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General Characteristics

A wireless network is a collection of transmitter/receiver
stations.

All the communication is carried over the wireless medium.

All stations have omni-directional antennas.

A communication is established by assigning to each station a
transmitting power.

Power is expended for signal transmission only. No power
expenditure for signal reception or processing.

Multi-hop communication is allowed.
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The model

We are interested in the broadcast communication from a
given source node s.

Given a set of stations S , let G (S) be the complete weighted
graph in which the weight w(x , y) of each edge between
stations x and y is the power consumption needed for a
communication between x and y .

A power assignment for S is a function p : S → IR+ assigning
a transmission power p(x) to every station in S .

The total cost of a power assignment is

cost(p) =
∑

x∈S

p(x).
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The goal

The Minimum Energy Broadcast Routing (MEBR) problem
for a given source s ∈ S consists in finding a power
assignment p of minimum cost such that every station is able
to receive the communication from s.

A particular relevant case is when stations lie in a
d−dimensional Euclidean space. Then, given an integer α ≥ 1
and a constant β ∈ IR+, the power consumption needed for a
correct communication between x and y is
w(x , y) = β · dist(x , y)α.
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Previous Work (1)

In the general case in which the weights of G (S) are
completely arbitrary, the problem cannot be approximated
within (1− ǫ) ln n unless NP ⊆ DTIME (nO(log log n))1, where n

is the number of stations, while logarithmic (in the number of
stations) approximation algorithm has been provided2.

When distances are induced by the positions of the stations in
a d-dimensional space, for α > 1 and d > 1 the MEBR
problem is NP-hard, while if α = 1 or d = 1 it is solvable in
polynomial time3.

1
Clementi, Crescenzi, Penna, Rossi and Vocca, STACS 2001

2
Calinescu, Kapoor, Olshevsky and Zelikovsky, ESA 2003; Caragiannis, Kaklamanis and Kanellopoulos, ISAAC

2002
3
Caragiannis, Kaklamanis and Kanellopoulos, ISAAC 2002; Zagalj, Hubaux and Enz, MobiCom 2002
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Previous Work (2) - Euclidean case

The best (previously) known approximation algorithm is the
MST heuristic4.

It is based on the idea of tuning ranges so as to include a
minimum spanning tree of the cost graph G(S).
After the first approximation analysis5, the best shown
approximation ratios are 6 for d = 26, 18.8 for d = 37 and
3d − 1 for every d > 38.
A lower bound on the approximation ratio is given by the
d-dimensional kissing numbers nd (i.e. 6 for d = 2 and 12 for
d = 3)9.

4
Wieselthier, Nguyen and Ephremides, INFOCOM 2000

5
Clementi, Crescenzi, Penna, Rossi and Vocca, STACS 2001

6
Ambuhl, ICALP 2005

7
Navarra, SIROCCO 2006

8
Flammini, Klasing, Navarra and Perennes, DIALM-POMC 2004

9
Wan, Calinescu, Li and Frieder, Wireless Networks 2002
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Our Contribution (1)

We present a new approximation algorithm for the MEBR
problem.

For any distance metric inducing a weighting of G (S) such
that its minimum spanning tree is guaranteed to cost at most
ρ times the cost of an optimal solution for MEBR, our
algorithm achieves an approximation ratio bounded by
2 ln ρ − 2 ln 2 + 2.

We provide a matching lower bound, proving that the analysis
is tight.
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Our Contribution (2) - Euclidean case

In the 2-dimensional case, the achieved approximation is even
less than the 4.33 lower bound on the ratio of the BIP

heuristic, the only one shown to be no worse than MST 10.

Dimensions 1 2 3 ... 7 ... d

MST 2 6 18.8 ... 2186 ... 3d − 1

Our alg. 2 4.2 6.49 ... 16 ... 2.20d + 0.62

Figure: Comparison between the approximation factors of our algorithm
and the MST heuristic in Euclidean instances.

10
Wan, Calinescu, Li and Frieder, Wireless Networks 2002
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The basic idea (1)

Starting from a spanning tree T0 of G (S), if the cost of T0 is
significantly higher than the one of an optimal solution, then
there must exist a cost efficient contraction of T0.

In other words, it must be possible to set the transmission
power p(x) of at least one station x in such a way that p(x) is
much lower than the cost of a subset of edges that can be
deleted from T0 maintaining the connectivity and eliminating
cycles.

Let E (p′, x) be the set of edges induced by p(x).
Let A(p′, x) be a swap set, i.e. a set of edges that can be
removed maintaining the connectivity and eliminating cycles.
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The basic idea (2)

At each step, starting from the initial MST T0, perform a
maximum cost-efficiency contraction:

Consider a contraction at a station x consisting in setting the
transmission power of x to p′(x), and let p′ be the resulting
power assignment.
Then a maximal cost swap set A(p′, x) can be easily
determined by considering the edges that are removed when
computing a minimum spanning tree in the multigraph
T ∪ E (p′, x) with the cost of all the edges in E (p′, x) set to 0.

The ratio c(A(p′
,x))

p′(x) is the cost-efficiency of the contraction.
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The algorithm

Set the transmission power p(x) of every station in x ∈ S

equal to 0; set i equal to 0.
Let T0 be a minimum spanning tree of G (S).
While there exists at least one contraction of cost-efficiency
strictly greater than 2

Perform a contraction of maximum cost-efficiency, and let
p′(x) be the corresponding increased power at a given station
x , and p′ be the resulting power assignment
Set to 0 the weight of all the edges in E (p′, x)
Let i = i + 1 and p = p′

Let Ti = Ti−1 ∪ E (p′, x) \ A(p′, x)

Orient all the edges of Ti from the source s toward all the
other stations.
Return the transmission power assignment p that induces
such a set of oriented edges.
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A difficult task

s

x1 x21

1 1

Figure: A simple network with a minimum spanning tree depicted by
dashed lines.

Consider the network in figure
Swap sets A(p′, x) are not static sets.

Thus, we cannot statically associate edges of the initial
spanning tree to the range assignments of the optimum.

We have to ensure that at each step i of the algorithm, if the
current tree Ti has a cost much grater than the optimum, a
good contraction exists.

I. Caragiannis, M. Flammini, L. Moscardelli An exponential improvement on the MST heuristic



Introduction
The new algorithm

A matching lower bound
Conclusions

Description
Analysis

Our solution

Consider a directed spanning tree T ∗ induced by the power
assignment of an optimal solution.

Given a spanning tree T with an arbitrary weighting of the
edges, we want to find a one-to-one function mapping each
edge of T ∗ to an edge of T .

Such a mapping has to ensure that, for each station, if we
consider all its outgoing edges in T ∗, their images form a
swap set for T with respect to such outgoing edges.
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The recursive mapping (1)

Given two trees TA and TB spanning the n stations, we want
to find a one-to-one swap mapping f : TA → TB such that
f ({u, v}) is an edge of TB forming a cycle with {u, v} in
TB ∪ {{u, v}}.

We consider a recursive mapping construction, in which the
recursive step works on the unique edge incident to a leaf of
TA.

If |V | = 2, the base of the induction is trivially verified.
Now we assume that such a mapping f ′ exists for any T ′

A and
T ′

B spanning n − 1 stations, and we prove that f exists.
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The recursive mapping (2)

v

w1

u

wk

wk−1

...

(a) (b)

w1

u

wk

wk−1

...

Figure: Edge {u, v} of TA is associated to {v , w1} of TB .

every edge {y , z} of TA forms a cycle with {w1,wi} in T ′

B , if
and only if it forms also a cycle with {v ,wi} in TB .

The swap mapping f ′ for T ′

A and T ′

B is a swap mapping for
TA and TB .
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Two technical lemmata (1)

Lemma 1

Given two rooted spanning trees TA and TB over the same set of

nodes V , there exists a one-to-one mapping f : TA → TB , called

the swap mapping, such that, if v1, . . . , vk are all the children of a

same parent node u in TA, then the set

{f ({u, v1}), . . . , f ({u, vk})} of the edges assigned to

{u, v1}, . . . , {u, vk} by f is a swap set for TB and

{{u, v1}, . . . , {u, vk}}.

By applying the previous recursive construction in an
appropriate way, i.e. considering a proper ordering of the
edges, we can obtain the claimed mapping.
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Two technical lemmata (2)

Lemma 2

Given any tree T , and k edges {u, v1}, . . . , {u, vk} not belonging

to T , if {{w1, y1}, . . . , {wk , yk}} is a swap set for T and

{{u, v1}, . . . , {u, vk}}, then {{w1, y1}, . . . , {wk , yk}} is the subset

of a swap set for T and {{u, v1}, . . . , {u, vk}, {u, z1}, . . . , {u, zl}},
for every set of l newly added edges {{u, z1}, . . . , {u, zl}}.

This lemma ensures that the edges in a swap set relative to a
set X of edges are in a swap set relative to any set Y ⊇ X of
edges.

I. Caragiannis, M. Flammini, L. Moscardelli An exponential improvement on the MST heuristic



Introduction
The new algorithm

A matching lower bound
Conclusions

Description
Analysis

The key lemma

Lemma 3

Let T be any spanning tree for G (S) with an arbitrary weighting of

the edges, and let γ = c(T )/m∗ be the ratio among the cost of T

and the one of an optimal transmission power assignment p∗.

Then there exists a contraction of T of cost-efficiency γ.
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Sketch of proof of Lemma 3

Consider the swap mapping f : T ∗ → T .

By Lemma 1, f assigns to all the descending edges D(x) in T ∗

of every station x a subset of edges SS(x) forming a swap set.

All such subsets SS(x) form a partition of T , and since
c(T )
m∗ =

∑

x∈S c(SS(x))
∑

x∈S p∗(x) = γ, there must exist at least one station

x̄ such that c(SS(x̄))
p∗(x̄) ≥ γ.

Since D(x̄) ⊆ E (p∗, x̄), by Lemma 2, SS(x̄) ⊆ A(p∗, x̄).
Therefore, there exists a contraction of T of cost-efficiency
c(A(p∗, x̄))/p∗(x̄) ≥ c(SS(x̄))/p∗(x̄) = γ.
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The approximation ratio of our algorithm

Theorem 4

The algorithm has approximation ratio 2 ln ρ − 2 ln 2 + 2, where ρ
is the approximation guarantee of a minimum spanning tree over

G (S).
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Sketch of proof (1)

Let T0 be the minimum spanning tree for G (S) computed at
the beginning of the algorithm, T1, . . . ,Tk be the sequence of
the trees constructed by the algorithm after the contraction
steps, and γi = c(Ti )/m

∗.

By Lemma 3, since the algorithm always considers
contractions of maximum cost-efficiency, at each step
i = 0, 1, . . . , k − 1 it performs a contraction at node xi having
cost-efficiency at least γi (by assigning xi a power pi ) and
removing from the initial spanning tree edges with total cost
ti = c(Ti) − c(Ti+1).

γi =
ti

pi

.
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Sketch of proof (2)

In order to orient the edges of the final solution from s

towards the other stations, we have at most to double the
power assignment due to the contraction steps.

The overall cost is upper bounded by

2

k−1
∑

i=0

pi + c(Tk) = 2

k−1
∑

i=0

ti

γi

+ c(Tk).

Since ∀i , γi > 2, we are paying each edge of the initial
spanning tree at most for its whole cost.
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Sketch of proof (3)

Recall that γi = c(Ti )
m∗ .

Since we perform contractions as long as the
cost-effectiveness is grater than 2, by Lemma 3 the cost c(Tk)
of the final tree can be at most 2m∗.

Therefore, the total cost can be upper bounded as follows:

2
k−1
∑

i=0

ti

γi

+ c(Tk) ≤ 2m∗

(

k−1
∑

i=0

ti

c(Ti)
+ 1

)

.
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Sketch of proof (4)

t0 t1 t2 . . . tk−1

. . .

1

m∗

c(T0)

c(Tk)

2m∗

c(T0)

2m∗

c(Tk )

. . .

2m∗

c(Tk−1)

2m∗

(

k−1
∑

i=0

ti

c(Ti )
+ 1

)

=

k−1
∑

i=0

(

2m∗

c(Ti)
ti

)

+
2m∗

c(Tk)
c(Tk)
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Sketch of proof (5)

Let us observe that

2m∗

(

k−1
∑

i=0

ti

c(Ti)
+ 1

)

≤

≤ 2m∗

(

∫ c(T0)
(

1− 2
γ0

)

0

dt

c(T0) − t
+ 1

)

= m∗(2 ln γ0−2 ln 2+2).

Since T0 is a ρ-approximation of an optimal solution, we have
γ0 ≤ ρ and the claim follows.
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The building block Qx .

vx
ux,1

ux,3
ux,⌈x⌉

ux,2

11

1 1 + x − ⌈x⌉

Figure: The building block Qx .

Notice that in Qx there exists a contraction centered at node
vx having cost-effectiveness equal to x .
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The complete construction

Qρ
Q

ρ− 2
k

Q
ρ− 3

k

Q
2+ 1

k

s

1

1
Q

ρ− 1
k

v1
v2

Figure: A minimum spanning tree of the lower bound instance.

Let k be an integer parameter; the node set of the instance is
obtained by sequencing k(ρ − 2) building blocks
(Q2+ 1

k
,Q2+ 2

k
, . . . ,Q3, . . . ,Qρ)

Moreover, in the instance there are other 3 nodes: the source
s, and nodes v1 and v2, that coincides with u2+ 1

k
,2.

The weights of the edges connecting s to all the other nodes
are equal to 1; moreover, w(v1, v2) = 1.
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The complete construction

Qρ
Q

ρ− 2
k

Q
ρ− 3

k

Q
2+ 1

k

s

1

1
Q

ρ− 1
k

v1v2

Figure: A minimum spanning tree of the lower bound instance.

The weights of the edges contained in building block Qx are
diveded by kx , so that the sum of all the edges of each
building block is equal to 1

k
.

For all the other pairs of nodes, we assume that the mutual
power communication cost is very high.

Assume that the initial minimum spanning tree considered by
the algorithm is the one depicted in figure, whose cost is ρ.
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The lower bound (1)

At each step, the algorithm can arbitrarily choose among two
equivalent contractions, i.e. having the same cost-efficiency;

For instance, at step 0, the first choice is the contraction
centered at the source and having transmission power equal to
1, and the second choice is the contraction centered at vρ and

having transmission power equal to 1
ρ
.

Both contractions have a cost-efficiency equal to ρ, and we
assume that the algorithm chooses the contraction centered at
vρ.

In this way, the algorithm performs k(ρ − 2) steps of
contractions.

At this point, no contraction having cost-efficiency at least 2
exists any longer.
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The lower bound (2)

Notice that the sum of the costs of the transmission powers
set in the contractions is

∑kρ

i=2k+1
1
i

= Hkρ − H2k .

In order to orient the edges of the final tree from the source
towards the other nodes, we have to globally double the cost
of the transmission powers set in the contraction steps.

Thus, the final cost of the solution returned by the algorithm
has cost 2Hkρ − 2H2k + 2, while the optimal solution has cost
1.

Letting k go to infinity, the approximation ratio tends to
2 ln ρ − 2 ln 2 + 2.
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Summary

We have presented an approximation algorithm exponentially
outperforming the MST heuristic for several specific metrics.

Such results are particularly relevant for their consequences on
Euclidean instances, for which the achieved approximation
ratio has become linear in the number of dimension d instead
of exponential.

Dimensions 1 2 3 ... 7 ... d

MST 2 6 18.8 ... 2186 ... 3d − 1

Our alg. 2 4.2 6.49 ... 16 ... 2.20d + 0.62

Figure: Comparison between the approximation factors of our
algorithm and the MST heuristic in Euclidean instances.
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Open questions

Our analysis works for general metrics, but there might be
possible improvements for specific cases, like the Euclidean,
for which it would be worth to determine exact results
tightening the current gap between the lower and upper
bounds on the approximation ratio.

Another interesting issue is that of determining similar
contraction strategies possibly leading to better approximated
solutions.
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