ≥ 0

where t3, t4, and t5 are non-negative integers satisfying t3 + t4 + t5 = 5. (Intuitively, ti is the
number of neighbors of v of degree i).

Consider now branching at a node v, d(v) = 4. By a similar argument (with di ∈ {3, 4}),
we obtain

P (m) ≤































P (m − 1 − 4 · ω − 0 · (1 − ω)) + P (m − 1 − 4 · ω − 0 · 1)

P (m − 1 − 3 · ω − 1 · (1 − ω)) + P (m − 1 − 3 · ω − 1 · 1)

P (m − 1 − 2 · ω − 2 · (1 − ω)) + P (m − 1 − 2 · ω − 2 · 1)

P (m − 1 − 1 · ω − 3 · (1 − ω)) + P (m − 1 − 1 · ω − 3 · 1)

P (m − 1 − 0 · ω − 4 · (1 − ω)) + P (m − 1 − 0 · ω − 4 · 1)

Consider eventually branching at a node v, d(v) = 3. By an analogous argument (with
ω(v) = ω3 = ω and di = 3)

P (m) ≤ P (m − ω − 3ω) + P (m − ω − 3ω).

For every ω ∈ [1/2, 1], the set of recurrences above provides an upper bound λ(ω) on
λ. Our goal is minimizing λ(ω) (hence getting a better time bound). Via exhaustive search
over a grid of values for ω we obtained λ(0.7) < 1.29 (see Appendix B for a C++ program
computing it). The claim follows. �

4.3 An Even Better Measure

We can extend the analysis from previous section to larger degrees. For example, we might
let the weight ωi associated to degree-i nodes be:

ωi =























0 if i ≤ 2;

ω if i = 3;

ω′ if i = 4;

1 otherwise.

Here ω and ω′ are two proper constants, with 0 < ω ≤ ω′ ≤ 1. Using this measure, and an
analysis similar to the one from previous section, it is not hard to prove the following result
(see Appendix C for a C++ program optimizing the weights).
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Theorem 3 Algorithm mis solves MIS in O∗(1.26n) time.

Exercise 4 Prove the theorem above. Hint: ω = 0.750 and ω′ = 0.951.

Exercise 5 What happens if we set ω5 = ω′′ for a further weight ω′ ≤ ω′′ ≤ 1? Do you see
any pattern?

Exercise 6 Design a better algorithm for MIS, possibly using the other mentioned reduc-
tion rules (mirroring etc.). Analyze this algorithm in the standard way and via Measure &
Conquer.

Exercise 7 Can you see an alternative, promising measure for MIS?

5 Lower bounds

Despite the big improvements in the running time bounds, it might be that our refined analysis
is still far from being tight. Hence, it is natural to ask for (exponential) lower bounds. Notice
that we are concerned with lower bounds on the complexity of a particular algorithm, and
not with lower bounds on the complexity of an algorithmic problem. A lower bound may give
an idea of how far the analysis is from being tight.

In this section we prove a Ω(2n/4) lower bound on the running time of mis. The large
gap between the upper and lower bound for mis suggests the possibility that the analysis of
that algorithm can be further refined (possibly by measuring the size of the subproblems in
a further refined way).

Theorem 4 The running time of mis is Ω(2n/4) = Ω(1.18n).

Proof. Consider the graph Gk consisting of k = n/4 copies of a 4-clique (see Figure 6).
We let P (k) be the number of subproblems generated by mis to solve MIS on Gk. Consider
any clique C = {a, b, c, d} ∈ Gk. The algorithm might branch at a. In the subproblem where
a is discarded, the algorithm removes b, c, and d via folding. In the other subproblem the
algorithm removes N [a] = {a, b, c, d}. Hence in both cases C is deleted from the graph, leaving
an instance Gk−1 which is solved recursively. We thus obtain the following recurrences:

P (k) ≥

{

2P (k − 1) if k ≥ 1;

1 if k = 0.

We can conclude that P (k) ≥ 2k = 2n/4. �

Exercise 8 Find a larger lower bound on the running time of mis. Hint: Ω(3n/6) = Ω(1.20n),
maybe better.

Exercise 9 Consider the variant of mis where the algorithm, after the base case, branches
on connected components when possible. Can you find a good lower bound on the running
time of this modified algorithm?

Remark 1 Typically finding lower bounds on connected graphs is much more complicated.
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Figure 6 Example of the lower bound graph Gk for k = 3.
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6 Quasiconvex Analysis of Backtracking Algorithms

When the number of distinct weights grows, there is a computational problem which one has
to face. In fact, both the number of recurrences and the space of candidate weights tend to
grow exponentially in the number of weights. Of course the best weights need to be computed
only once, and this computation has no impact on the actual behavior of the algorithm. Still,
this can be a problem during the design of the algorithm, when having a quick feedback is
important. In this section we outline a general way to cope with the optimization of the
weights (for a given set of recurrences), described by Eppstein [8].

6.1 Multivariate Recurrences

Consider a collection of integral measures m1, . . . ,md, describing different aspects of the
size of the problem considered. For example, in the analysis of mis in Section 4.2 we used
m1 = n3 and m2 = n≥4. Let P (m1, . . . ,md) be the number of base instances generated
by the algorithm to solve a problem with measures m1, . . . ,md. Consider a given branching
step b, and let δb

i,j be the decrease of the ith measure of the jth subproblem. The following
multivariate recurrence holds

P (m1, . . . ,md) ≤ P (m1 − δb
1,1, . . . ,md − δb

d,1) + . . .

+ P (m1 − δb
1,h(b), . . . ,md − δb

d,h(b))

Remark 2 Some of the δb
i,j ’s might be negative. For example, when we delete one edge

incident to a node of degree 4, n≥4 decreases but n3 grows.

Solving multivariate recurrences is typically rather complicated. A common alternative is
turning them into univariate recurrences by considering a linear combination of the measures
(aggregated measure)

m(w) = w1 m1 + . . . + wd md

Here w = (w1, . . . , wd) plays a role analogous to the weights ωi in the analysis of mis. In
particular, in Section 4.2 we set w1 = ω ∈ (0, 1] and w2 = 1.

The weights wi are in general rational, possibly negative, numbers. However, they need to
satisfy the constraint δb

j :=
∑

i wi δb
i,j > 0 for every branching b and corresponding subproblem

j. In words, the aggregated measure m(w) decreases in each subproblem3. For example, in
the analysis of mis, this condition is satisfied for every ω ∈ [0.5, 1].

3In the degenerate case h(b) = 1 (a unique subproblem), δb
1 = δb

1,1 ≥ 0 is allowed (provided that the
branching depth can be bounded in an alternative way).
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Figure 7 Example of quasiconvex function, with a corresponding convex level set.

f(x)

x

a

f≤a

The resulting set of univariate recurrences can be solved in the standard way (for fixed
weights). In particular, for each branching b, we compute the (unique) positive root λb(w) of
function

f b(x,w) := 1 −

h(b)
∑

j=1

x−
Pd

i=1
wiδb

i,j .

This gives a running time bound of the kind O∗(λ(w)
P

i wi mi) where λ(w) := maxb{λ
b(w)}.

6.2 Quasiconvexity

Function λ(w) has a very special property, which simplifies considerably its minimization.
We recall that a function f : D → R, with D ⊆ R

d convex, is quasiconvex if its level set

f≤a := {x ∈ D : f(x) ≤ a}

is convex for any a ∈ R. An example of quasiconvex (but not convex) function is given in
Figure 7.

Theorem 5 Function λ(w) is quasiconvex over R
d.

Proof. The maximum over a finite number of quasiconvex functions is quasiconvex. Hence
it is sufficient to show that each λb(w) is quasiconvex. Recall that λb(w) is the unique

positive root of f b(x,w) = 1 −
∑

j x−
P

i wiδ
b
i,j . Define gb(x,w) =

∑

j x−
P

i wiδ
b
i,j . From the

monotonicity of f b(x,w)

λb,≤a = {w ∈ R
d : f b(x,w) ≥ 0} = {w ∈ R

d : gb(x,w) ≤ 1} = gb,≤1.

Function gb is the sum of convex functions, and hence is convex. Then trivially its level sets,
including gb,≤1, are convex. �

Corollary 1 Function λ(w) is quasiconvex over any convex D ⊆ R
d.

Proof. It follows from the proof of Theorem 5, and the fact that the intersection of convex
sets is convex. �
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6.3 Applications to Measure & Conquer

We can use Theorem 5 to optimize the weights in a much faster way with respect to exhaustive
grid search. Suppose we define a set of linear constraints on the weights such that:

(a) the size of each subproblem does not increase;

(b) m(w) ≤ n, where n is a standard measure for the problem.

This gives a convex domain of weights w. On that domain we can compute the minimum
value λ(w̃) of the quasiconvex function λ(w). The resulting running time is O∗(λ(w̃)n).

There are known techniques to find efficiently the minimum of a quasi-convex function (see
e.g. [8]). We successfully applied [12, 13, 14] the following, very fast and easy to implement,
approach based on randomized local search (in simulated annealing style):

• We start from any feasible initial value w;

• We add to w a random vector ∆ w in a given range [−∆,∆]d;

• If the resulting w′ is feasible and gives λ(w′) ≤ λ(w), we set w = w′;

• We iterate the process, reducing the value of ∆ if no improvement is achieved for a large
number of steps;

• The process halts when ∆ drops below a given value ∆′.

Appendix D contains a C++ program applying this method to the optimization of the weights
in the analysis of Section 4.3.

Remark 3 The local search algorithm above does not guarantee closeness to the optimal
λ(w̃). However it is accurate in practice. More important, it always provides feasible upper
bounds on the running time.

7 Other Examples of Measure & Conquer

In this section we briefly describe other (more or less explicit) applications of the Measure &
Conquer approach.

The first non-trivial algorithm for the minimum dominating set problem (MDS) is based
on Measure & Conquer [17, 18]4. The basic idea is developing an algorithm for the minimum
set cover problem (MSC). This algorithm is analyzed by measuring the size of the subproblems
in terms of the sum of the number n of sets and number m of elements. The resulting running
time is O∗(1.381n+m). The size of the MSC formulation of a MDS instance on n nodes is 2n.
It follows that MDS can be solved in O∗(1.3812n) = O∗(1.803n) time. The same algorithm
is re-analyzed in [10, 13], using a refined measure which assigns different weights to sets of
different size and elements of different frequency. This way the time bound is refined to
O∗(1.527n), an impressive improvement.

A similar, but more complex measure is used in [12] to develop the first better-than-trivial
algorithm for the connected version of MDS, where the dominating set is required to induce a
connected graph. Here, besides cardinalities and frequencies, the measure takes into account
the local connectivity properties of the original graph.

4In the same year, slower but better-than-trivial algorithms for MDS were independently developed in
[15, 22].
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In a paper on 3-coloring and related problems [2], Beigel and Eppstein consider a reduction
to constraint satisfaction, and measure the size of the constraint satisfaction problem with
a linear combination of the number of variables with three and four values in their domain,
respectively. A more sophisticated measure is introduced by Eppstein in the context of cubic-
TSP [7]: let F be a given set of forced edges, that is edges that we assume belonging to the
optimum solution. For an input cubic graph G = (V,E), the author measures the size of
the problem in terms of |V | − |F | − |C|, where C is the set of 4-cycles which form connected
components of G − F .

Gupta et al. [19] used Measure & Conquer while analyzing exact algorithms for finding
maximal induced subgraphs of fixed node degree. Razgon [23], using a non-standard measure,
derived the first non-trivial algorithm breaking the O∗(2n) barrier for the feedback vertex set
problem (see also [9]). Kowalik [20] used Measure & Conquer in his branching algorithm for
the edge coloring problem. The analysis of Gasper-Liedloff’s algorithm for the independent
dominating set problem in [16] is based on Measure & Conquer. Another example is the
paper by Kratsch and Liedloff on the minimum dominating clique problem [21]. We are also
aware of a number of other (still unpublished) papers using the same kind of approach.

Measure & Conquer can be used also as a tool to prove tighter combinatorial bounds.
For example, using this kind of approach and the same measure which is mentioned above
for MDS, Fomin et al. [14] proved that the number of minimal dominating sets in a graph
is O∗(1.721n). Based on this result, they also derived the first non-trivial exact algorithms
for the domatic number problem and for the minimum-weight dominating set problem. The
bounds on the number of minimal feedback vertex sets (or maximal induced forests) obtained
in [9] are also based on Measure & Conquer.

Of course, a non-standard measure can be used to design better algorithms in the standard
way: one considers the tight recurrences for a given algorithm (and measure), and tries to
design better branching and reduction rules for the corresponding cases. A very recent work
by van Rooij and Bodlaender goes in this direction [24].
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Roma “Tor Vergata”, Roma, Italy, Mar. 2004.

[18] F. Grandoni. A note on the complexity of minimum dominating set. Journal of Discrete
Algorithms, 4(2):209–214, 2006.

[19] S. Gupta, V. Raman, and S. Saurabh. Fast exponential algorithms for maximum -regular
induced subgraph problems. In Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 139–151. 2006.

[20] L. Kowalik. Improved edge-coloring with three colors. In Graph-Theoretic Concepts in
Computer Science (WG), pages 90–101. 2006.

[21] D. Kratsch and M. Liedloff. An exact algorithm for the minimum dominating clique
problem. Theoretical Computer Science, 385(1-3):226–240, 2007.

14



[22] B. Randerath and I. Schiermeyer. Exact algorithms for MINIMUM DOMINATING SET.
Technical Report zaik-469, Zentrum für Angewandte Informatik, Köln, Germany, 2004.

[23] I. Razgon. Exact computation of maximum induced forest. In Scandinavian Workshop
on Algorithm Theory (SWAT), pages 160–171, 2006.

[24] J. van Rooij and H. L. Bodlaender. Design by Measure and Conquer, A Faster Exact Al-
gorithm for Dominating Set. In Symposium on Theoretical Aspects of Computer Science,
pages 657–668, 2008.

[25] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In ACM Symposium on the Theory of Computing (STOC), pages
681–690, 2006.

Appendix A

#include <c s td l i b >
#include <iostream>
#include <s t d l i b . h>
#include <math . h>
#include <s td i o . h>

#define PRECISION 40
#define MAXN 100

using namespace s td ;

/∗
branchFactor ( ) r e c e i v e s in input a branching vec t or
I t r e tu rns the corresponding branching f a c t o r ” b f ”
This i s done v ia doub l ing + binary search . The de s i r e d va lu e s a t i s f i e s
1−sum { j =0}ˆ{n−1} b f ˆ(−V[ i ])=0
The binary search i s anyway in t e r r u p t e d when the va lu e i s accurate enough
∗/
double branchFactor ( int n , double∗ V){

double l e f t =0.0 ;
double r i g h t =1.0 ;
double f ;
//we compute an upper bound r i g h t on the branching f a c t o r v ia doub l ing
do{

r i g h t = r i g h t ∗2 ;
f =1.0 ;
for ( int j =0; j<n ; j++) {

f −= pow( r i ght , −V[ j ] ) ;
}

}while ( f <=0);
//we compute the branching f a c t o r v ia b inary search
double bf ;
for ( int i =0; i<PRECISION; i++) {

bf = ( l e f t+r i g h t ) / 2 . 0 ;
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f =1.0 ;
for ( int j =0; j<n ; j++) {

f −= pow( bf , −V[ j ] ) ;
}
i f ( f==0) return bf ;
i f ( f >0) r i g h t = bf ;
else l e f t = bf ;

}
return r i g h t ; // t h i s way we return an upper bound

}

int main ( ) {

int n ;
double V[MAXN] ;
double d ;

while (1 ) {
cout << endl << ”# o f branchings : ” ;
c in >> n ;
i f (n<=0 | | n>MAXN) e x i t ( 1 ) ;

for ( int i =0; i<n ; i++) {
cout << ” de l t a ( ” << i << ” ) : ” ;
c in >> d ;
i f (d<0) e x i t ( 1 ) ;
V[ i ]=d ;

}

double bf = branchFactor (n , V) ;
p r i n t f ( ” bf=%.8 f (%.8 f )\n” , bf , l o g ( bf )/ l og ( 2 ) ) ;

}
return 0 ;

}

Appendix B

#include <s t d l i b . h>
. . .

using namespace s td ;

double branchFactor ( int n , double∗ V){
. . .

}
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/∗
lambda i s the va lu e o f the branching f a c t o r f o r g iven ( f e a s i b l e ) we igh t s .
”stampa” i s used to p r in t or not some d e t a i l s
∗/
double computeLambda(double a , int stampa ) {

double V[ 1 0 ] ; //we assume t ha t we branch on at most 10 subproblem , which i s the case here
double lambda , lambda max= −1;

//We don ’ t need to cons ider the base case and f o l d i n g

//Branch at degree >=5
//n3 and n4 are the ne ighbor s o f degree 3 and 4
//n5 are the ne ighbor s o f degree at l e a s t 5
for ( int n3=0; n3<=5; n3++){

for ( int n4=0; n4<=5−n3 ; n4++){
int n5 = 5−n3−n4 ;
V[0]=1+n3∗a+n4∗(1−a)+n5 ∗0 ;
V[1]=1+n3∗a+n4∗1+n5 ∗1 ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 5 : 1+%d∗a+%d∗(1−a)+%d∗0/1+%d∗a+%d∗1+%d∗1=%.8 l f \n” , n3 ,
lambda max = MAX( lambda max , lambda ) ;

}
}

//Branch at degree 4
for ( int n3=0; n3<=4; n3++){

int n4 = 4−n3 ;
V[0]=1+n3∗a+n4∗(1−a ) ;
V[1]=1+n3∗a+n4 ∗1 ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 4 : 1+%d∗a+%d∗(1−a)/1+%d∗a+%d∗1=%.8 l f \n” , n3 , n4 , n3 , n4 ,
lambda max = MAX( lambda max , lambda ) ;

}

//Branch at degree 3
V[0]=4∗a ;
V[1 ]=4∗a ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 3 : 4a/4a=%.8 l f \n” , lambda ) ;
lambda max = MAX( lambda max , lambda ) ;

i f ( stampa ) p r i n t f ( ”\nlambda max ( a=%.8 l f )=%.8 l f \n” , a , lambda max ) ;

return lambda max ;
}
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//Here we put the con s t r a in t s on the we igh t s : in our case a\ in [ 0 . 5 , 1 . 0 ]
bool f e a s i b l e (double a ){

i f ( a>=0.5 && a<=1.0) return true ;
else return fa l se ;

}

int main ( ) {

double lambdamin = 1000 ;
double amin = 1000 ;

//we search f o r the b e s t a in a g r i d wi th o f f s e t 1/ g r i d
int g r id =100;
for ( int i =1; i<=gr id ; i++){

double a=(double ) i / g r id ;
i f ( f e a s i b l e ( a ) ){

double lambda = computeLambda(a , 0 ) ;
p r i n t f ( ”lambda ( a=%l f )=%.8 l f \n” , a , lambda ) ;
i f ( lambda < lambdamin ){

lambdamin = lambda ;
amin = a ;

}
}

}
p r i n t f ( ”\n\nBEST BOUND\n” ) ;
computeLambda(amin , 1 ) ;

// p r i n t f (”\nlambdamin (amin=%l f )=%.8 l f \n” , amin , lambdamin ) ;

system ( ”PAUSE” ) ;
return 0 ;

}

Appendix C

#include <s t d l i b . h>
. . .

using namespace s td ;

double branchFactor ( int n , double∗ V){
. . .

}

/∗
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lambda i s the va lu e o f the branching f a c t o r f o r g iven ( f e a s i b l e ) we igh t s .
”stampa” i s used to p r in t or not some d e t a i l s
∗/
double computeLambda(double a3 , double a4 , int stampa ) {

double V[ 1 0 ] ; //we assume t ha t we branch on at most 10 subproblem , which i s the case here
double lambda , lambda max= −1;

//We don ’ t need to cons ider the base case and f o l d i n g

//Branch at degree >=6
//Here n6 are the ne ighbor s o f degree at l e a s t 6
for ( int n3=0; n3<=6; n3++){

for ( int n4=0; n4<=6−n3 ; n4++){
for ( int n5=0; n5<=6−n3−n4 ; n5++){

int n6 = 6−n3−n4−n5 ;
V[0]=1+n3∗a3+n4∗( a4−a3)+n5∗(1−a4)+n6 ∗0 ;
V[1]=1+n3∗a3+n4∗a4+n5∗1+n6 ∗1 ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 6 : 1+%d∗a3+%d∗( a4−a3)+%d∗(1−a4)+%d∗0/1+%d∗a3+%d∗a4+%d

n3 , n4 , n5 , n6 , n3 , n4 , n5 , n6 , lambda ) ;
lambda max = MAX( lambda max , lambda ) ;

}
}

}

//Branch at degree 5
for ( int n3=0; n3<=5; n3++){

for ( int n4=0; n4<=5−n3 ; n4++){
int n5 = 5−n3−n4 ;
V[0]=1+n3∗a3+n4 ∗( a4−a3)+n5∗(1−a4 ) ;
V[1]=1+n3∗a3+n4∗a4+n5 ∗1 ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 5 : 1+%d∗a3+%d∗( a4−a3)+%d∗(1−a4)/1+%d∗a3+%d∗a4+%d∗1=%.8

n3 , n4 , n5 , n3 , n4 , n5 , lambda ) ;
lambda max = MAX( lambda max , lambda ) ;

}
}

//Branch at degree 4
for ( int n3=0; n3<=4; n3++){

int n4 = 4−n3 ;
V[0 ]= a4+n3∗a3+n4∗( a4−a3 ) ;
V[1 ]= a4+n3∗a3+n4∗a4 ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 4 : a4+%d∗a3+%d∗( a4−a3 )/ a4+%d∗a3+%d∗a4=%.8 l f \n” ,

n3 , n4 , n3 , n4 , lambda ) ;
lambda max = MAX( lambda max , lambda ) ;

}

//Branch at degree 3
int n3 = 3 ;
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V[0]= a3+n3∗a3 ;
V[1 ]= a3+n3∗a3 ;
lambda = branchFactor (2 , V) ;
i f ( stampa ) p r i n t f ( ”branch at 3 : a3+%d∗a3/a3+%d∗a3=%.8 l f \n” ,

n3 , n3 , lambda ) ;
lambda max = MAX( lambda max , lambda ) ;

i f ( stampa ) p r i n t f ( ”\nlambda max ( a3=%.8 l f , a4=%.8 l f )=%.8 l f \n” , a3 , a4 , lambda max ) ;

return lambda max ;
}

//Here we put the con s t r a in t s on the we igh t s
bool f e a s i b l e (double a3 , double a4 ){

i f ( a4<=1 && a3<=a4 && a3>0 && 2∗a3>=a4 && 2∗a4>=1 && a4>=1−a3 ) return true ;
else return fa l se ;

}

int main ( ) {

double lambda min = 1000 ;
double a3min = 1000 ;
double a4min = 1000 ;

//we search f o r the b e s t a in a g r i d wi th o f f s e t 1/ g r i d
int g r id =100;
for ( int i =1; i<=gr id ; i++){

for ( int j =1; j<=gr id ; j++){
double a3=(double ) i / g r id ;
double a4=(double ) j / g r id ;
i f ( f e a s i b l e ( a3 , a4 ) ){

double lambda = computeLambda( a3 , a4 , 0 ) ;
p r i n t f ( ” lambda ( a3=%l f , a4=%l f )=%.8 l f \n” , a3 , a4 , lambda ) ;
i f ( lambda < lambda min ){

lambda min = lambda ;
a3min = a3 ;
a4min = a4 ;

}
}

}
}
p r i n t f ( ”\n\nBEST BOUND\n” ) ;
computeLambda( a3min , a4min , 1 ) ;

system ( ”PAUSE” ) ;
return 0 ;

}
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Appendix D

#include <s t d l i b . h>
. . .

using namespace s td ;

double branchFactor ( int n , double∗ V){
. . .

}

double uniform (double l e f t , double r i g h t ) {
return l e f t + ( r i ght− l e f t )∗ ( ( double ) rand ( ) ) /RANDMAX;

}

double computeLambda(double a3 , double a4 , int stampa ) {
. . .

}

bool f e a s i b l e (double a3 , double a4 ){
. . .

}

int main ( ) {

double lambda min ;
double a3min ;
double a4min ;

//compute an i n i t i a l random s o l u t i o n
do{

a3min = uniform ( 0 . 0 , 1 . 0 ) ;
a4min = uniform ( 0 . 0 , 1 . 0 ) ;

}while ( ! f e a s i b l e ( a3min , a4min ) ) ;
lambda min = computeLambda ( a3min , a4min , 0 ) ;
p r i n t f ( ” lambda ( a3=%l f , a4=%l f )=%.8 l f \n” , a3min , a4min , lambda min ) ;

double deltamin = 0 . 0 0 0 1 ; // f i n a l s t ep
double de l t a = 0 . 0 1 ; // i n i t i a l s t ep
int counter = 0 ; //measures f o r how long we don ’ t make any progre s s
do{

double a3rand = a3min + de l t a ∗uniform ( −1 .0 , 1 . 0 ) ;
double a4rand = a4min + de l t a ∗uniform ( −1 .0 , 1 . 0 ) ;
counter++; //a new proposa l i s generated
i f ( f e a s i b l e ( a3rand , a4rand ) ) {

double lambda rand = computeLambda( a3rand , a4rand , 0 ) ;
i f ( lambda rand < lambda min ) {

counter = 0 ;
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lambda min = lambda rand ;
a3min = a3rand ;
a4min = a4rand ;
p r i n t f ( ” lambda ( a3=%l f , a4=%l f )=%.8 l f \n” , a3min , a4min , lambda min ) ;

}
}
i f ( counter >= 1000){

counter = 0 ;
d e l t a = de l t a / 2 . 0 ;
p r i n t f ( ”\ nde l ta =%.10 f \n\n” , d e l t a ) ;

}
}while ( d e l t a >= deltamin ) ;

p r i n t f ( ”\n\nBEST BOUND\n” ) ;
computeLambda( a3min , a4min , 1 ) ;

system ( ”PAUSE” ) ;
return 0 ;

}
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