
Mascopt

Table of contents

1 Mascopt project..3

1.1 Mascopt project... 3

1.2 Getting Mascopt.. 3

1.3 Download Mascopt..4

1.4 Download Tools.. 7

1.5 Installation Manual..7

1.6 Build your Javadoc.. 11

1.7 Installing mascopt in Eclipse...12

1.8 License...14

1.9 About... 15

2 News...17

2.1 Demonstration... 17

2.2 F.A.Q... 19

2.3 Known bugs...20

2.4 To do..21

3 Guide..22

3.1 Programming Guide.. 22

4 Graph guide..22

4.1 Valuation system... 22

4.2 Working with sets..25

4.3 Paths.. 29

4.4 About factories.. 31

4.5 Observation system... 33

4.6 MGL/MGX formats...33

Copyright © 2004 INRIA/UNSA All rights reserved.

4.7 The Graphical User Interface.. 37

5 Network guide..40

5.1 Generate network files...40

6 Tutorials... 44

6.1 Prim's algorithm.. 44

6.2 TD d'initiation..47

Mascopt

Page 2
Copyright © 2004 INRIA/UNSA All rights reserved.

1. Mascopt project

1.1. Mascopt project

1.1.1. What is Mascopt ?

The main objective of the Mascopt (Mascotte Optimization) project is to provide a set of
tools for network optimization problems. Examples of problems are routing, grooming,
survivability, or virtual network design. Mascopt will help implementing a solution to such
problems by providing a data model of the network and the demands, libraries to handle
networks and graphs, and ready to use implementation of existing algorithms or linear
programs (e.g integral multicommodity flow).

Mascopt is Open Source (under LGPL) and intends to use the most standard technologies as
Java Sun and XML format providing portability facilities. We finished to implement graph
data structure, several basic algorithms working on graph and input/output classes. Mascopt
also provides some graphical tools to display graph results. We are currently writing network
packages and performing experiments on Wdm networks.

1.1.2. Screenshots

• A network with a path
• The viewer manipulation panel
• A graph with labels displaying values

1.2. Getting Mascopt

1.2.1. Web access

• go to the download page
• Download the mascoptDev-x.y.tar.gz which is Mascopt Dev
• tar -xzvf mascoptDev-x.y.tar.gz

1.2.2. CVS on INRIA network in Mascotte Team

In a shell, on the INRIA network, do:

export CVSROOT=cvs-sop.inria.fr:/CVS/mascotte
export CVS_RSH=ssh
cvs checkout -P mascoptDev
cd mascoptDev

An other way to get mascopt, which can be usefull if your computer is not on the INRIA

Mascopt

Page 3
Copyright © 2004 INRIA/UNSA All rights reserved.

network is to use this command:

export CVS_RSH=ssh
cvs -d :ext:login@cvs-sop.inria.fr:/CVS/mascotte checkout -P mascoptDev
cd mascoptDev

where "login" is replaced by your UNIX login.

1.2.3. CVS from World Wild Web

In a shell, you can get mascoptDev as an anonymous user:

cvs -d :pserver:cvs@cvs-sop.inria.fr:/CVS/mascotte checkout -P mascoptDev
cd mascoptDev

As an anonymous user, your are not allowed to commit your modifications in mascoptDev. If
you want to propose patchs, programs, please, contact the authors.

1.2.4. What contains Mascopt Dev ?

The cvs or tar command will create a sub-directory mascoptDev which contains a precise
architecture.

• bin which contains scripts which launch applications
• docs wich contains the documentation
• files which contains some files of graphs or networks
• jar which contains the jar files
• licences all the licences of each part of provided code
• src which contains the source code of algorithms developed by users. This is the place

where you can put the code of your algorithm.
• samples which contains some samples references of classes of mascopt.
• tests wich contains bad code of developers, where they test their algorithms

1.2.5. And then ?

You should go to the Installation Manual

1.3. Download Mascopt

1.3.1. Architecture:

• MascoptDev: This is the full environment of Mascopt. It includes also mascoptLib, some
samples to run, a usable Graphical User Interface application. If you do not know what to
get, download this.

Mascopt

Page 4
Copyright © 2004 INRIA/UNSA All rights reserved.

• MascoptLib: This is the heart of the library.
• MascoptDoc: This is the sources of this web site.
• External libraries: These libraries are needed to run Mascopt.

1.3.2. Program files and documentations:

1.3.2.1. Version 1.3.x:

MascoptDev MascoptLib MascoptDoc External
libraries

Miscellaneous

Version 1.3.2

Sources mascoptDev-1.3.2.tar.gzmascoptLib-1.3.2.tar.gzmascoptDoc-1.3.2.tar.gzXerces Skinlf
Texdoclet Jing

modernthemepack.zip

Jar mascoptLib-1.3.2.jar xerces.jar
skinlf.jar
doclet.jar
jing.jar

Javadoc browse it
online

browse it
online

mascoptLibJavaDoc-1.3.2.tar.gz

Documentation Postscript
PDF

PDF

ChangeLog ChangeLog ChangeLog ChangeLog

Version 1.3.1

Sources mascoptDev-1.3.1.tar.gzmascoptLib-1.3.1.tar.gzmascoptDoc-1.3.1.tar.gzXerces Skinlf
Texdoclet Jing

modernthemepack.zip

Jar mascoptLib-1.3.1.jar xerces.jar
skinlf.jar
doclet.jar
jing.jar

Javadoc browse it
online

browse it
online

mascoptLibJavaDoc-1.3.1.tar.gz

Documentation Postscript
PDF

PDF

ChangeLog ChangeLog ChangeLog ChangeLog

1.3.2.2. Version 1.2.x:

Mascopt

Page 5
Copyright © 2004 INRIA/UNSA All rights reserved.

MascoptDev MascoptLib MascoptDoc External
libraries

Miscellaneous

Version 1.2.1

Sources mascoptDev-1.2.1.tar.gzmascoptLib-1.2.1.tar.gzmascoptDoc-1.2.1.tar.gzXerces Skinlf
Texdoclet

modernthemepack.zip

Jar mascoptLib-1.2.1.jar xerces.jar
skinlf.jar
doclet.jar

Javadoc browse it
online

mascoptLibJavaDoc-1.2.1.tar.gz

Documentation Postscript
PDF

PDF

ChangeLog ChangeLog ChangeLog ChangeLog

Version 1.2

Sources mascoptDev-1.2.tar.gzmascoptLib-1.2.tar.gzmascoptDoc-1.2.tar.gzXerces Skinlf
Texdoclet

modernthemepack.zip

Jar mascoptLib-1.2.jar xerces.jar
skinlf.jar
doclet.jar

Javadoc browse it
online

mascoptLibJavaDoc-1.2.tar.gz

Documentation Postscript
PDF

PDF

ChangeLog ChangeLog ChangeLog ChangeLog

1.3.2.3. Version 1.1.x:

MascoptDev MascoptLib MascoptDoc External
libraries

Miscellaneous

Version 1.1

Sources mascoptDev-1.1.tar.gzmascoptLib-1.1.tar.gzmascoptDoc-1.1.tar.gzXerces Skinlf
Texdoclet

modernthemepack.zip

Jar mascoptLib-1.1.jar xerces.jar
skinlf.jar
doclet.jar

Mascopt

Page 6
Copyright © 2004 INRIA/UNSA All rights reserved.

Javadoc browse it
online

mascoptLibJavaDoc-1.1.tar.gz

Documentation Postscript
PDF

PDF

ChangeLog ChangeLog ChangeLog ChangeLog

1.3.3. Miscellaneous documentation

• Mascopt technical report here (pdf - ps.gz). This is a good introduction to Mascopt.
• A short presentation of Mascopt (pdf) which have been presented in CRESCCO

workshop in december 2003.
• A quite long presentation of Mascopt (french pdf) which have been presented in the

Mascotte team in january 2004.
• The current version of this site in PDF

1.4. Download Tools

1.4.1. Standalone tools

We provide some external and standalone tools, programmed in Mascopt. You just need to
download the jar file and to launch it using:

java -jar X.jar

1.4.2. The tools from version 1.3.1 of Mascopt:

• A graph editor: Editor.jar (cf. screenshot below)
• A graph viewer: Viewer.jar
• A MGL to Metapost converter: Mgl2Mp.jar

For the use of the editor or the viewer, please see the GUI page.

1.4.3. Editor's screenshot:

1.5. Installation Manual

1.5.1. Requirements

You must have a valid install of Java 1.4.0 or greater. By default, we suppose that java is
installed in /usr/local/jdk1.4.0 but if not, you should make sure that your environment
variable PATH is correctly set.

Mascopt

Page 7
Copyright © 2004 INRIA/UNSA All rights reserved.

Ilog Cplex 7.5 or greater is optional.

Mascopt now uses ant to compile the projects. It offers several advantages and in particular it
eases the use of eclipse and enables a greater customisation of the project. Alternatively, you
can use the provided Makefile needing GNU make and some UNIX tools like grep, tr, mkdir,
... are included. These scripts needs a standard Linux system. Otherwise you have to compile
yourself the source files.

A compiled version of Xerces and Skinlf are included. If you just download the
mascoptLib.jar file, then Xerces and Skinlf are not included.

1.5.2. How to compile ?

1.5.2.1. The ant way Part 1 - Principles and command line

The ant configuration files are build.xml and javadoc.xml, but you should not need to edit
them.

This way you still have to specify the correct paths for your system, but first you must type:

ant init

That way you create a file named mascoptDev.properties where the default configuration is
written. This configuration is done accordingly to the system of INRIA Sophia Antipolis. If
you reside elsewhere and need to change things, please change them in the file
mascoptdev.properties.

Now that the configuration is set for your site, we can compile the project. In order to
compile everything, just type

ant

the result is exactly the same as make. It cleans the class directory and then recompiles
everything. In order to accelerate things and compile only the files that have changed, you
can type:

ant build

As previously, when compiling, the .class files are stored in the subdirectory classes. As this
directory is present in the CLASSPATH, you can launch a program from anywhere.

ant enables also the generation of the documentation via the call of javadoc. All you have to
do is to type

ant javadoc

Mascopt

Page 8
Copyright © 2004 INRIA/UNSA All rights reserved.

and the documentation will be generated in the directory docs/mascoptDev.

1.5.2.2. The ant way Part 2 - ant and eclipse

One of the main advantages of ant is that you can call it from a number of IDEs and among
them, eclipse. To this end, you have to define how to call ant and which target to use.

Go into the menu Run->External tools->External tools... and after selecting "Ant Build" click
on "New". Let's create a call to the target build of the ant file. Give a name to the
configuration you are about to create (for example build), choose the "Location" which is the
file build.xml, the base directory is the mascoptLib directory and finally, in the "Target" tab,
uncheck all and check build. Then you are done. To call the target build, simply choose
Run->External Tools->build and the compilation proceeds. If you want to execute other
targets, configure them the same way.

1.5.3. The Makefile way

The environement variable CLASSPATH must be changed to allow java to find the
mascopt.jar file and the sources file. The PATH and LD_LIBRARY_PATH must also be
changed. When done, you can compile a single java file with javac or all files with the
Makefile. You have to execute, in the mascoptDev directory the following:

To find the class compiled by the user
export CLASSPATH=.:`pwd`/classes

To find MascoptLib
export CLASSPATH=$CLASSPATH:`pwd`/jar/mascoptLib.jar

To find CPLEX (which is optional)
export CLASSPATH=$CLASSPATH:/usr/local/cplex75/lib/cplex.jar
export
LD_LIBRARY_PATH=/usr/local/cplex75/bin/i86_linux2_glibc2.1_egcs1.1:$LD_LIBRARY_PATH

Path to find Java and Javac
export PATH=/usr/local/jdk1.4.0/bin:$PATH

A script have been written to perform the changes. It is called SETENV. Check that the paths
specified in this file are correct and then type:

source SETENV

After that, to compile all the source tree, the samples and tests, you can do:

make

When compiling, the .class files are stored in the subdirectory classes. As this directory is
present in the CLASSPATH, you can launch a program from anywhere.

Mascopt

Page 9
Copyright © 2004 INRIA/UNSA All rights reserved.

1.5.4. Launch a program

All the .java file, containing a main() function are situated in the directory tests, samples or
launch. In fact, the scr only contains classes providing a service to the user, for example a
class wich execute an algorithm given a graph. When you want to test your algorithm written
in class MyAlgo, you write a static main() function wich create a new object of class
MyAlgo and then call some functions on it.

This is the reason wich lead us to separate the source code of the library, only constitued of
classes without main and the test or sample programs. Nevertheless, the Makefile compile
the four sub-directories.

To launch a program you wrote you just do the following:

java ASampleProgramThatYouWrote

For example, you can try:

java Creation

1.5.5. Working with CVS at INRIA

cvs is usefull to let a group of developpers to program. When you use mascoptDev, the
mascopt.jar library can change of version and can be updated in your local project without
breaking your work. And then, all the source code of mascoptDev can change and be updated
by other users. In the following some usefull commands that have to be done in the
mascoptDev directory.

To get the last mascoptDev version (overwrite all the local modifications !):

cvs checkout mascoptDev

To get the last modification in the mascoptDev project, keeping your local changes:

cvs update mascoptDev

To put your modifications into the cvs repository (3 ways):

cvs commit mascoptDev
cvs commit
cvs co

Note that it may happen that the files you change have already be changed by an other user.
In this case, you will say a flag "M" indicating that CVS tryed to merge the two
modifications. If cvs failed to merge the two files, it will write the two possibilties into the
file and then you have to correct yourself.

Mascopt

Page 10
Copyright © 2004 INRIA/UNSA All rights reserved.

When some new directories or new file are created or removed:

cvs add file
cvs remove file

To compare your local version to the cvs repository:

cvs diff mascoptDev

You can also have a look to the CVS manual (pdf)

1.5.6. Structural remark

Mascopt is divided in three different parts:

• mascoptLib.jar which contains the mascoptLib code, the base library to process graphs
• src/mascoptDev which contains the user environement to develop new algorithms
• src/mascoptCplex which contains the user environement to develop new algorithms with

Ilog Cplex

Note that when some algorithms are quite tested and works fine, we can integrate them into
the mascoptLib part of the code. But in general, the user always works in the mascoptDev
project.

1.5.7. Use Mascopt with .jar file

If you use Mascopt as a java library you call from your program, you just have to put
mascoptLib.jar in your CLASSPATH. However, it can be hard to develop with the .jar
without the sources, because you may need the javadoc, built from the sources.

1.6. Build your Javadoc

This part presents the way of building your javadoc in your downloaded archive of Mascopt.
You can also find an online javadoc of MascoptLib.

1.6.1. The Public Javadoc

1.6.1.1. Mascopt Lib

The mascopt documentation is based on the use of the javadoc tool. When writting code, you
need to use the javadoc to find quickly the methods and attributes of classes. Moreover, the
javadoc integrates the J2SE 1.4 javadoc; then, the documentation of your algorithms and
classes are also produced and linked to the J2SE. You can find the mascopt javadoc at
docs/mascoptLib/index.html. To create it, you have to build it launching the following

Mascopt

Page 11
Copyright © 2004 INRIA/UNSA All rights reserved.

command:

ant javadoc

Using the Makefile, this is the same:

make javadoc

1.6.1.2. Mascopt Dev

When using the Mascopt Dev package, you can build the javadoc of your own classes or the
javadoc of our experimental files (not contained in Mascopt Lib). To do so, this is the same
command:

ant javadoc

Then, you can find two javadoc archives:

• The javadoc of mascoptDev, situated at docs/mascoptDev/index.html
• The optional javadoc of mascoptCplex, situated at docs/mascoptCplex/index.html

Note that this documentation is linked to the tags of Mascopt Lib and Java.

1.6.2. The Protected and Private Javadoc

Note that when constructing the javadoc, you can only view the public attribute and member
functions. You may want to view the protected functions and in some case, the private
functions. Some special flags have to be given to the javadoc tools and have been included in
the Makefile. To build the javadoc with protected or private stuff, use one of the following:

ant javadocProtected
ant javadocPrivate

1.6.3. Latex

We provides a javadoc under Postscript format, made with Latex. You can find the Mascopt
Lib javadoc postscript in docs/tex. To generate the latex file of Mascopt Dev, just run:

ant javadocTex

1.7. Installing mascopt in Eclipse

1.7.1. Why Eclipse ?

We discuss hear about the way to use mascopt in Eclipse. Eclipse is an IDE which helps to
develop java (and other) projects. This section provides the main operation to install mascopt

Mascopt

Page 12
Copyright © 2004 INRIA/UNSA All rights reserved.

in Eclipse.

1.7.2. Getting Eclipse

Retrieve the full version of Eclipse, including the java and cvs tools. You can find eclipse at
here. Be sure to take the full tar.gz, for SDK. At the time of writting this page it is
eclipse-SDK-3.1M3-linux-gtk.zip.

Unzip eclipse somewhere. Then, you have to run it:

cd eclipse
./eclipse

You may have to set the environnement variable "JAVA_HOME". Note also that eclipse
needs a recent version of Java.

1.7.3. Step by step install

Now, we provides some screenshots to help you to install mascopt cleanly in mascopt.

1. First, click on Workbench:
2. Select New Project:
3. Select CVS. We are getting MascoptDev from the CVS repository:
4. Enter the CVS parameters. We use the ssh protocl to access to CVS:
5. Select the project you want to get that is in our case "mascoptDev":
6. Keep the first choice (use the wizard):
7. You may change your workspace location (where mascoptDev is put and used by

eclipse):
8. Here you can select a branch. Select nothing (it means by default, the HEAD):
9. Select the Java project Wizard:
10.Put the name of the project managed by eclipse (for example "mascoptDev"):
11.Eclipse automatically propose to search sources in the tree directory. We propose to

specify it later. Remove the entry you see in the tab "Sources":
12.You obtain this:
13.At this point, click on "Finish". Eclipse will download mascoptDev via CVS:
14.Then, you can browse the files. Now, you can go to the next section to learn how to

configure Eclipse to be able to compile mascoptDev:

1.7.4. Step by step configuration

Now, we provides some screenshots to help you to configure mascopt cleanly in mascopt. It
allows to compile mascoptDev using ant. If ant is not installed, please install it before
processing.

Mascopt

Page 13
Copyright © 2004 INRIA/UNSA All rights reserved.

1. Right click on "mascoptDev" to access the properties and click on "Properties" :
2. You get this. If the sections concerning Java are not here, your eclipse installation is not

complete. You should download an other ecplise distribution containing the java tools:
3. Go to the "Builders" section. Disable the Java Builder. Then, create one builder clicking

"New":
4. Select ant here:
5. Put a new name to your builder, like "ant builder". Then click on "Browse Workspace":
6. You can find here the rules to build mascoptDev. These rules are in the file "build.xml".

Select it and validate:
7. You want to refresh when programming. Enable the "Refresh ressources upon

completions" in the tab "Refresh".:
8. Your builder is configured. Now validate this view clicking "Ok":
9. Now, switch to "Java Build Path" from this view:
10.We will specify where are the sources. Remove any entry here. Then, click "Add Folder":
11.Select the three following folders: samples, src, and tests:
12.Now, you must specify the output folder. At the bottom click on "Browse":
13. In the popup, specify "classes". The directory may not exist; it will be automatically

created:
14.Switch to the Libraries tab. Here you have to add extra ressources to be able to compile

mascoptDev. Click on "Add Jars":
15.Select these jars and validate:
16.Now you have the needed external libraries. If you have cplex solver click on "add

external jars":
17. If cplex is installed somewhere, find it and select cplex.jar:
18. If this occurs, apply:
19.Then click on "ok" to finish the configuration. Eclipse will build the project. If an error

occurs when compiling, you may returns to the configuration of sources and jars :

You are now ready to use Eclipse !

1.7.5. Additional tips

If you want to autobuild the project each time a file ressource is updated and saved, go to:
Project Properties, Builders, your ant builder, then the tab build options and enable "During
Auto Builds". Then close the Builder and in the menu "Project" enable "Build
Automatically".

1.8. License

1.8.1. Mascopt's license

Mascopt

Page 14
Copyright © 2004 INRIA/UNSA All rights reserved.

Copyright (C) - 2004 - INRIA/UNSA

This library is free software; you can redistribute it and/or modify it under the terms of the
GNU Lesser General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

1.8.2. Licence of used software

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

This product includes software developed by L2FProd.com (http://www.L2FProd.com/).

This product includes software developed by Thai Open Source Software Center Ltd
(http://www.thaiopensource.com/relaxng/jing.html).

1.8.3. Agence pour la Protection des Programmes

The code of Mascopt 1.1 have been protected by a deposit at the APP institute. We have the
Inter Deposit Digital Number IDDN.FR.001.100002.000.S.P.2004.000.31235. This deposit is
the proof that we are the original author of Mascopt; it is NOT a license or a patent. you can
freely use Mascopt under the LGPL license.

1.9. About

1.9.1. About Mascopt

The main objective of the Mascopt (Mascotte Optimization) project is to provide a set of
tools for network optimization problems. Examples of problems are :

• routing end to end connections in a capacitated network
• routing under vulnerability constraints (protection and restoration)
• grooming multiplex (eg. SDH over WDM)
• virtual path layout in ATM networks

Mascopt

Page 15
Copyright © 2004 INRIA/UNSA All rights reserved.

http://www.apache.org/
http://www.L2FProd.com/
http://www.thaiopensource.com/relaxng/jing.html

• wavelengths assignment in all optical WDM networks

A typical user would like to write algorithms such as a new routing heuristic for wavelength
assignment that will outperform existing ones. He will run experiments over a bunch of
network data's and plot the results. If the algorithm consists in :

1. input set is a network and a traffic matrix
2. compute routes for each traffic demand
3. greedily assign one wavelength to each route
4. output the total number of wavelength

then we will help this user by providing :

• a data model of the network and the demands,
• libraries to parse and load / store these data into / out of the programs
• libraries to compute routing using existing algorithms or linear programs
• iterator to process the resulting paths so he could easily implement his heuristic
• plotting and visualization of the results (make article)

The recent experience with the PORTO project lead us to these conclusions :

• existing optimization libraries are specific and difficult to mix together or to embed in
new user defined models (not speaking about license problems)

• portability is more difficult to achieve with C++ than with Java For instance the Ilog
CPLEX Concert API was compiled either with egcs/libc2.1 or gcc3/libc2.2, not gcc2.9x
or gcc3/libc2.1. The GUI is another issue were Java offers nice portability features. Last
but not least : internship students as well as young engineers or researchers are more
fluent with Java.

• XML should be used to store and exchange data between applications
• documentation and testing should not be neglected ...

The first milestone achieved is the mgl dtd for the Mascopt Graph Library. A few algorithms
have been implemented and are in a validation process. The next step is to implement virtual
graph embedding and publish an alpha version of Mascopt inside the Mascotte project!

1.9.2. Workpackages

Mascopt workplan is structured into workpackages:

• WP1: Graphs (modeling and processing of)
• WP2: Networks
• WP3: Virtual networks
• WP4: Linear Programming
• WP6: Experimental data's
• WP7: Graphical User Interface
• WP8: Input/Output graphs and tools

Mascopt

Page 16
Copyright © 2004 INRIA/UNSA All rights reserved.

• WP9: Algorithms on graphs or digraphs

1.9.3. Contact

Feel free to contact us to report bugs or to propose some improvements you did. If you
included Mascopt in some GPL software, you can just tell us why and what kind of software
you develop and we will be proud to link our page to somebody who use Mascopt...

You can write to Michel Syska or Jean-Francois Lalande (if you are despaired, try Yann
Verhoeven...).

1.9.4. Contributors

1.9.4.1. Main Authors

• Bruno Bongiovanni
• Sebastien Choplin
• Jean Francois Lalande
• Fabrice Peix
• Michel Syska
• Yann Verhoeven

1.9.4.2. Contributors

• Claudine Mosse
• Marie-Emilie Voge
• Severine Petat
• Smita Rai

1.9.4.3. Bug reporters

• Pierre Tardy, ISIMA student.
• Mia Heslegrave, student at the university of Aarhus in Denmark.
• Roger Kalden, Ericsson Research

2. News

2.1. Demonstration

2.1.1. Graph Editor

This applet shows some functionalities of the Graph Editor. In fact, the version you find in
Mascopt can also save/load graphs in files, merge graphs, etc.. You need Java 1.3 virtual

Mascopt

Page 17
Copyright © 2004 INRIA/UNSA All rights reserved.

machine, at least, to run the applets.

To start the applet, please go to the demo page

We presents quickly what you can do with the applet:

2.1.1.1. Buttons

• New Graph: creates a new graph (non directed).
• New DiGraph: creates a new di(rected)graph.
• New View: creates a new view. All views are independant and shows a part of the graph.

2.1.1.2. How to create a graph ?

• click on New Graph to make an empty graph.
• click on the background in the view to create a node.
• click with the left mouse button on a node to ligin an edge.
• click with the right mouse button on the finalliode to end a begun edge.
• drag and drop a node to move it.
• drag the background to move the grapliin the view.
• move the cursor to modify the zoom factor.

2.1.1.3. Modes

• By default the editor is in Create mode: iliallow to create the graph as explained above.
• Use X mode to delete edges or edges by clicking on it.
• Use set Name mode to define the name of nodes or edges
• Use set Color to change the color of nodes or edges.

2.1.1.4. Labels

• show labels: show or hide the labels on nodes and edges.
• set Node Label: set the string to display on nodes. If using $(name), each node has his

own name displayed.
• set Arc Label: set the string to display on edges. If using $(name), each edge has his own

name displayed.

2.1.2. Algorithm on node coordinates

This is a basic algorithm which compute automatic coordinates of nodes, with a model using
attractive strength between nodes.

• Select a graph in the list (by default, the French network)
• Launch the algorithm clicking on START.
• When the algorithm is running you can move the nodes i.e. interact with the nodes

Mascopt

Page 18
Copyright © 2004 INRIA/UNSA All rights reserved.

coordinates in real time.
• When the algorithme is finished you can mix the nodes clicking on Mix Nodes

To start the applet, please go to the demo page

Applets written by Bruno Bongiovanni.

2.2. F.A.Q.

2.2.1. Questions

2.2.1.1. 1. I put values on edges. Can I put values on nodes ?

Of course, you can use the same methods on nodes that you used on edges. In fact, the
valuation system can be used on nodes, edges, node sets, edge sets, chains and graphs ! In
fact, all this classes derives of the classes MascoptSet and MascoptObject which implement
the valuation system.

2.2.1.2. 2. I have a out of memory error...

Bad luck. You should try:

java -Xmx655360000 -Xss655360000 myClass

to increase the memory allocated to Virtual Machine.

2.2.1.3. 3. I made a sub-graph, with the graph constructor but I cannot put new edges in this
graph, why ?

As all we did, you may have misunderstood the sub-set notion. You will never be able to add
this new arcs in your set, because this set is a sub-set and its super-set does not contains your
new arcs. In your case, you should create a new graph, totally independent from the first one.

2.2.1.4. 4. I have a null pointer exeception. How can i debug something ?

Bad luck to ! We have no debugger in Java to go into the code when the program runs. The
only think you could do is to use System.out.println.

If you have intensive debugging to perform, we have created a class "Trace" which give the
possibility to put many traces in the program and to activate or deactivate the output of the
trace. To use the Trace class, you should import it via:

import mascoptLib.util.Trace;

Mascopt

Page 19
Copyright © 2004 INRIA/UNSA All rights reserved.

then,

Trace.println("Mon message");

To switch between the modes (output/no output), just use:

Trace.setVisible(true);

Note also that it exist different types of trace. The trace MEMORY, ERROR. You can see it
in the javadoc (static fields). There is a additional parameter to classify the types of the
traces, which can be useful.

2.2.1.5. 5. Can i put some values on the objects of Mascopt ?

Yes, it's what we call the valuation system. It is described in the guide, in the valuation
system page.

2.2.1.6. 6. Why I cannot get a Double or an Integer from a .mgl file ?

Because, probably, the guy who made the file stored the values in type String. You have then
to import these values in String via getValue(), and then convert it in Double or Intger. See
the the guide, in the valuation system page.

2.2.1.7. 7. Is there any way to attach an object to a Vertex? I have seen that I can attach
primitive types and strings and encapsulated primitive types, but in my case I would like to
have an object. Con this be done ?

No, because it is not really a good way of writting object programs... But you can solve this
problem in two ways:

1 - Define an HashMap, which will contain the correspondence between a vertex and your
object (or using two vectors). With an Hashmap, you can find the object from a vertex in
logarithmic time.

2 - You create a new class, for example "MySpecialVertex" which is a specialized Vertex (it
derives). Then, in this subclass you can create new attributes and methods.

2.3. Known bugs

2.3.1. EDITOR.java

• When a node or an arc is deleted in the editor and that labels was displayed, the label is
not destroyed.

• Lorsqu'on desire valuer les aretes, expliquer comment faire apparaitre ensuite sur le

Mascopt

Page 20
Copyright © 2004 INRIA/UNSA All rights reserved.

graphe ces valeurs (exple: capacite d'une arete, utiliser setarclabel)

2.3.2. MascoptViewer.java

Since a graph can only be displayed if a view and a layer have been created, the user should
be warned if he tries to display a graph without having precedently created the view and the
layer.

2.3.3. Tubes

java Sample Tubes Cplex? test.net test.path test.xml

ILOG CPLEX 7.500, licensed to "inria-sophia", options: e m b
Tried aggregator 1 time.
MIP Presolve eliminated 2 rows and 20 columns.
MIP Presolve modified 6 coefficients.
Aggregator did 6 substitutions.
Reduced MIP has 10 rows, 9 columns, and 21 nonzeros.
Presolve time = 0,00 sec.
MIP emphasis: optimality
Root relaxation solution time = 0,00 sec.
Exception in thread "main" java.lang.NullPointerException

at mascoptLib.io.graph.MGXWriter.writeChain(MGXWriter.java:357)
at mascoptDev.io.graph.MGXTubeWriter.write(MGXTubeWriter.java:123)
at SampleTubesCplex.main(SampleTubesCplex.java:69)

2.3.4. Delete value

The methode deleteValue does not work (the value still exist)

2.3.5. Valuation system

It seems that, when storing a double without context, then, when reading this value with a
context, it does not respond the stored value (which is the default value, if no value is stored
with a context).

2.3.6. Cplex Capacity Flow

It does not work using a Graph for the network.

2.4. To do

2.4.1. Graph

Explain the free() method when creating sub objects.

Mascopt

Page 21
Copyright © 2004 INRIA/UNSA All rights reserved.

2.4.2. Observation

Finish the page on observation in the documentation.

3. Guide

3.1. Programming Guide

3.1.1. A guide ?

The goal of the programming guide is to explain, with concrete examples, the basics of the
Mascopt main classes. We want to show how it works and to solve the common problems the
programmers can have when using Mascopt.

Each part of the guide is linked to samples which can be found in the sources of mascoptDev.
You may find some difference between the included code of this page and the code of
samples in mascoptDev. This is due to the fact that the code is constantly moving. We hope
to be synchronized between the guide and the code !

4. Graph guide

4.1. Valuation system

4.1.1. Valuate Mascopt objects

It is useful to be able to valuate the nodes or the edges of a graph, like putting a weight or a
size. The mascopt library contains a simple system of valuation. You can store:

• String
• Integer
• Double

What is interesting in using this valuation system is that all this values are stored in the files
representing the graph, for different file formats (.mgl, .mgx). Besides, as the library provides
a way of sharing objects (like sharing nodes between two graphs), we must recognize which
graph have stored a value on a node. We add the notion of context for a value: it means that a
value is valid on an object relative to a context. For example, imagine a graph G1 and G2
using the same node n1. You can store the value named "weight" = 12 on node n1, relative to
the graph G1 and also store a value named "weight" = 56 on node n2. Then, for getting the
value "weight" on node n1 require to precise for with graph G1 or G2 you want it.

Mascopt

Page 22
Copyright © 2004 INRIA/UNSA All rights reserved.

4.1.2. Set and Get a value without context

Getting and Setting value is coded in the MascoptObject or MascoptSet classes which
contains different methods:

• For storing a String on nodes, arcs, node sets, edge sets, and graphs:

getValue(String name)
setValue(String name, String value)

• For storing an Integer on nodes, arcs and graphs:

getIntegerValue(String name)
setIntegerValue(String name, Integer value)

• For storing an int on nodes, arcs and graphs:

getIntValue(String name)
setIntValue(String name, int value)

• For storing a Double on nodes, arcs and graphs:

getDoubleValue(String name)
setDoubleValue(String name, Double value)

• For storing a double on nodes, arcs and graphs:

getDouValue(String name)
setDouValue(String name, double value)

For example:

n1.setValue("poids","12");
n1.getValue("poids");
n1.setIntegerValue("poids", new Integer(9));
n1.setDouValue("poids", 18.34);

4.1.3. Set and Get a value with context

• For storing a String on nodes, arcs, node sets, edge sets, and graphs:

getValue(String name, Object context)
setValue(String name, Object context, String value)

• For storing an Integer on nodes, arcs and graphs:

getIntegerValue(String name, Object context)
setIntegerValue(String name, Object context, Integer value)

• For storing an int on nodes, arcs and graphs:

getIntValue(String name, Object context)
setIntValue(String name, Object context, int value)

• For storing a Double on nodes, arcs and graphs:

Mascopt

Page 23
Copyright © 2004 INRIA/UNSA All rights reserved.

getDoubleValue(String name, Object context)
setDoubleValue(String name, Object context, Double value)

• For storing a double on nodes, arcs and graphs:

getDouValue(String name, Object context)
setDouValue(String name, Object context, double value)

For example:

Graph g1 = ...;
Graph g2 = ...;
n1.setValue("poids", g1, "12");
n1.setValue("poids", g2, "89");
n1.getValue("poids", g2);
n1.setIntegerValue("poids", g2. new Integer(9));
n1.setDouValue("poids", g1, 18.34);

4.1.4. Mixing values with and without context:

If you store a value without context for the value named "weight", then you can store a
contexted value for example, relative to Graph g1. The non contexted value is not lost. But
imagine that you try to get a contexted value named "weight" relative to Graph g2. If you
didn't set a value for this context, then the library returns the non contexted value, by default.
For example

Graph g1 = ...;
Graph g2 = ...;
n1.setValue("poids", "12");
n1.setValue("poids", g1, "65");
String value = n1.getValue("poids",g2);

In this example, value=12.

4.1.5. How to get values, when reading a file ?

When reading a file, the mascopt library can't know what type to use for a value. All the
values are stored like Strings. So when reading the values, you can't access the values with
the methods getIntegerValue() or getDoubleValue(). All the values are stored into String
objects. Use the only the getValue() method. Then, when you set Integer or Double on
elements of the graph, you can read it as Integer or Double.

NEW This is no longer true with mgl version 1.1 and higher, the mascopt library now knows
from the file the type of the object and creates the right object when restoring a file.

4.1.6. Convert String to numeric values

The previous section leads us to explain how to convert a String into a numeric object. It's

Mascopt

Page 24
Copyright © 2004 INRIA/UNSA All rights reserved.

quite simple. To convert an Integer or a Double into a String just do:

int a = 45;
Integer b = new Integer(120);
double c = 23.4;
Double d = 234.234;
String s_a = "" + a;
String s_b = "" + b;
String s_c = "" + c;
String s_d = "" + d;

To convert a String into a Double or an Integer, just do:

String s_a = "12";
String s_b = "13.213";
String s_c = "32.32";
String s_d = "14";
Integer a = new Integer(Integer.parseInt(s_a));
double b = Double.parseFloat(s_b);
Double c = new Double(Double.parseFloat(s_c));
int d = Integer.parseInt(s_d);

4.1.7. Convert numeric classes to numeric simple types:

To convert Double and double:

Double myDouble = new Double(6.0);
double b = myDouble.doubleValue();
Double myDouble2 = new Double(b);

4.2. Working with sets

4.2.1. On the use of sets in Mascopt

4.2.1.1. How things work

If you use mascopt, there's a chance that you will need to deal with sets. Mascopt has sets
implemented in a rather convenient way with some features that make programmer life easier
but, if misunderstood, can lead to a debugging nightmare. This part of the documentation
tries to explain how to correctly use the sets for everyday programming.

At first the use of sets is pretty intuitive. You can construct them, put some elements into
them (e.g. vertices or edges as mascopt tries to be a graph library), remove some elements,
traverse the set, etc... Things get a little bit trickier as you may want to create subsets of
already existing sets. In order to keep a certain number of thing coherents, when you create a
subset *S'* of an already existing set *S*, automatically *S'* will "observe" *S*. That is, if

Mascopt

Page 25
Copyright © 2004 INRIA/UNSA All rights reserved.

you remove an element from *S*, it will be automatically removed from *S'* and you will
only be able to add in *S'* elements that already exist in *S*. This feature is very convenient
but makes things a little bit more difficult to debug (from my experience).

4.2.1.2. Programming with sets

In order to illustrate the previous paragraph, let's play a little bit with vertex sets. We are
going to write a program that constructs a vertex set *V*, a sub-vertex set of *V*, *V'* and
another set *V''* contaning the same edges than *V*. And finally we will remove and add
edges to see what happens.

4.2.1.3. Creating the sets

First we create the set *V0* and put some vertices in it and display the content of the set,

VertexSet V0 = new VertexSet();

for (int i=0; i<10;i++)
{
V0.add(new Vertex(Math.random(),Math.random()));

}
System.out.println("V0: "+V0);

The output is be something like the following:

V0: { N8 , N5 , N9 , N3 , N1 , N6 , N7 , N0 , N2 , N4 }

The we create a subset *V1* of *V0* and display its content,

VertexSet V1 = new VertexSet(V0);
System.out.println("V1: "+V1);

The output will then be something of the following form:

V1: { N8 , N5 , N9 , N3 , N1 , N6 , N7 , N0 , N2 , N4 }

As you can see, it is not very different than previously. Note that all vertices are directly
added in the subset. And now we create a vertex set *V2* independant from the previous 2
sets but with the same vertices in it.

VertexSet V2 = new VertexSet(V0,true);
System.out.println("V2: "+V2);

The display is something that looks like:

V2: { N8 , N5 , N9 , N3 , N1 , N6 , N7 , N0 , N2 , N4 }

The order of the vertices may not be the same.

Mascopt

Page 26
Copyright © 2004 INRIA/UNSA All rights reserved.

4.2.1.4. Removing some elements

Now that the different sets are created, we are going to delete and add some elements in
them. First we pick an element of *V0* and remove it :

itV0 = V0.iterator();
V0.remove((Vertex)itV0.next());
System.out.println();
System.out.println("V0: "+V0);
System.out.println("V1: "+V1);
System.out.println("V2: "+V2);

The output is then:

V0: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V1: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V2: { N6 , N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }

The vertex *N6* has been removed in both sets *V0* and *V1* thanks to the observation
mechanism. *V1* is a subset of *V0*, /i.e./ *V1* observes *V0*. If this time we remove an
element from *V1*, only *V1* will be affected:

Iterator itV1 = V1.iterator();
V1.remove((Vertex)itV1.next());
System.out.println();
System.out.println("V0: "+V0);
System.out.println("V1: "+V1);
System.out.println("V2: "+V2);

The output is, this time,

V0: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V1: { N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V2: { N6 , N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }

And finally, if we remove an edge from *V2*, as it is independant from the other sets, it will
be the only one affected:

Iterator itV2 = V2.iterator();
V2.remove((Vertex)itV2.next());
System.out.println();
System.out.println("V0: "+V0);
System.out.println("V1: "+V1);
System.out.println("V2: "+V2);

And naturally, as expected, the output is,

V0: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V1: { N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V2: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }

Mascopt

Page 27
Copyright © 2004 INRIA/UNSA All rights reserved.

4.2.1.5. Adding some elements

This time we are creating some vertices and we want to add them in our already existing sets.
This operation is really easy to perform for the sets *V0* and *V2*, first we create the
vertices,

Vertex newVertex1 = new Vertex(Math.random(),Math.random());
Vertex newVertex2 = new Vertex(Math.random(),Math.random());

and then we add them

V0.add(newVertex1);
V2.add(newVertex2);
System.out.println();
System.out.println("V0: "+V0);
System.out.println("V1: "+V1);
System.out.println("V2: "+V2);

and we get as an output,

V0: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N10 , N0 , N3 }
V1: { N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }
V2: { N7 , N11 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }

But, as *V1* is a subset of *V0* and mascopt guaranties that it will remain so, you can't add
anything, only elements already present in *V0*,

V1.add(newVertex1);
V1.add(newVertex2);
System.out.println();
System.out.println("V0: "+V0);
System.out.println("V1: "+V1);
System.out.println("V2: "+V2);

gives the following output,

V0: { N7 , N8 , N5 , N2 , N1 , N9 , N4 , N10 , N0 , N3 }
V1: { N8 , N5 , N2 , N1 , N9 , N4 , N10 , N0 , N3 }
V2: { N7 , N11 , N8 , N5 , N2 , N1 , N9 , N4 , N0 , N3 }

4.2.1.6. Last remarks

• In order to create the set *V2* we could have created a new set and have placed the
vertices in it ourselves but the result would have been exactly the same.

• You may have remarked that in order to traverse the sets we use an object called
Iterator. This is made possible thanks to the internal use of an *HashSet* to store the
elements and it is particularly interesting for two main reasons,
• the loop is very easy to write

Mascopt

Page 28
Copyright © 2004 INRIA/UNSA All rights reserved.

• if an element appears or disappears from the set, an old *Iterator* is no more usable
and automatically points to *null*, thus indicating a change

4.2.2. Sample

The above program can be found in MascoptDev: samples/basics/SetsUse.java. To test it,
just do:

java SetsUse

4.3. Paths

4.3.1. Build Paths on your graphs

The goal of this document is to explain how to use path and dipaths in Mascopt. It is not so
quite intuitive to build path. The prinicpal reason is that the paths and dipaths are derivated of
the class AbstractGraph such as they can be considered as graphs. This is really usefull
because a lot of method have not to be rewritten... But the consequence is that the use of
paths and dipaths is a bit more complicated.

The paths and dipaths are derivated from the class AbstractPath as graph and digraphs are
derivated from AbstractGraph. In the next sections we use the world path to talk about paths
and dipaths.

4.3.2. Construct a dipath

A path is made of consecutive . When constructing a path, you must specify the Edge Set
which contains all the edges the path can use. In general, you give the edge set of the graph
on which you want to build your path. For understanding how works Edge sets, have a look
at Mascopt Sets. In fact, the edge set of the path you build is a subset of the edge set of the
graph. The direct consequence is that if you remove an edge of the graph and if your path
was using this edge, the graph does not remain valid.

DiGraph g = ...;
DiPath p = new DiPath(g.getEdgeSet());

Then you want to build your empty paths with the edges you have in your graph. You can
use the method concat as this:

Arc e1 = ...;
Arc e2 = ...;
Arc e3 = ...;
p.concat(e1);
p.concat(e2);

Mascopt

Page 29
Copyright © 2004 INRIA/UNSA All rights reserved.

p.concat(e3);

In this example, we suppose that the order of edges is e1,e2,e3. So you can't concat e3 before
e2 ! (In fact the method concat is returning a boolean indicating if the call has succeeded.

4.3.3. How to cover a path ?

Several function may help: you can have the strat vertex and then have the next arc until
reaching the end.

Vertex current = p.getStart();

while (current != p.getEnd())
{
System.out.println("Current vertex: " + current);
Arc e = p.nextArc(current);
System.out.println("Current edge: " + e);
current = p.nextVertex(current);

}

4.3.4. And I can't do multi-path, isn't it ?

That's not true ! You can do multi path but it's also a quit difficult. You have to merge the
two part of a multi path and when covering it, you have to choose one way... First build the
two single path, using the instruction below. Then merge the two path which must have the
same start vertices and end vertices.

DiPath p1 = ...;
DiPath p2 = ...;
boolean ok = p2.merge(p1);

To cover a multi path, you have to get the next vertices of one vertices. For example if at
vertex n1, two arcs leads to vertex n2 and n3 and then from n2 and n3 you reacg n4, you have
to choose the arc n1->n2 or n1->n3. You have the possibility to ask all the vertices next to
n1, in our case, the set {n2,n3}. You guessed, we use Edge sets for that !

DiPath multi = ...;
Vertex n1 = multi.getStart();
ArcSet as = multi.nextArcSet(n1);
System.out.println("All arcs leaving vertex n1:" + as);

4.3.5. How to know that my path is a multi path ?

You have a function which says if a path is a multi path:

if (p2.isMulti())
{
System.out.println("This path is a multi path !");

Mascopt

Page 30
Copyright © 2004 INRIA/UNSA All rights reserved.

}
else
{
System.out.println("This path is a mono path !");

}

4.3.6. Sample

You can find a sample in Mascopt Dev package in mascoptDev/samples/basics. The sample
file is UsingPaths.java. It builds some paths and cover it.

java UsingPaths
I've suceeded in merging the mono paths !
A mono path: N0->N2->N3->N4
An other mono path: N0->N2->N4
This path called 'monoPath' is a mono path !
The path called 'multiPath' is a multi path !
Current vertex: N0
Current edge: [N0->N2]
Current vertex: N2
Current edge: [N2->N3]
Current vertex: N3
Current edge: [N3->N4]
Current vertex: N0
Edge possibilities: { [N0->N2] }
Choice of the arc: [N0->N2]
Current vertex: N2
Edge possibilities: { [N2->N3] }
Choice of the arc: [N2->N3]
Current vertex: N3
Edge possibilities: { [N3->N4] }
Choice of the arc: [N3->N4]

4.4. About factories

4.4.1. Programming algorithms on Abstract Graph, Abstract Sets

As shown in the Documentation, the graph and digraphs are derivated from Abstract Graph.
If you want to program an algorithm which works on graph AND digraphs, then you can
directly program it with Abstract Graphs as parameter. Now, imagine that you works on the
abstract graph. You cannot know it this graph is made of edge or arc. You have to use the
methods of Abstract Edge and you cannot use the specific one of Edge or Arc. If your
algorithm have to create a new Arc or a new Edge in the graph, as a result, how can you
allocate this object without knowing its type ? That's here you can use a factory. A factory is
able to build any object that you do not know its type.

4.4.1.1. How I do ?

Mascopt

Page 31
Copyright © 2004 INRIA/UNSA All rights reserved.

First, get the factory (assuming you have g, an abstract graph):

Abstract Graph g = ...;
AbstractGraphFactory factory = g.getFactory();

Then, you have several methodes for building:

• Vertices
• Edges
• Vertex Sets
• Edge Sets
• Graphs
• Chains

Remember that you don't know the real type of this objects; you have to consider this object
as abstract object using its Abstract type. For example:

AbstractVertex n0 = factory.newAbstractVertex();
AbstractVertex n1 = factory.newAbstractVertex();
AbstractEdge e = factory.newAbstractEdge(n0,n1);

4.4.1.2. Where can I get the factory ?

The factory can be accessed from all basic type of the library:

• Graphs
• Vertex Sets
• Edge Sets
• Vertices
• Edges
• Chains

4.4.2. Sample

A short sample as been written to illustrate the use of factories. It adds some random edges to
a graph without knowing if this graph is a graph or a digraph. You can find the file
AddRandomEdges.java in Mascopt Dev package in mascoptDev/samples/basics. You obtain:

java AddRandomEdges samples/basics/AddRandomEdges1.mgl

Starting XML SAX2 parser
Parser is validating.
Graph before:DiGraph V={ N1 , N0 , N3 , N2 } E={ [N2->N3] , [N0->N3] ,
[N1->N0] , [N2->N0] , [N1->N3] }
Graph after:DiGraph V={ N1 , N0 , N3 , N2 } E={ [N2->N3] , [N3->N3] ,
[N0->N1] , [N3->N1] , [N0->N1] ,
[N0->N3] , [N1->N0] , [N1->N1] , [N0->N0] , [N1->N0] , [N2->N0] , [N1->N3]

Mascopt

Page 32
Copyright © 2004 INRIA/UNSA All rights reserved.

}

You can test it on samples/basics/AddRandomEdges1.mgl and
samples/basics/AddRandomEdges2.mgl.

4.5. Observation system

4.5.1. What is observation ?

By observation we want to express the idea that some objects are able to change
automatically their state depending on other objects states (at least this is my understanding
and my way to express it). For instancesuppose we have a VertexSet N and an EdgeSet E
based upon it. Some user may wish to remove a Vertex v from N. We would then expect that
E doesn't contain any edge related to v anymore, without any intervention from the user. This
is exactly what happens with Mascopt, and that behaviour is based on what we call
"observation".

4.5.2. The general principles

Broadly the observation mechanism is implemented in a very simple way. The observed
object must extends the ObservableObject class (which mascoptObject extends) and call the
right method (generally called notify(Add/Remove/Value)Observers) when something
happens. Besides the observer object must implement the Observer interface, that is mainly
implements an update method. Moreover, the observer object is responsible for its adding
and removing from the the list of observers of the related object. This is done by calling the
appropriate methods of the observed object. Those methods are usually named
add(Add/Remove/Value)Observer and remove(Add/Remove/Value)Observer.

4.6. MGL/MGX formats

4.6.1. For version 1.2.x or older

4.6.1.1. MGL Format

Mascopt uses XML to describe graphs and other network objects rather than simple text
format.

Mascopt provides several input and output formats. We only present MGL and MGX which
means Mascopt Graph Library and Mascopt Graph Extended. MGL format is the Mascopt's
native format and is based on the XML standard. It provides a readable description of
Mascopt's objects which can be easily extended for the user's own objects or specializations:
as the MGL reader parse an XML file, it can also read a derived file, containing new tags.

Mascopt

Page 33
Copyright © 2004 INRIA/UNSA All rights reserved.

One can create his own format implementing the interface WriterInterface which consist only
in two methods: an add method to add objects to write and a write method to physically write
the file.

The file is quite understandable. The information contained in a MGL file reflects the
oriented-object structure of Mascopt. This is a simple manner to enable the share of objects.
The listing bellow presents a sample of a code for a digraph.

<?xml version="1.0" ?>
<!DOCTYPE OBJECTS SYSTEM
"ftp://ftp-sop.inria.fr/mascotte/mascopt/dtd/mgl_v1.1.dtd">

<OBJECTS>
<VERTICES>
<VERTEX id="N0">
<POSITION>
<X>50.0</X> <Y>0.0</Y>
</POSITION>
<VALUE type="function" dataType="String"> node0 </VALUE>
</VERTEX>
<VERTEX id="N1">
<POSITION>
<X>10.0</X> <Y>50.0</Y>
</POSITION>
</VERTEX>
<VERTEX id="N2">
<POSITION>
<X>0.0</X> <Y>0.0</Y>
</POSITION>
</VERTEX>
</VERTICES>

<LINKS>
<ARC id="AE1">
<VERTEX_REF idref="N1"/>
<VERTEX_REF idref="N2"/>
</ARC>
<ARC id="AE0">
<VERTEX_REF idref="N0"/>
<VERTEX_REF idref="N2"/>
<VALUE type="Capacity" dataType="Double"> 6.8 </VALUE>
<VALUE type="length" dataType="Integer"> 110 </VALUE>
</ARC>
<ARC id="AE2">
<VERTEX_REF idref="N0"/>
<VERTEX_REF idref="N1"/>
</ARC>
</LINKS>

<SETS>
<VERTEX_SET id="NS0">

Mascopt

Page 34
Copyright © 2004 INRIA/UNSA All rights reserved.

<VERTEX_REF idref="N0"/>
<VERTEX_REF idref="N1"/>
<VERTEX_REF idref="N2"/>
</VERTEX_SET>
<ARC_SET id="AES0">
<ARC_REF idref="AE0"/>
<ARC_REF idref="AE1"/>
</ARC_SET>
<ARC_SET id="AES3">
<ARC_REF idref="AE0"/>
<ARC_REF idref="AE2"/>
</ARC_SET>
</SETS>

<GRAPHS>
<DIGRAPH id="G0">
<VERTEX_SET_REF idref="NS0"/>
<ARC_SET_REF idref="AES0"/>
</DIGRAPH>
<DIGRAPH id="G3">
<VERTEX_SET_REF idref="NS0"/>
<ARC_SET_REF idref="AES3"/>
</DIGRAPH>
</GRAPHS>
</OBJECTS>

4.6.1.2. MGX Format

MGX is an extended version of MGL. It solve the following problem: as all objects are
shared between graphs, the valuation of an object may differ between a graph and another
graph. For example, if an arc a0 is valued with Capacity=6.8, then this value is the same in
all graphs containing this edge. As a result, we introduce the notion of context, which precise
the context where the value is valid. The simplest way of using context is to put the graph
itself as context. It express directly that a value is valid only in this graph.

With two graphs G0 and G3 we can now add contexted values named "Capacity" on arc a0.
Then, the differences between MGL and MGX files are shown in the next listing. Note that
the default value 6.8 is kept on a0: without context, the valuation system gives this value.

a0.setDoubleValue("Capacity",G0, new Double(1.0));
a0.setDoubleValue("Capacity",G3, new Double(3.2));

<ARC id="AE0">
<VERTEX_REF idref="N0"/>
<VERTEX_REF idref="N2"/>
<VALUE type="Capacity" dataType="Double"> 6.8 </VALUE>
<VALUE type="Capacity" dataType="Double" context="G0"> 1.0 </VALUE>
<VALUE type="Capacity" dataType="Double" context="G3"> 3.2 </VALUE>
</ARC>

Mascopt

Page 35
Copyright © 2004 INRIA/UNSA All rights reserved.

4.6.2. For version 1.3.x and later

4.6.2.1. What changed ?

We totally replaced the parser by a DOM Parser, in ordre to clear the code. It is slower but
saffer than before. We validate the document two times: one time with a laxist DTD, then
with a Relax NG grammar. With a relax NG grammar, we can express more constraints for
the file and the validation of the xml file is improved.

4.6.2.2. DTD and Relax NG 1.4

The Validation of files is controlled by the version 1.4 of the DTD and relax NG. Have a
look in this directory.

Now the files looks like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE OBJECTS PUBLIC "SYSTEM"
"ftp://ftp-sop.inria.fr/mascotte/mascopt/dtd/mgl_v1.4.dtd">
<OBJECTS
version="ftp://ftp-sop.inria.fr/mascotte/mascopt/dtd/mgl_v1.4.rng">
<GRAPHS>
<DIGRAPH id="G0">
<VERTEX_SET_REF idref="NS0"/>
<ARC_SET_REF idref="AES0"/>

</DIGRAPH>
</GRAPHS>
<SETS>
<VERTEX_SET id="NS0">
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V1"/>
<VERTEX_REF idref="V2"/>

</VERTEX_SET>
<ARC_SET id="AES0">
<ARC_REF idref="AE1"/>
<ARC_REF idref="AE0"/>
<VERTEX_SET_REF idref="NS1"/>

</ARC_SET>
<VERTEX_SET id="NS1">
<VERTEX_REF idref="V2"/>
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V1"/>

</VERTEX_SET>
</SETS>
<VERTICES>
<VERTEX id="V0">
<POSITION>
<X>50.0</X>
<Y>0.0</Y>

Mascopt

Page 36
Copyright © 2004 INRIA/UNSA All rights reserved.

</POSITION>
<VALUE dataType="String" type="function">node0</VALUE>

</VERTEX>
<VERTEX id="V1">
<POSITION>
<X>10.0</X>
<Y>50.0</Y>

</POSITION>
</VERTEX>
<VERTEX id="V2">
<POSITION>
<X>0.0</X>
<Y>0.0</Y>

</POSITION>
</VERTEX>

</VERTICES>
<LINKS>
<ARC id="AE1">
<VALUE dataType="Double" type="Capacity">6.8</VALUE>
<VALUE dataType="Integer" type="length">110</VALUE>
<VERTEX_REF idref="V0"/>
<VERTEX_REF idref="V2"/>

</ARC>
<ARC id="AE0">
<VERTEX_REF idref="V1"/>
<VERTEX_REF idref="V2"/>

</ARC>
</LINKS>

</OBJECTS>

4.7. The Graphical User Interface

4.7.1. Mascopt Viewer

The Viewer is quite complicated to use because it permits to view a large amount of graphs.
In this part, we don't describe how to use the viewer by the code. We only describe the user
interface and how to use, with your mouse, the viewer.

4.7.2. Launch the editor

java applications.Viewer

or

./bin/Viewer

If you use directly the jar files, provided on the tools page, launch directly the jar file:

java -jar Editor.jar

Mascopt

Page 37
Copyright © 2004 INRIA/UNSA All rights reserved.

4.7.3. Use of the Viewer

The viewer is composed of the main window, wich allow to control what is viewed in the
views. Then you can create other windows wich are called "Views" because offering
different views on several graphs. Each view can display different Layers at the same time.
And each layer contains a list of graphs. With this system you can display in one view a layer
containg for example the request graph and a network and, in an other view, the network and
several paths on it. As the viewer is quite flexible it explains why it is not simple to use.

4.7.3.1. Managing Views and Layers.

Multiple views can be opened clicking on "New View" button. When a view is created, a
new tab View #n is added in the Views section. In each View, you have at the bottom right
the list of Layers in it. At the beginning, the new view is empty: you have to add a new layer
in it. You can also add a layer which is already used in other view (this is the notion of
shared layer). Note also that a Layer can be visible or hidden in a view. To remove a layer
from a view, you can click on the X button at the top right.

4.7.3.2. Managing graphs in Layers

When you have created your new layers in views, then you can switch to the Layers Tab to
view all the available layers. In each layer you can add some graphs, digraph, chains or paths.
As you want to put in your layer some graphs from files, first you must scan a file. Select this
option in the drop down list called "Add Graph", then select a file and all graphs contained in
this file will be added in the drop down list. To add a graph, you just select the layer where
you want to put it and then, you select the wanted graph in the drop down list.

When the graph is added in the layer, it appears in the list and in all the Views which
contains the concerned layer. You can also hide a a graph clicking in the checkbox on the
right. To remove a graph from a layer you can click on the X button at the top right.

4.7.3.3. The tab editor in the viewer

We added an editor tab in the viewer because the user may have to change a graph in a file. It
works as describe below.

4.7.4. Mascopt Editor

This is a graphic interface which allow to allow a graph, change values on edges and vertices.

4.7.4.1. Launch the editor

Mascopt

Page 38
Copyright © 2004 INRIA/UNSA All rights reserved.

java applications.Editor

or

./bin/Editor

If you use directly the jar files, provided on the tools page, launch directly the jar file:

java -jar Viewer.jar

4.7.4.2. Use of the editor

The editor is composed of two things: the main window with a "tool bar" to change the
different uses of the mouse and a view of the current graph wich id edited.

Action buttons

• New Graph: creates a new empty graph
• New Di Graph: creates a new empty digraph
• Load: pop up a file browser. Select a file from where to load a graph (erase the current

graph)
• Save: save in mgl format the current edited graph
• New View: create a new view (a new window) on the graph
• Insert Graph: load a graph from a file (not erasing the current graph)
• Dump: dump the view of the graph in an image file (PNG format)

Mouse behavior

• Create: clicking on the view, it creates a vertex. Clicking on vertices, it creates edges.
• X: clicking on vertices or edges delete it.
• Set Name: clicking on vertices or edges pop up a text field to change the name of the

object.
• Set Color: clicking on vertices or edges change its color.
• Set Value: clicking on vertices or edges pop up a dialog box to change any value on

objects. Refer to the javadoc concerning vertices and edges and the notion of values. You
can also have a look at Graphs

Labels

The labels depends directly of the values set on objects. When you change the value on a
vertex or an edge, nothing seems to appear. If you want to see it, you have to configure the
labels. You have two main buttons: Set Vertex Label and Set Arc Label. When you click on
it, a pop up appears with a textfield where you can put a string. This string will appear on all
vertices or edges. But you can also use variables wich will read the value on each objects.
The syntax is quite simple: to access a value named for example "myvalue", you should write

Mascopt

Page 39
Copyright © 2004 INRIA/UNSA All rights reserved.

$(value).

Example:

Imagine you have put a value name "weight" with value 12 on the first vertex and also on an
another with value 10. Then, you click on Set Vertex Label and you enter the string "The
weight of this vertex is $(weight)". You obtain this:

The View

The window containing a view of the graph is simple to manipulate. When you click you
perform one the Mouse behavior. You can also drag and drop vertices, and drag and drop all
the graph (clicking anywhere). With the whell of your mouse, you can modify the zoom of
the view.

5. Network guide

5.1. Generate network files

5.1.1. Where are these files ?

The classical network files we use are stored in the directory "files". You can find here
'R1m.mgl", "EU.mgl", 'nsfnet.mgl'. This files use the MGL format. It means that networks
are represented by graphs because only graphs can be stored in a MGL file. Actually, those
networks uses two graphs: the request graph and the cable graph. These two graphs share
their vertex set. As these files contain two graphs, it is not easy to use the Editor to create
some sample files. The goal of this page is to explain how to create some networks file using
two possibilities: a Net file or an GOd file.

5.1.2. GOd format

The GOd format was developped by David Coudert and is used in by other programs not
included in Mascopt.

The GOd format uses two files:

• e .graph file, which describes the graph
• The .od fil, which describes the requests

5.1.2.1. The .graph files

The .graph lines can contain comments. The lines of comments begins with "c". These lines
are ignored when parsing. For example:

Mascopt

Page 40
Copyright © 2004 INRIA/UNSA All rights reserved.

c
c NSFET, 14 noeuds et 21 aretes, symetrique
c
c donnees extraites de:
c Practical routing and wavelength assignment algorithms for
c all optical networks with limited wavelength conversion
c M.D. Swaminathan, K.N. Sivarajan
c IEEE ICC 2002
c
c

The first used line of the .graph file contains "n" and the number of nodes:

n 14

Then, the file must contains 14 lines with the flag "e" which means that this is an edge, then
the number of the source node and the number of destination node. You can leave some lines
empty. For example:

e 0 1
e 0 2
e 0 7
e 1 2
e 1 3
e 2 5
e 3 4
e 3 10
e 4 5
e 4 6
e 5 9
e 5 13
e 6 7
e 7 8
e 8 9
e 8 11
e 8 12
e 10 11
e 10 12
e 11 13
e 12 13

Note that the nodes of the network are numbered from 0 to n-1, if we consider n nodes. You
can find the complete file in mascoptDev/files/nsfnet.graph.

5.1.2.2. .od file

The .od file contains the request on the graph. The use of two files allow to change the
requests using the same network. As in the .graph file, you can put some comments with the
flag "c":

Mascopt

Page 41
Copyright © 2004 INRIA/UNSA All rights reserved.

c
c Instance pour
c NSFET, 14 noeuds et 21 aretes, symetrique
c
c 268 requetes au total
c
c donnees extraites de:
c Practical routing and wavelength assignment algorithms for
c all optical networks with limited wavelength conversion
c M.D. Swaminathan, K.N. Sivarajan
c IEEE ICC 2002
c
c

Then, you have just to declare the requests with the flag r: r source_node dest_node
request_size. For example:

r 3 11 2
r 3 12 1
r 3 13 3
r 4 0 1
r 4 1 3
r 4 3 2
r 4 5 1
r 4 7 2
...

You can find the complete file in mascoptDev/files/nsfnet.od.

5.1.3. Net format

The Net format is dedicated to WDM networks. It has been extended to describe any network
with hierarchical structure.

You can define some comments at the beginning of the file with "//". For example:

// --//
// Rosalie
//
// Simple nework in "R" design.
//
// All edges and requests exprimed in this file. Do not use the -mirrorEdge
// nor -mirrorRequest options to translate this net in xml file.
// --//
//
//

You can also, after a line containing some data, add some comments with "//".

The first line containing data must give the number of levels (in a WDM network, 4 levels).
Then, the next lines contain the names of each level (two times) and the number of sub-levels

Mascopt

Page 42
Copyright © 2004 INRIA/UNSA All rights reserved.

in this level. Here an example:

4 // 4 levels
CABLE CABLE 0 // Main tag
FIBER FIBER 4 // 4 bands in a fiber
BAND BAND 8 // 8 lambdas in a band
LAMBDA LAMBDA 0 // Last tag

Then the data starts. The next line gives the number of nodes and the network and the
following lines give the name of each nodes and its coordinates:

6
Zero 200 100
Un 400 100
Deux 200 300
Trois 400 300
Quatre 200 500
Cinq 400 500

Then the description of the links starts. Again, the first lines gives the number of requests,
then the following lines give the description of each ling with "node1 node2 cable_size
cable_lenght". For example:

11
0 1 1 100
2 0 2 100
0 2 2 100
3 0 1 141
1 3 2 100
3 1 2 100
3 2 1 100
2 4 2 100
4 2 2 100
2 5 1 141
5 2 1 141

5.1.4. How to read these files in Mascopt ?

We implemented the classes wich read these two formats. You can find these classes in the
package mascoptLib.io.graph. These classes works as the MGLReader works (it's quite the
same).

5.1.5. How to convert the GOd format to an MGL file ?

From the reader classes, we implemented some small converters (that's easy to program).

5.1.5.1. od2mgl

Mascopt

Page 43
Copyright © 2004 INRIA/UNSA All rights reserved.

You can find this program in mascoptDev/bin. You can also call it using:

java applications.Od2Mgl
usage: od2mgl fileIn.graph fileIn.od fileOut.mgl [-h] [--help]
Try `od2mgl --help' for more options.

This converter takes the .graph and .od files in input, and then writes the mgl file.

5.1.5.2. net2mgl

You can find this program in mascoptDev/bin. You can also call it using:

java applications.Net2Mgl
usage: net2mgl fileIn.net fileOut.mgl [-nma] [--noMirrorArc] [-nmr]
[--noMirrorRequest] [-h] [--help]
Try `net2mgl --help' for more options.

This converter takes the .net file and writes the mgl file. You have some optional flags:
noMirrorArc does not duplicates the arcs of the networks (which is done by default). The
noMirrorRequest does not duplicates the requests (which is done by default).

6. Tutorials

6.1. Prim's algorithm

6.1.1. How to program Prim's algorithm for the Minimum Spanning Tree

One of mascopt expected use is the quick implementation of algorithm and more partcularly
algorithms on graphs. This note is intended to help you in the realization of this goal by
showing you how to manipulate the differents data structures involved. The followed
approach is to show how one could program the Prim's algorithm that computes the
Minimum Spanning Tree (MST for short) of a given graph. A formulation and a proof of this
algorithm can be found in textbooks or even on the internet.

6.1.2. Where we go

We are now programming a very simple application that takes a graph, computes its MST
taking into account the "length" of the edges and then outputs the resulting graph. All the
GUI stuff is left as an exercise to the reader or perhaps as a subject for a forthcoming article
in this documentation.

It is to be remarked that with a little bit of work mascopt enables us to implement an
application accepting as input either a graph or a digraph and let the user choose the type of
value used to compute the MST. This is what the PrimMST class does.

Mascopt

Page 44
Copyright © 2004 INRIA/UNSA All rights reserved.

6.1.3. At least, the code

It's a java program, so first we need to declare the class (we can't do the imports now,
because we don't know exactly what we'll need), let's call it MSTByPrim:

public class MSTByPrim
{

As the application is very basic, we won't need any global variable and no constructor. The
default one is sufficient. So let's code the method that will do most the work (the aim of this
article is not to instruct on how to do some beautiful oop but how to use mascopt - even if the
latter does not exclude the former, but in this particular case the algorithm is very simple and
straightforward).

public Graph computeMST(Graph inputGraph)
{

We are going to follow the Prim's algorithm and construct step by step the graph made of the
MST, that is we explore the graph given as an input until we find the right edge and then we
add that edge to the set of edges of the MST and its missing extremity to the set of vertices.
In order to do that we will need a graph to store the MST and a set of already touched
vertices. We introduce those variables and initialize them.

VertexSet touchedVertices = new VertexSet();
EdgeSet keptEdges = new EdgeSet(touchedVertices);
Iterator itGN = inputGraph.getVertexSet().iterator();
if (itGN.hasNext())

{
touchedVertices.add((Vertex)itGN.next());
}

It has to be noted that in mascopt, you traverse linearly a set using an Iterator. Two methods
of those objects are mainly used, hasnext() which test if there remains an untouched element
in the set and next() which extracts the next element of the set. The drawback of this method
is the fact that the returned object is of type Object and we are then obliged to explicitely cast
it. Advantages include the standardization of the traverse of sets and the fact that if the set is
changed, the object of type Iterator is automatically set to null.

while (touchedVertices.size() < inputGraph.getVertexSet().size())
{
Iterator itTN = touchedVertices.iterator();
int minLength = Integer.MAX_VALUE;
Edge bestCandidate = null;
Vertex neighborToAdd = null;

This is the main loop, we try until the MST we are constructing contains as many vertices as
the initial graph. And we initialize working variables. itTN is the iterator used to parse the set

Mascopt

Page 45
Copyright © 2004 INRIA/UNSA All rights reserved.

of vertices of the MST. minLength is the smallest length of an outgoing edge find so far,
bestCandidate is the corresponding edge and neighborToAdd is the extremity of that edge not
yet belonging the MST.

while (itTN.hasNext())
{
Vertex current = (Vertex)itTN.next();
VertexSet neighbors = (VertexSet)current.getNeighbors(inputGraph);
Iterator itN = neighbors.iterator();

Here, for every edge of the MST, we test the outgoing edges. In fact we consider the list of
neighbors of a vertex which is exactly the same. It is only a little bit shorter in the following
as we need to test wether the neighbor is already in the MST.

while (itN.hasNext())
{
Vertex currentNeighbor = (Vertex)itN.next();
// we are only interested in outgoing edges
if (!touchedVertices.contains(currentNeighbor))

{
EdgeSet potentialMSTEdges = (EdgeSet)

current.getEdgesTo(inputGraph,currentNeighbor);
Iterator itpMSTe = potentialMSTEdges.iterator();
Edge potentialEdge = null;
// try every edge in the edgeset
while (itpMSTe.hasNext())

{
potentialEdge = (Edge)itpMSTe.next();
// if the current edge is the best up to now
if (Integer.parseInt(potentialEdge.getValue("length"))<

minLength)
{
minLength =

Integer.parseInt(potentialEdge.getValue("length"));
bestCandidate = potentialEdge;
neighborToAdd = currentNeighbor;
}

}
}

}

If the neighbor doesn't yet belong to the MST, we consider the edges between the two
vertices and in particular its length compared to the length of the already seen edges. This is
Prim's algorithm.

}
touchedVertices.add(neighborToAdd);
keptEdges.add(bestCandidate);
}

After having explored all the vertices of the soon-to-be MST and all the outgoing edges, we

Mascopt

Page 46
Copyright © 2004 INRIA/UNSA All rights reserved.

add the one that fits.

return new Graph(touchedVertices,keptEdges);
}

}

Finally we return the graph of the MST.

It is possible to transcribe algorithms in mascopt in a quite simple way. In spite of the
intensive use of a great number of variables the program is still quite efficient because we are
not creating any variable (a great loss of time in java) but only pointing to already existing
variables.

The use of iterators to describe the different sets is quite interesting because it standadize the
writing of loops and we don't need to pay any more attention to the size of the different
structures.

6.1.4. Sample

The above program can be found in Mascopt Dev with a test program
samples/algos/MSTByPrimGUI.java using this function and a file containing a graph whose
MST can be computed with this program (file samples/algos/MSTGrapheExample.mgl). You
can of course use your own graph, but in order to keep the example rather simple, we only
considered connected graphs with edges that have an associated value called "length".

To test it, just do:

java MSTByPrimGUI samples/algos/MSTGrapheExample.mgl

6.2. TD d'initiation

6.2.1. Questions

1. Installez mascopt sur votre compte en suivant les instructions de la page Getting Mascopt
puis récupérez sur votre compte le fichier grapheBicolore.mgl.

2. Écrire un programme permettant de choisir de manière graphique un fichier avec une
extension .mgl et de stocker le graphe de ce fichier dans une variable de type Graph. Pour
cela on utilisera la classe GraphChooser et la méthode getGraphMGL (il faut remarquer
que cette méthode est utilisable ici car le fichier ne contient qu'un graphe).

3. Modifier le programme précédent de manière à construire un sous-graphe du précédent
ne contenant que les sommets dont l'attribut couleur vaut ``rouge''. Puis un nouveau
graphe contenant les sommets dont l'attribut couleur vaut ``vert''.

4. Modifier à nouveau le programme de façon à afficher les 2 graphes créés précédemment.

Mascopt

Page 47
Copyright © 2004 INRIA/UNSA All rights reserved.

Facultatif : on pourra afficher les sommets avec l'attribut couleur valant ``rouge'' (resp.
``vert'') en rouge (resp. vert).

5. Enfin, modifier le programme afin de sauver d'abord chaque graphe dans un fichier
séparé puis tous dans un même fichier.

6.2.2. Appendice A : comment afficher des graphes, une méthode

Il existe dans mascopt une classe permettant l'affichage des graphes, MascoptViewer. Pour
afficher un graphe, il faut donc créer un objet de type MascoptViewer. Cette objet va alors
contenir une liste de vues (qui correspondent à différentes fenêtres qui seront créées) et
chaque vue contient une liste de ``layers'' contenant chacun un ou plusieurs graphes. Cette
organisation permet en particulier de superposer différents graphes en ajoutant leur layers
respectives dans les vues. Il est aussi possible d'ajouter la même layer à différentes vues. Les
vues sont implémentées par la classe GView et les layers par la classe GLayer.

En pratique on peut procéder de la manière suivante,

• on instancie un objet de type MascoptViewer
MascoptViewer mv = new
MascoptViewer();

• on instancie un objet de type GView

GView gv = mv.newViel(G.getName());
• on instancie un objet de type GLayer

GLayer gl = mv.newLayer(G.getName());
• on associe le graphe et le layer

mv.addGraphInLayer(G,gl,true);
• on ajoute la layer dans la vue

mv.addLayerInView(gl,gv);

Et tout devrait s'afficher de la manière souhaitée.

6.2.3. Appendice B : comment colorier des éléments.

Pour colorier les sommets et arêtes dans le mascoptViewer, il suffit de créer un attribut
``color'' dans l'élément à colorier et de lui donner comme valeur l'entier correspondant à la
couleur désirée.

Ainsi, supposons que l' n ainoeque l'on soe voir apparaîeen rouge, un façon d'aboutir à ce
résultat est d'utiliser les méthodes de la classe java java.awt.Color :

N1.setIntValue("color",(Color.red).getRGB());

Mascopt

Page 48
Copyright © 2004 INRIA/UNSA All rights reserved.

6.2.4. Solution

Voici la solution de l'exercice, programmée par Marc Martinez: Premier.java

Mascopt

Page 49
Copyright © 2004 INRIA/UNSA All rights reserved.

	1 Mascopt project
	1.1 Mascopt project
	1.1.1 What is Mascopt ?
	1.1.2 Screenshots

	1.2 Getting Mascopt
	1.2.1 Web access
	1.2.2 CVS on INRIA network in Mascotte Team
	1.2.3 CVS from World Wild Web
	1.2.4 What contains Mascopt Dev ?
	1.2.5 And then ?

	1.3 Download Mascopt
	1.3.1 Architecture:
	1.3.2 Program files and documentations:
	1.3.2.1 Version 1.3.x:
	1.3.2.2 Version 1.2.x:
	1.3.2.3 Version 1.1.x:

	1.3.3 Miscellaneous documentation

	1.4 Download Tools
	1.4.1 Standalone tools
	1.4.2 The tools from version 1.3.1 of Mascopt:
	1.4.3 Editor's screenshot:

	1.5 Installation Manual
	1.5.1 Requirements
	1.5.2 How to compile ?
	1.5.2.1 The ant way Part 1 - Principles and command line
	1.5.2.2 The ant way Part 2 - ant and eclipse

	1.5.3 The Makefile way
	1.5.4 Launch a program
	1.5.5 Working with CVS at INRIA
	1.5.6 Structural remark
	1.5.7 Use Mascopt with .jar file

	1.6 Build your Javadoc
	1.6.1 The Public Javadoc
	1.6.1.1 Mascopt Lib
	1.6.1.2 Mascopt Dev

	1.6.2 The Protected and Private Javadoc
	1.6.3 Latex

	1.7 Installing mascopt in Eclipse
	1.7.1 Why Eclipse ?
	1.7.2 Getting Eclipse
	1.7.3 Step by step install
	1.7.4 Step by step configuration
	1.7.5 Additional tips

	1.8 License
	1.8.1 Mascopt's license
	1.8.2 Licence of used software
	1.8.3 Agence pour la Protection des Programmes

	1.9 About
	1.9.1 About Mascopt
	1.9.2 Workpackages
	1.9.3 Contact
	1.9.4 Contributors
	1.9.4.1 Main Authors
	1.9.4.2 Contributors
	1.9.4.3 Bug reporters

	2 News
	2.1 Demonstration
	2.1.1 Graph Editor
	2.1.1.1 Buttons
	2.1.1.2 How to create a graph ?
	2.1.1.3 Modes
	2.1.1.4 Labels

	2.1.2 Algorithm on node coordinates

	2.2 F.A.Q.
	2.2.1 Questions
	2.2.1.1 1. I put values on edges. Can I put values on nodes ?
	2.2.1.2 2. I have a out of memory error...
	2.2.1.3 3. I made a sub-graph, with the graph constructor but I cannot put new edges in this graph, why ?
	2.2.1.4 4. I have a null pointer exeception. How can i debug something ?
	2.2.1.5 5. Can i put some values on the objects of Mascopt ?
	2.2.1.6 6. Why I cannot get a Double or an Integer from a .mgl file ?
	2.2.1.7 7. Is there any way to attach an object to a Vertex? I have seen that I can attach primitive types and strings and encapsulated primitive types, but in my case I would like to have an object. Con this be done ?

	2.3 Known bugs
	2.3.1 EDITOR.java
	2.3.2 MascoptViewer.java
	2.3.3 Tubes
	2.3.4 Delete value
	2.3.5 Valuation system
	2.3.6 Cplex Capacity Flow

	2.4 To do
	2.4.1 Graph
	2.4.2 Observation

	3 Guide
	3.1 Programming Guide
	3.1.1 A guide ?

	4 Graph guide
	4.1 Valuation system
	4.1.1 Valuate Mascopt objects
	4.1.2 Set and Get a value without context
	4.1.3 Set and Get a value with context
	4.1.4 Mixing values with and without context:
	4.1.5 How to get values, when reading a file ?
	4.1.6 Convert String to numeric values
	4.1.7 Convert numeric classes to numeric simple types:

	4.2 Working with sets
	4.2.1 On the use of sets in Mascopt
	4.2.1.1 How things work
	4.2.1.2 Programming with sets
	4.2.1.3 Creating the sets
	4.2.1.4 Removing some elements
	4.2.1.5 Adding some elements
	4.2.1.6 Last remarks

	4.2.2 Sample

	4.3 Paths
	4.3.1 Build Paths on your graphs
	4.3.2 Construct a dipath
	4.3.3 How to cover a path ?
	4.3.4 And I can't do multi-path, isn't it ?
	4.3.5 How to know that my path is a multi path ?
	4.3.6 Sample

	4.4 About factories
	4.4.1 Programming algorithms on Abstract Graph, Abstract Sets
	4.4.1.1 How I do ?
	4.4.1.2 Where can I get the factory ?

	4.4.2 Sample

	4.5 Observation system
	4.5.1 What is observation ?
	4.5.2 The general principles

	4.6 MGL/MGX formats
	4.6.1 For version 1.2.x or older
	4.6.1.1 MGL Format
	4.6.1.2 MGX Format

	4.6.2 For version 1.3.x and later
	4.6.2.1 What changed ?
	4.6.2.2 DTD and Relax NG 1.4

	4.7 The Graphical User Interface
	4.7.1 Mascopt Viewer
	4.7.2 Launch the editor
	4.7.3 Use of the Viewer
	4.7.3.1 Managing Views and Layers.
	4.7.3.2 Managing graphs in Layers
	4.7.3.3 The tab editor in the viewer

	4.7.4 Mascopt Editor
	4.7.4.1 Launch the editor
	4.7.4.2 Use of the editor
	4.7.4.2.1 Action buttons
	4.7.4.2.2 Mouse behavior
	4.7.4.2.3 Labels
	4.7.4.2.4 The View

	5 Network guide
	5.1 Generate network files
	5.1.1 Where are these files ?
	5.1.2 GOd format
	5.1.2.1 The .graph files
	5.1.2.2 .od file

	5.1.3 Net format
	5.1.4 How to read these files in Mascopt ?
	5.1.5 How to convert the GOd format to an MGL file ?
	5.1.5.1 od2mgl
	5.1.5.2 net2mgl

	6 Tutorials
	6.1 Prim's algorithm
	6.1.1 How to program Prim's algorithm for the Minimum Spanning Tree
	6.1.2 Where we go
	6.1.3 At least, the code
	6.1.4 Sample

	6.2 TD d'initiation
	6.2.1 Questions
	6.2.2 Appendice A : comment afficher des graphes, une méthode
	6.2.3 Appendice B : comment colorier des éléments.
	6.2.4 Solution

