Energy-Efficient Algorithms

Susanne Albers
University of Freiburg
Germany

\ Motivation '

Energy consumption grows exponentially in computing devices
computers, embedded systems, portable devices, ...

Performance of processors doubles every three years

Critical in battery-operated devices
Critical in terms of cost (computer centers)

Critical since energy is converted into heat

‘ Algorithmic techniques'

e Power-down strategies: Put system into sleep state when idle.

e Dynamic speed scaling: Microprocessors can run at variable speed.

Dynamic speed scaling

Microprocessors can run at
variable speed

The higher the speed, the higher
the power consumption

Speed s
Power consumption
P(s) =5 a>1

Previous WorkI

Deadline-based scheduling 1 processor

e Speed s Energy consumption P(s) = s a>1

time

e 0=J,...,J,
Ji: a; = arrival time
b, = deadline
p; = processing volume ¢t =p;/s

e Preemption allowed

e Construct feasible schedule minimizing total energy consumption.

Competitive analysis'

Online problem: jobs arrive one by one

A OPT:
Online Offline
algorithm algorithm

A(o) OPT (o)

A Is c-competitive, if for all job sequences o

A(o) <c-OPT(0).

Previous WOI’kI

Offline problem

e polynomially solvable
(Yao, Demers, Shenker 1995)

Online problem

e Average Rate: a® < c¢ <2%® (Yao, Demers, Shenker 1995)
Optimal Available: ¢ = a* (Bansal, Kimbrel, Pruhs 2004)

e Upper bound 2(a/(a—1))%”
Lower bound ((4/3)%)
(Bansal, Kimbrel, Pruhs 2004)

‘Average Rats'

1. Job density &; = p;/(b; — a;) -

time

‘Average Rats'

1. Job density &; = p;/(b; — a;) -

time

3. Use Earliest Deadline Policy

time

Optimal Available I

At any time compute optimal schedule for remaining workload.

time

Optimal Available I

At any time compute optimal schedule for remaining workload.

time

Flow time minimization I

a; C; time

fi

Computer systems: jobs are not labeled with deadlines
Users expect good response times

Flow time of J;: fz = Cc; — Qa;
c; = completion time

Energy and flow time minimization are orthogonal objectives
low energy —> lowspeed = high flow times
small flow time — high speed — high energy

Previous WorkI

Pruhs, Uthaisombut, Woeginger 2004
e Minimize flow time given fixed energy volume V
e p; =1 foralli

e Polynomial time offline algorithm computing optimal schedules
simultaneously for all V.

Our approach I

Albers, Fujiwara STACS 2006

min (Energy —+ Z fi)
i=1

e 0=2Ji,...,J,
J;. a; = arrival time
p; = processing volume
preemption not allowed

e Combined objective functions for facility location, network design,
TCP-acknowledgement, ...

\Our results.

p; arbitrary

e Competitive ratio of Q(n!~1/)

pi=1
e Competitive ratio of 8e(1 + @) & = (1++/5)/2 ~ 1.618

e Offline problem polynomially solvable using dynamic programming;
approach also solves problem of Pruhs, Uthaisombut, Woeginger

\ PhaseBaIancg

time

S := {jobswitha; =0}
while S # () do

schedule jobs in S optimally;

S := { jobs having arrived in the meantime };
endwhile

\ PhaseBaIanci

time

S := {jobswitha; =0}
while S # () do

schedule jobs in S optimally;

S := { jobs having arrived in the meantime };
endwhile

\ PhaseBaIanci

time

S := {jobswitha; =0}
while S # () do

schedule jobs in S optimally;

S := { jobs having arrived in the meantime };
endwhile

\ PhaseBaIanci

time

S := {jobswitha; =0}
while S # () do

schedule jobs in S optimally;

S := { jobs having arrived in the meantime };
endwhile

Phase scheduling

e 1, jOobs in phase i

e Speed sequence

o] T ofmi — 1 L1
a—1" Va-1""""7 Va-1

‘ Speed computatio“

First job of phase

First job of phase

‘ Speed computatioj

Analysis OPTI

Lemma: If there are [unfinished jobs waiting

Lemma: Every job is finished at least as early as in the online schedule.

‘Offline algorithm I

B B EEE N] L time
[]
Sub-schedules 54, ..., 5S,,.
S; processes job with indices ji,. .., j;, where
Ci > Qjy1 L =J1y--501 — 1

Cj, < Aj,+1

‘ Speeds in subschedulﬂs

[jobs in interval of length T

o5, = /L fT >3 /s,
o 5, = §i=itlEe ifT<Z,lL-:11/Sz-

¢ unique value with 3>/ 1/s, =T

‘ Subproblemsl

Pli,i+] = subproblem with J;, ..., J; 4
C'l¢,i + (] = optimal cost of P, i +] if J;4; must be finished by a;4;41

Determine (|1, n]

Multi-processor speed scaling

e Server systems: several CPUs
Google engineers: power costs overtake hardware costs

e Laptops: dual-processors
AMD "Quad-core design”
Architectures with 8 CPUs are being developed

e Intel: experiments with 80 CPUs on one die

Multi-processor speed scaling

Albers, Muller, Schmelzer SPAA 2007
. I

time

, T s

time

-] .

time

e Each processor may run at individual speed s.
e Deadline based scheduling J;: a;, b;, p;
e Preemption allowed, migration disallowed

e Construct feasible schedule minimizing total energy consumption.

Unit size jobs,p; = 1'

Offline problem

e Agreeable deadlines
a; < a; — b; < bj
Polynomially solvable

e Arbitrary deadlines
NP-hard
Approximation factor o*24

‘Arbitrary Size jobs I

Offline problem

e Common release time or common deadline
Approximation factor 2(2 — %)a

e Arbitrary deadlines
Approximation factor o*24

Online setting'

e p, = 1, agreeable deadlines
Competitive factor 2(a/(a — 1))“e®

e p;, = 1, arbitrary deadlines
p; arbitrary, agreeable deadlines

Competitive factor 24

Unit size jobs, agreeable deadlini

time

time

time

1. Sort jobs according to non-decreasing release dates.
2. Assign jobs to processors using Round Robin.

3. For each processor, compute optimal schedule.

Unit size jobs, arbitrary deadlines'

. Job density §; = 1/(b; — a;)

A = max; 9;

bi—a@-

. Job classes (O} = [A27F A2 (k=1))
. Apply Round Robin to each class

. For each processor, compute optimal schedule

‘Arbitrary sSize jobs I

Common release time

) NS BN S B

time

, T N)

time

-1 1

time

1. Sort jobs according to non-decreasing deadlines.
2. Assign jobs to processors using List scheduling.

3. For each processor, compute optimal schedule.

‘Open problems.

Flow time minimization
e EXxact competitive ratio of PhaseBalance

e Analyze of following speed scaling algorithm:
Speed {/i when there are i unfinished jobs waiting

Multi-processor setting
e Improve approximation guarantees

e Consider migration

