
Bipartite graph and traffic grooming on
MASCOPT library

Paolo Pastorelli

February 1, 2007

Abstract

This is a report on my work done at INRIA from the 1st july 2006
to 17th november 2006.
I am so grateful to professor Jean-Claude Bermond, for this oppor-
tunity, and to professor Michel Syska and the ing. Fabrice Peix who
followed my work and helped me every time I needed him.

Contents
1 Introduction 3

2 About data structures on mascoptLib 3

3 First steps 4
3.1 General description . 4
3.2 Bipartite Graph Generator . 4

3.2.1 Theoretical study of the problem 4
3.2.2 Implementation details 4

3.3 Bipartite Matching . 6
3.3.1 Theoretical study of the problem 6
3.3.2 Implementation details 7

4 Grooming 7
4.1 General description . 7
4.2 Theoretical study of the problem 8
4.3 Heuristics description . 9
4.4 Implementation details . 11

4.4.1 HeuristiquesTest . 11

1

4.4.2 GrilleGenerator and GrilleToriqueGenerator 12
4.4.3 MonoRoutage . 12
4.4.4 Grooming . 13
4.4.5 Tubes . 14

5 Conclusions and future works 14

2

1 Introduction
The matter of my five months of work at INRIA is: Mascopt.
The main objective of Mascopt (Mascotte Optimization) project is to provide
a set of tools for network optimization problems. Examples of problems are
routing, grooming, survivability, or virtual network design.
Mascopt will help implementing a solution to such problems by providing a
data model of the network and the demands, libraries to handle networks
and graphs, and ready to use implementation of existing algorithms or linear
programs (e.g integral multicommodity flow).
Mascopt is Open Source (under LGPL) and intends to use the most standard
technologies as Java Sun and XML format providing portability facilities [1].

2 About data structures on mascoptLib
In this section I itemize, and try to present very fast, the basic mascoptLib
objects that I used to work on the graph during my project. This basic
objects are the same objects (with the same name) that we meet on graph
theory definitions (very helpful for a very fast comprehension of the library):

• vertex : the basic entity on a graph. The vertex, defined with a pair of
coordinates or not.

• vertex-set : a set of vertices, necessary to define an edges or arcs set.

• edge: defined on a vertices pair. / arc: defined on a vertices pair, the
order here is important: the first vertex is the tail and the second the
head.

• edge-set : a set of edges defined on a vertex-set, necessary to define a
graph. / arc-set : a set of arcs defined on a vertex-set, necessary to
define a di-graph.

• graph: an undirected graph defined on an edge-set. / di-graph: a
directed graph defined on an arc-set.

• map: the not immediately comprehension object. A map is the way
adopted on Mascopt to associate a value at a Mascopt object.
Like we can see later this is very useful to associate a capacity to an
arc when an arc represent a pipe. The values that we can associate to
a Mascopt object are more than one because to recover a value is nec-
essary: the object, a context (a parameter with type Mascopt object)

3

and a name a parameter with type String.

(object, context, name)⇒ value

The importance of this structure is clear with this little example: a
same arc (or an edge, or a vertex...) can belong to two (or more)
different graphs, is sufficient to use for context a graph or another to
associate different values to the same arc.

3 First steps

3.1 General description

For take confidence with the library and move my first steps in it I started
with the implementation of two simple algorithms: a bipartite graphs gener-
ator and an algorithm to solve matching problems on this type of graphs.
The motivation for that was the study of a multi client/server model: we want
to assign (optionally) client to servers depending on topological constraints.

3.2 Bipartite Graph Generator

3.2.1 Theoretical study of the problem

In the mathematical field of graph theory, a bipartite graph is a special graph
where the set of vertices can be divided into two disjoint sets U and V such
that every link has one end-point in U and one end-point in V [2].

3.2.2 Implementation details

My class BipartiteGraphGenerator has two contructors:

• one to generate a graph where the user can specify the cardinality of
the two separated vertex set.

• one to generate a graph where the user can submit two pre-existant
vertex set.

Anyway for the two constructors are necessary two other parameters:
the average and the variance.
The number n of outgoing edges (or arcs) from a vertex on the first set,
that link this vertex with the same number n (no multigraph allowed but
only simple graphs) of vertex on the second set, is determined through a

4

gaussian-distribution with this average and this variance.

pub l i c c l a s s B i p a r t i t eG r a phGen e r a t o r
{

. . . [cut]

pub l i c B i p a r t i t eG r a phGen e r a t o r (i n t cardA , i n t cardB , i n t avg , double dev) {
. . . [cut] . . . }

pub l i c B i p a r t i t eG r a phGen e r a t o r (MascoptVertexSet A, MascoptVertexSet B,
i n t avg , double dev) {
. . . [cut] . . . }

. . . [cut] . . .

}

After the creation of the object, the user can call the two methods:

pub l i c c l a s s B i p a r t i t eG r a phGen e r a t o r
{

. . . [cut]

pub l i c MascoptDiGraph g e tN e x tD i r e c t e dB i p a r t i t e () {
. . . [cut] . . . }

pub l i c MascoptGraph g e tN e x tUnd i r e c t e dB i p a r t i t e () {
. . . [cut] . . . }

. . . [cut] . . .

}

with this two methods we can obtain a directed (or undirected) graph. In
fact, a new graph is created (with a new link set) for each call to methods
getNextDirectedBipartite() and getNextUndirectedBipartite().

5

3.3 Bipartite Matching

3.3.1 Theoretical study of the problem

The bipartite graphs are useful for modelling matching problems. For this
reason my next step was, naturally, an algorithm for bipartite matching. The
problem is also known as maximum bipartite matching : a perfect matching
between vertices of a bipartite graph, that is, a subgraph which pairs every
vertex with exactly one other vertex.
We can observe that a matching problems in a bipartite graph having a ref-
erence to flow problems. Notably in this context we can see the matching
problem like a max flow problem: find a max, directed, flow on the bipartite
graph with a source before a first vertex set and a destination after a second
vertex set. In the Fig.1 we can see this representation: on a bipartite graph
we choose a direction for the flow and,coherently with this choice, we add an
over-source and under-destination. Only the flow is oriented, not the match-
ing, because for a matching problem the pair (a, b) (where a ∈ vertexsetA
and b ∈ vertexsetB) is equal to the pair (b, a).

Figure 1: Reference between bipartite matching problem and max flow prob-
lem.

6

3.3.2 Implementation details

After this theoretical consideration the implementation of algorithm is quite
simple. In fact the algorithm of max flow is already implemented in Mascopt
following the Edmonds and Karp algorithm. It was only necessary:

À prepare the graph like you can see in Fig.1

Á calculate the max flow with a unitary capacity on arcs

Â delete the arcs without flow (between the two sets of vertex in the
bipartite graph) and all the arcs linking source or destination with the
vertex of bipartite graph

4 Grooming

4.1 General description

The traffic grooming is the process of taking telecommunications traffic and
sorting it into the most efficient arrangement possible. This process includes
considering the topology of the network and the different routes in use.

The exponentially increasing traffic demands require higher speed trans-
mission and in many years the optical technology dominates the backbone
networks.

A model to explain these optical networks is the layered wavelength-
division multiplexing (WDM) network model : it encapsulates the signal in
three different layers: wavelength / band / fiber (WBF). With this network
transport model the nodes must be equipped with specific devices to switch
high-speed optical signals: the optical cross-connector (OXC). We can enu-
merate three type of OXC, like the three layers in the model: F-OXC, B-OXC,
W-OXC. The difference, clearly, is in the capacity that they have to switch
signal at fiber level, band level, wavelength level.

Since a little while the high speed that we can obtain with optical network
affected also the access networks and originated the optical access network
(OAN). Now, therefore, we can see that the optical networks, link not only
the big access points in the backbone networks, but also they connect end-
users for specific requests.

After these considerations we can already identify some reasons that can
explain why the research in matter of grooming algorithms is so active and
important:

• the high cost to deploy new links between nodes in optical networks

7

• the different cost to equip with a different OXC type a node (a W-OXC
is clearly more expensive that a F-OXC)

• the fact that in a OAN the setting up cost must remain low because it
is shared by a little set of end-users

• the fact that usually the network capacity is never full

• the necessity to minimize the number of multiplex and demultiplex
operations (that usually is the "bottle neck" in the network)

In short, the grooming problem is a "bottle neck" problem with the ne-
cessity to minimize the cost, time...to serve a generic request in a generic
network. In general, we can apply this theory to solve, with optimal solu-
tions, all problems that have a reference to graph mathematical model: for
example move people in a transport network formed of different means of
transporting.
In this example the theory is explained clearly: when a person must travel
from a place to another he use (and, very important, combines) different
means of transoporting according the travel that he has to do (car for short
displacement, plane for long. . .). Like this a wave lenght according its re-
quest path it will be encapsulated in different bands or fibers during its path
between source and destination.

4.2 Theoretical study of the problem

For these reasons, in my stage I began a study of grooming problems and
tried to implement some of this algorithm in Mascopt. For explain clearly
the problem it is necessary, before, understand the instruments that I had
already at my disposal and agree on some terms that I will use.

I speak about two layers grooming algorithms because this is a general
case that we can repeat, two times likewise, for grooming the wavelengths on
bands and, then, the bands on fibres. The hypothesis under them I worked
is the same that we have on the project "RNTR PORTO" [3]:

• input data are a directed graph that represent the network and another
directed graph that represent the requests with one arc between source
and destination.

• the network graph is a graph of type FBW (Fibers Bands Wavelenght)
and the capacity of any arc (fiber’s number) is given.

8

• a request correspond to an integer wavelenght number (or request’s tail)
that we must reserve from source to destination. A single wavelenth
on the request is called elementary request.

Before the grooming phase, a routing phase is necessary to obtain flow asso-
ciated to every requests. We adopt this two phase algorithm, but the general
problem is more complex: a mix between routing and grooming. To do the
routing phase we use an existing algorithm disponible on Mascopt : LPMul-
tiFlowMonoRouting. With this algorithm all the flow of requests follow one
path on the network graph. After, it is simple to recognize on network the
links where a flow of a certain request pass through and, with these arcs,
reconstruct the path associated to the request. You must note that this
choice (mono routing) is arbitrary and you can use other MultiFlowRouting
algorithm to obtain a set of path instead of one path.

After this phase we can start the grooming phase: the goal of my study
is implements different grooming heuristics and, then, do a comparison with
test on different network graph with different request sets. In conclusion,
extract some considerations from it.

To do this comparison it is necessary set one or more parameters. One
of these parameters can be the number of pipes that an heuristic make on
a network graph with a fixed request set and fixet routing of these requests.
The wavelenghts grooming on the bands (or the bands grooming on fibers,
remember, we speak about a general two layers case) bring to build bands
(fibers) pipes. We can consider an heuristic better than another if it builds
a smaller number of pipes.

But, what is a pipe?
One band (fiber) can be considered a pipe with length one. But, also, if
we have a pipe Pij on arc i → j, and another pipe Pjk on arc j → k, we
can "stick" Pij with Pjk to create a pipe with length two, if, and only if, all
elementary requests that Pij contains are also contained by Pjk (fig 2).

4.3 Heuristics description

Done a mono routing of request set on a network, we can follow more strategy
to do a grooming. The order of pipes reservation is from the source to
destination for the request that we consider at moment, at every arc, we try
to reserve: a free pipe, if it is possible, the smaller number of pipes, otherwise.
The differences between the heuristics that I have studied are in the order
that we use to treat the requests:

• Greedy - Random order.

9

Figure 2: We can "stick" two pipes Pij and Pjk if and only if the two pipes
contains the same elementary requests. The length of the new created pipe
is equal to the sum of the length of the two original pipes.

• Biggest First - First we treat the request with the biggest size.

• Longest First - First we treat the request with the longest routing path.

• Biggest Longest First - A combination of the two previous heuristics.

À We ascribe a weight at a request: the length of routing path mul-
tiplied with her size.

Á We treat the requests in decreasing weight order.

• By Start Node.

À We ascribe a weight at a request: the number of requests that
begin from the its own source vertex.

Á We treat the request in decreasing weight order. Between requests
with the same weight (clearly, requests with the same source ver-
tex) we treat in random order.

• By End Node.

À We ascribe a weight at a request: the number of requests that end
in the its own destination vertex.

10

Á We treat the request in decreasing weight order. Between requests
with the same weight (clearly, requests with the same destination
vertex) we treat in random order.

Another speech is necessary, for me, for the grooming heuristic:

• With Ceilling Factor - The novelty introduced by this heuristic is in
the pipes reservation side: after a pipe reservation for a done request
if the busy capacity of this pipe is over a fixed per cent rate, the uti-
lization of this pipe is blocked for the following requests. With this
"pipes reservation policy" we can combine any order to treat the re-
quests (BiggestFirst, LongestFirst, BiggestLongestFirst, ByStartNode,
ByEndNode) and we obtain five new, different, requests.
This is only a presentation: more details and clarifications are in the
next section of this report.

4.4 Implementation details

4.4.1 HeuristiquesTest

During my work I produced some classes. Before to begin to explain the
implementation of every single class it is necessary, for me, explain clearly
and definitively the order that I followed to construct my HeuristiquesTest
class: the class that constitute the link between all other classes.
My HeuristiquesTest class:

À Ask to user (graphic interface) the *.mgl file that contains the Cable
Graph, the Request Graph and a Map (see About data structures on
mascoptLib) with data about Pipes Capacity and Requests Size. The
same MascoptObject can be associated at more value because the key
for recover a value is a "triple key" composed by the MascoptObject a
field called Name (of type String) and a field called context (another
MascoptObject).

Á Routing phase with the class MonoRoutage.
Set the parameters and call the method execute.

Â Prepare the requests for grooming. Its implementation pass from a
MascoptArc (with tail: source vertex and head: destination vertex) to
a MascoptDiPath.

Ã The requests are collected on a MascoptSet<MascoptDiPath> to be
passed at grooming class.

11

Ä The network graph are prepared for grooming: the total capacity be-
tween two vertices (now concentrated on one arc) are distributed on
the new arcs to implement the different bands or wavelenghts on the
network.

Å Grooming phase with the different grooming heuristics: set parameters
and call execute method.

Æ Calculate the pipes number with the class Tubes.

The last two points of the HeuristcsTest algorithm are repeated (for every
heuristic) an arbitrary number of times. This to warrant (at every execution
of grooming algorithm) a different mixing for requests before to put its in
the right order. The number of pipes, ascribed at an heuristic, is computed
like an average between all the different executions.

4.4.2 GrilleGenerator and GrilleToriqueGenerator

This class generates a graph with mesh or toroidal mesh topology and fix a
requests set on it. The user must only set:

• Number of rows and columns for the mesh graph.

• Average of the number of requests that beginning in every vertex.

• Respective standard deviation.

• Capacity of ONE pipes between two vertices.

The size of every requests is fixed to 1.

4.4.3 MonoRoutage

The class MonoRoutage use the class LpMultiFlowMonoRouting and a solver
for linear program (Cplex [4] in this case). It is sufficient to set the parame-
ters:

• network graph,

• request graph,

• requests size,

• pipes capacity,

and, then, compute the multi-flow problem.

12

4.4.4 Grooming

The test with the class HeuristiquesTest have been effectued with an old
version of grooming algorithms (present in the repository). The differences
with the new version that I will go to describe are only at code/design level.
In fact at first I have started to code every heuristic in a different class
but, after a little study, we can see that: the different grooming heuristics
that I have presented in the previous chapter can be obtained with a simple
combination between:

À an order to treat the requests

Á a policy to reserve the pipes for a request

For this reason, at code level, I have coded only one class NewGroupage
that need two interfaces to be defined. An interface to sort the requests
OrderRequests and another to reserve the pipes PipesReservation. At the
moment the coded classes that implement the OrderRequests interface are 6:

• OrderRequestsRandom

• OrderRequestsBiggestFirst

• OrderRequestsLongestFirst

• OrderRequestsBiggestLongestFirst

• OrderRequestsByStartNode

• OrderRequestsByEndNode

And 2 are the classes that implement the PipesReservation interface:

• PipesReservationDefault - That provide a pipes reservation with default
policy described in the previous chapter: free pipe between two vertex
if it is possible, the smallest number of pipes otherwise.

• PipesReservationCeillingFactor - That provide the ceilling factor pol-
icy described in the previous chapter: if the capacity busy in a pipe
(after a reservation for a request) arrives at a fixed percentage this pipe
is declared full.

With this strategy (two interfaces) we can see that it is very easy obtain
the different heuristics described in the previous chapter and it is possible to
obtain more heuristics for example with the combination of different "‘order
requests"’ policy with "‘ceilling factor reservation pipes"’ policy.

13

The output data are stored in two HashTable returned by this two meth-
ods:

• getTabPathRequestToPathPipesThatBuildIt
The HashTable returned by this method has type:
MascoptDiPath -> Set(Pair(MascoptDiPath,MascoptAbstractScalar))
This HashTable in fact relate a MascoptDiPath that form a request to
a set of MascoptDiPath formed by pipes that form it. There are the
different path of pipes found after the grooming and everyone have the
associated capacity of request served.
The MascoptDiPath that are key in this HashTable are the result of
Routing. In the MonoRouted case is simple to take back the Mas-
coptDiPath associated with a request, but in the MultiRouted case this
operation need more time because we must find all the MascoptDiPath
associated with a single request.

• getTabPipesToRequestInside
The HashTable returned by this method has type:
MascoptArc -> Set(Pair(MascoptDiPath,MascoptAbstractScalar))
This HashTable relate a pipe of physical graph (a MascoptArc) with the
set of MascoptDiPath that pass in it and relative capacity served. In
this table the MascoptDiPath considered are the path that constitute
a request (for understand: the MascoptDiPath there are keys of the
previous table).

4.4.5 Tubes

This class provide the computation of pipes created in the network graph
after the grooming phase. The class necessitates only the network graph and
the hashtable with the grooming correspondences between requests and pipes
of the graph.
The class takes a vertex and begin a test: if some incoming pipe have the
same requests (with same busy size) of an outgoing pipe we can link the two
pipes. The resulting pipe has a length equal to the sum of the length of the
two "original" pipes. The resulting graph is the graph of pipes.

5 Conclusions and future works
I did some test to search the best choice (about requests order and pipes
reservation) for a grooming algorithm. For my testing phase the best choice

14

Figure 3: Grooming composition

15

are a combination OrderRequestsBiggestLongestFirst with PipesReservation-
CeillingFactor The test algorithm involves a lot of parameters that I have
set arbitrarily and, for this reason, the choice can’t be defined the best. This
parameters are: the size of the graph (Grille or GrilleTorique), the number
of requests. . .
For the future I think that the most important points to develop are:

• an improvement on the test algorithm to identify (and strong justify)
a better choice on the already disponible heuristics,

• the implementation of most complicated grooming heuristics,

• a combination with multi routing for the requests.

16

References
[1] http://www-sop.inria.fr/mascotte/mascopt/

[2] http://en.wikipedia.org/wiki/Bipartite_graph/

[3] http://www-sop.inria.fr/mascotte/porto/

[4] http://www.ilog.com/products/cplex/

[5] Jean-francois Lalande,
Conception de reseaux de telecommunications : optimisation et exper-
imentations.
http://www.inria.fr/rrrt/tu-1139.html

[6] Cormen, Leiserson and Rivest, Introduction to Algorithms.

[7] http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/

17

