Energy-Efficient Algorithms

Susanne Albers
University of Freiburg
Germany

Motivation

- Energy consumption grows exponentially in computing devices computers, embedded systems, portable devices, ...
- Performance of processors doubles every three years

- Critical in battery-operated devices
- Critical in terms of cost (computer centers)
- Critical since energy is converted into heat

Algorithmic techniques

• Power-down strategies: Put system into sleep state when idle.

• Dynamic speed scaling: Microprocessors can run at variable speed.

Dynamic speed scaling

Microprocessors can run at variable speed

The higher the speed, the higher the power consumption

 $\mathsf{Speed}\ s$

Power consumption

$$P(s) = s^{\alpha} \quad \alpha > 1$$

Previous work

Deadline-based scheduling

1 processor

• Speed s

Energy consumption $P(s) = s^{\alpha}$ $\alpha > 1$

- $\sigma = J_1, \dots, J_n$ J_i : a_i = arrival time b_i = deadline p_i = processing volume $t = p_i/s$
- Preemption allowed
- Construct feasible schedule minimizing total energy consumption.

Competitive analysis

Online problem: jobs arrive one by one

A:

Online

algorithm

 $A(\sigma)$

OPT:

Offline

algorithm

 $OPT(\sigma)$

A is *c*-competitive, if for all job sequences σ

$$A(\sigma) \le c \cdot OPT(\sigma).$$

Previous work

Offline problem

polynomially solvable
 (Yao, Demers, Shenker 1995)

Online problem

- Average Rate: $\alpha^{\alpha} \le c \le 2^{\alpha} \alpha^{\alpha}$ (Yao, Demers, Shenker 1995) Optimal Available: $c = \alpha^{\alpha}$ (Bansal, Kimbrel, Pruhs 2004)
- Upper bound $2(\alpha/(\alpha-1))^{\alpha}e^{\alpha}$ Lower bound $\Omega((4/3)^{\alpha})$ (Bansal, Kimbrel, Pruhs 2004)

Average Rate

1. Job density $\delta_i = p_i/(b_i - a_i)$

$$\begin{array}{c}
 & \downarrow p_i/(b_i - a_i) \\
 & \downarrow b_i - a_i
\end{array}$$

$$2. \ s(t) = \sum_{i: t \in [a_i, b_i]} \delta_i$$

Average Rate

1. Job density $\delta_i = p_i/(b_i - a_i)$

2.
$$s(t) = \sum_{i: t \in [a_i, b_i]} \delta_i$$

3. Use Earliest Deadline Policy

Optimal Available

At any time compute optimal schedule for remaining workload.

Optimal Available

At any time compute optimal schedule for remaining workload.

- Computer systems: jobs are not labeled with deadlines
- Users expect good response times
- Flow time of J_i : $f_i = c_i a_i$ $c_i =$ completion time
- Energy and flow time minimization are orthogonal objectives low energy ⇒ low speed ⇒ high flow times small flow time ⇒ high speed ⇒ high energy

Previous work

Pruhs, Uthaisombut, Woeginger 2004

- ullet Minimize flow time given fixed energy volume V
- $p_i = 1$ for all i
- ullet Polynomial time offline algorithm computing optimal schedules simultaneously for all V.

Our approach

Albers, Fujiwara STACS 2006

$$\min\left(\text{Energy} + \sum_{i=1}^{n} f_i\right)$$

- $\sigma = J_1, \dots, J_n$ J_i : a_i = arrival time p_i = processing volume preemption not allowed
- Combined objective functions for facility location, network design,
 TCP-acknowledgement, ...

Our results

p_i arbitrary

• Competitive ratio of $\Omega(n^{1-1/\alpha})$

$$p_i = 1$$

- Competitive ratio of $8e(1+\Phi)^{\alpha}$ $\Phi=(1+\sqrt{5})/2\approx 1.618$
- Offline problem polynomially solvable using dynamic programming;
 approach also solves problem of Pruhs, Uthaisombut, Woeginger

time

```
S:=\{ 	ext{ jobs with } a_i=0 \} while S 
eq \emptyset 	ext{ do} schedule jobs in S optimally; S:=\{ 	ext{ jobs having arrived in the meantime } \}; endwhile
```



```
S := \{ \text{ jobs with } a_i = 0 \}

while S \neq \emptyset do

schedule jobs in S optimally;

S := \{ \text{ jobs having arrived in the meantime } \};

endwhile
```



```
S:=\{ 	ext{ jobs with } a_i=0 \} while S 
eq \emptyset 	ext{ do} schedule jobs in S optimally; S:=\{ 	ext{ jobs having arrived in the meantime } \}; endwhile
```



```
S:=\{ 	ext{ jobs with } a_i=0 \} while S 
eq \emptyset 	ext{ do} schedule jobs in S optimally; S:=\{ 	ext{ jobs having arrived in the meantime } \}; endwhile
```

Phase scheduling

- n_i jobs in phase i
- Speed sequence

$$\sqrt[\alpha]{\frac{n_i}{\alpha-1}}, \sqrt[\alpha]{\frac{n_i-1}{\alpha-1}}, \dots, \sqrt[\alpha]{\frac{1}{\alpha-1}}$$

Speed computation

First job of phase i

$$f(s) = s^{\alpha - 1} + \frac{n_i}{s}$$

Speed computation

First job of phase *i*

$$\min f(s) = s^{\alpha - 1} + \frac{n_i}{s}$$

$$f'(s) = (\alpha - 1)s^{\alpha - 2} - \frac{n_i}{s^2}$$

$$f'(s) = 0 \iff (\alpha - 1)s^{\alpha} = n_i$$

$$\Leftrightarrow s = \sqrt[\alpha]{\frac{n_i}{\alpha - 1}}$$

Analysis OPT

Lemma: If there are *l* unfinished jobs waiting

$$s \ge \sqrt[\alpha]{\frac{l}{\alpha - 1}}.$$

Lemma: Every job is finished at least as early as in the online schedule.

Offline algorithm

Sub-schedules S_1, \ldots, S_m .

 S_j processes job with indices j_1, \ldots, j_l , where

$$c_i > a_{i+1}$$
 $i = j_1, \dots, j_l - 1$

$$c_{j_l} \le a_{j_l+1}$$

Speeds in subschedules

l jobs in interval of length T

•
$$s_i = \sqrt[\alpha]{\frac{l-i+1}{\alpha-1}}$$
 if $T \ge \sum_{i=1}^l 1/s_i$

•
$$s_i' = \sqrt[\alpha]{\frac{l-i+1+c}{\alpha-1}}$$
 if $T < \sum_{i=1}^l 1/s_i$

c unique value with $\sum_{i=1}^{l} 1/s_i' = T$

Subproblems

P[i, i+l] = subproblem with J_i, \ldots, J_{i+l}

C[i, i+l] = optimal cost of P[i, i+l] if J_{i+l} must be finished by a_{i+l+1}

Determine C[1, n]

Multi-processor speed scaling

Server systems: several CPUs
 Google engineers: power costs overtake hardware costs

Laptops: dual-processors
 AMD "Quad-core design"
 Architectures with 8 CPUs are being developed

• Intel: experiments with 80 CPUs on one die

Multi-processor speed scaling

Albers, Müller, Schmelzer SPAA 2007

- Each processor may run at individual speed s.
- Deadline based scheduling J_i : a_i , b_i , p_i
- Preemption allowed, migration disallowed
- Construct feasible schedule minimizing total energy consumption.

Unit size jobs, $p_i = 1$

Offline problem

Agreeable deadlines

$$a_i < a_j \implies b_i \le b_j$$

Polynomially solvable

Arbitrary deadlines

NP-hard

Approximation factor $\alpha^{\alpha}2^{4\alpha}$

Arbitrary size jobs

Offline problem

- Common release time or common deadline Approximation factor $2(2-\frac{1}{m})^{\alpha}$
- Arbitrary deadlines Approximation factor $\alpha^{\alpha}2^{4\alpha}$

Online setting

- $p_i=1$, agreeable deadlines Competitive factor $2(\alpha/(\alpha-1))^{\alpha}e^{\alpha}$
- $p_i=1$, arbitrary deadlines p_i arbitrary, agreeable deadlines Competitive factor $\alpha^{\alpha}2^{4\alpha}$

Unit size jobs, agreeable deadlines

- 1. Sort jobs according to non-decreasing release dates.
- 2. Assign jobs to processors using Round Robin.
- 3. For each processor, compute optimal schedule.

Unit size jobs, arbitrary deadlines

1. Job density $\delta_i = 1/(b_i - a_i)$ $\Delta = \max_i \delta_i$

- 2. Job classes $C_k = [\Delta 2^{-k}, \Delta 2^{-(k-1)})$
- 3. Apply Round Robin to each class
- 4. For each processor, compute optimal schedule

Arbitrary size jobs

Common release time

- 1. Sort jobs according to non-decreasing deadlines.
- 2. Assign jobs to processors using List scheduling.
- 3. For each processor, compute optimal schedule.

Open problems

Flow time minimization

- Exact competitive ratio of PhaseBalance
- Analyze of following speed scaling algorithm: Speed $\sqrt[\infty]{i}$ when there are i unfinished jobs waiting

Multi-processor setting

- Improve approximation guarantees
- Consider migration