Approximation Algorithms for

2-Dimensional Packing Problems

Klaus Jansen
Universität Kiel

Overview

- Introduction
- Algorithms NFDH, FFDH
- Algorithm by Kenyon, Remila
- Algorithm by Jansen, Solis-Oba
- Open problems

2D packing problem

Given:

- n rectangles $R_{j}=\left(w_{j}, h_{j}\right)$ of width $w_{j} \leq 1$ and height $h_{j} \leq 1$,
- a strip of width 1 and unbounded height.

Problem: pack the n rectangles into the strip (without overlap and rotation) while minimizing the total height used.

Complexity: NP-hard (contains bin packing as special case).

Example

$$
\begin{aligned}
& R_{1}=(7 / 20,9 / 20), R_{2}=(3 / 10,1 / 4), R_{3}=(2 / 5,1 / 5) \\
& R_{4}=(1 / 4,1 / 5), R_{5}=(1 / 4,1 / 10), R_{6}=(1 / 5,1 / 10) . \text { Here we } \\
& \text { have } O P T\left(\left(R_{1}, \ldots, R_{6}\right)\right)=h\left(R_{1}\right)=9 / 20
\end{aligned}
$$

Application I

- Cutting Stock: cutting patterns of objects out of a large strip of material (like cloth, paper or steel).
- Goal: minimize the waste of material.

Application II

- Scheduling: compute a schedule for a set of jobs each requiring a certain number of resources (machines, processors or memory locations).
- Goal: minimum length of the schedule (minimum makespan).

Application III

- VLSI Design: placement of modules on a chip.
- Goal: minimum area of the chip.

Approximation algorithms

for an optimization problem are methods which for each instance L of the problem compute efficiently a feasible solution with provable performance guarantee.

We compare
$A(L)$ the height computed by algorithm A.
$O P T(L)$ the minimum height among all solutions.

Absolute performance ratio

Worst Case:

For all instances L we have:

$$
A(L) \leq a O P T(L)
$$

Goal: $a \geq 1$ should be close to 1 .

Algorithm I: NFDH

Here we have $N F D H(L)=3 / 4$.

Algorithm II: FFDH

Here we have $\operatorname{FFDH}(L)=13 / 20$.

Absolute performance ratio

$A(L) \leq a O P T(L) \quad$ for all L	
3	NFDH (Coffman et al.)
2.7	FFDH (Coffman et al.)
2.5	(Sleator)
2	(Schiermeyer, Steinberg)

Asymptotic performance ratio

$$
A(L) \leq a O P T(L)+b \quad \text { for all } L
$$

Goal: Ratio a close to 1 .

An AFPTAS is a family of approximation algorithms $\left\{A_{\epsilon} \mid \epsilon>0\right\}$ where $A_{\epsilon}(L) \leq(1+\epsilon) O P T(L)+b$ (and b does not depend on $O P T(L))$.

Asymptotic performance ratio

$$
A(L) \leq a O P T(L)+b \quad \text { for all } L
$$

2 NFDH (Coffman et al.)
1.7 FFDH (Coffman et al.)

4/3 (Golan)
5/4 (Baker et al.)
$1+\epsilon \quad$ AFPTAS (Kenyon, Remila)

Algorithm by Kenyon, Remila

Theorem: (Kenyon, Remila, FOCS 1996)

There is an algorithm A which, given a list L of n rectangles and a positive number ϵ, produces a packing of L into a strip of width 1 and height

$$
A(L) \leq(1+\epsilon) O P T(L)+4 / \epsilon^{2} .
$$

The running time of A is polynomial in n and $1 / \epsilon$.

Main ideas of the algorithm

(a) partition the list L into narrow and wide rectangles,
(b) round the wide rectangles to obtain a constant number of widths,
(c) solve a linear program to pack the wide rectangles,
(d) use a modified version of NFDH to pack the narrow rectangles.

Partition of L into wide and narrow rectangles

$$
\begin{aligned}
& L_{\text {wide }}=\left\{(x, y) \in L \mid x>\epsilon^{\prime}\right\} \\
& L_{\text {narrow }}=\left\{(x, y) \in L \mid x \leq \epsilon^{\prime}\right\}
\end{aligned}
$$

Rounding of the wide rectangles

Round up each rectangle in group i to the widest rectangle in group i. This leaves a constant number $m^{\prime} \leq m=4 / \epsilon^{2}$ of widths.

Configurations

- a configuration C is a multiset $\left\{\alpha_{C, 1}: w_{1}^{\prime}, \ldots, \alpha_{C, m^{\prime}}: w_{m^{\prime}}^{\prime}\right\}$ of widths with total sum $\sum_{i=1} \alpha_{C, i} w_{i}^{\prime} \leq 1$,
- $\alpha_{C, i}$ denotes the number of occurrences of width w_{i}^{\prime} in configuration C.

Example

Type A : 4 rectangles with width $3 / 7$ and height 1 , Type B : 4 rectangles with width $2 / 7$ and height $3 / 4$.

Configurations

1. configuration with 2 type A rectangles:
$C_{1}=\{2: 3 / 7,0: 2 / 7\}$.
2. configuration with 1 type A and 2 type B rectangles:
$C_{2}=\{1: 3 / 7,2: 2 / 7\}$.

Linear program

Use for each configuration C a positive variable $x_{C} \geq 0$ that represents the total height of configuration C in the solution.

Objective function: $\sum_{C} x_{C}$ is the total height of the packing.

Important inequality

β_{i} the sum of the heights of all rectangles with width w_{i}^{\prime}.
$\alpha_{C, i}$ the number of occurrences of w_{i}^{\prime} in configuration C.

Inequality: $\sum_{C} \alpha_{C, i} x_{C} \geq \beta_{i}$ for $i=1, \ldots, m^{\prime}$.

Idea: The configurations must reserve enough space for the rectangles with width w_{i}^{\prime}.

Linear program (LP)

$$
\begin{array}{ll}
\min & \sum_{C} x_{C} \\
\text { such that } & \sum_{C} \alpha_{C, i} x_{C} \geq \beta_{i} \quad i=1, \ldots, m^{\prime} \tag{1}\\
& x_{C} \geq 0
\end{array}
$$

Notice: this is a relaxation of the $2 D$ packing problem (implicitly we allow to cut rectangles into pieces).

Step I (space generated by LP)

Step II (placing the wide rectangles)

Step III (after placing all wide rectangles)

Step IV (adding the narrow rectangles)

New Result

Theorem: (Jansen, Solis-Oba 2006)
There is an approximation algorithm A, which computes a packing into a strip of width 1 and height

$$
A(L) \leq(1+\epsilon) O P T(L)+1
$$

for any $\epsilon>0$.

2D knapsack problem

Given:

- n rectangles $R_{i}=\left(w_{i}, h_{i}\right)$ of width $w_{i} \leq 1$, height $h_{i} \leq 1$ and profit $p_{i}>0$.

Find: a subset $R^{\prime} \subset\left\{R_{1}, \ldots, R_{n}\right\}$ which can be packed into a square $[0,1] \times[0,1]$.

Goal: maximize the total profit $\sum_{R_{i} \in R^{\prime}} p_{i}$.

Example

$R_{1}=(1 / 2,1 / 2), R_{2}=(2 / 5,7 / 20), R_{3}=(4 / 5,1 / 4)$,
$R_{4}=(1 / 5,13 / 20), R_{5}=(7 / 10,1 / 5), R_{6}=(4 / 5,1 / 3)$ with
$p_{i}=1$.

New result

Theorem: (Jansen, Solis-Oba 2006) There is an algorithm B which finds a subset $R^{\prime} \subset\left\{R_{1}, \ldots, R_{n}\right\}$ that can be packed into a rectangle of width 1 and height $1+\epsilon$ and has total profit

$$
B(L) \geq(1-\epsilon) O P T(L)
$$

where $O P T(L)$ is the maximum profit among all subsets (that fit into a square $[0,1] \times[0,1]$).

Main ideas for $2 D$ knapsack problem

(a) eliminate a group of rectangles (with low profit) of width or height within $\left[\delta^{s}, \delta\right]$.
(b) partition the rectangles into tall and short rectangles and into wide and narrow rectangles.
(c) round up the height of each tall rectangle (with $h_{i}>\delta$) to a multiple of δ^{2} and move these rectangles vertically.

Rounding of tall rectangles

Container for short rectangles

Each container contains at least one short, wide rectangle. Therefore, there is only a constant number of such containers.

Further ideas

(a) pack short, wide rectangles only in containers,
(b) determine a constant number K of tall rectangles with highest profit
(c) compute packings for the K tall rectangles and the containers,
(d) use a linear program to place the remaining tall and short, narrow rectangles.

Packing of the K tall rectangles and containers

Adding the other rectangles

New 2D packing algorithm I

(1) use the algorithm by Steinberg to pack L into a strip of height $v \leq 2 O P T_{\text {Height }}(L)$,
(2) guess approximately a value $v^{\prime} \in[v / 2, v]$,
(3) use the 2D knapsack algorithm for the set of rectangles with scaled height $\bar{h}_{i}=h_{i} / v^{\prime}$, width w_{i} and profit (or area) $p_{i}=\bar{h}_{i} w_{i}$.

2D packing algorithm II

(4) for v^{\prime} with

$$
O P T_{\text {Height }}(L) \leq v^{\prime} \leq(1+\epsilon) O P T_{\text {Height }}(L)
$$

there is a packing of all scaled rectangles into the square $[0,1] \times[0,1]$ with total area $F \leq 1$,
(5) our 2D knapsack algorithm packs a subset $R^{\prime} \subset R$ into the rectangle $[0,1] \times[0,1+\epsilon]$ with total profit

$$
\geq(1-\epsilon) O P T_{\text {Profit }}(L)=(1-\epsilon) F
$$

The subset $R \backslash R^{\prime}$ with profit or area $\leq \epsilon F \leq \epsilon$ remains unpacked.

2D packing algorithm III

(6) pack the subset $R \backslash R^{\prime}$ (using the algorithm by Steinberg) into a rectangle of width 1 and height $\leq \epsilon+1 / v^{\prime}$,
(7) the packing of the scaled rectangles gives a total height of

$$
1+2 \epsilon+1 / v^{\prime}
$$

Rescaling generates a total height of at most

$$
\begin{aligned}
& (1+2 \epsilon) v^{\prime}+1 \\
\leq & (1+2 \epsilon)(1+\epsilon) O P T_{\text {Height }}(L)+1 \\
\leq & (1+5 \epsilon) O P T_{\text {Height }}(L)+1
\end{aligned}
$$

Open questions

(1) is there an efficient algorithm A for the 2D packing problem with

$$
A(L) \leq a O P T_{\text {Height }}(L)
$$

and $a<2$?
(2) is there an efficient algorithm B for the 2D packing problem with

$$
B(L) \leq(1+\epsilon) O P T_{\text {Height }}(L)+b
$$

and $b<1$?

