
Scheduling in computational grids
with reservations

Denis Trystram

LIG-MOAIS

Grenoble University, France

AEOLUS, march 9, 2007



General Context

Recently, there was a rapid and deep evolution 
of high-performance execution platforms: 
supercomputers, clusters, computational grids, 
global computing, …

Need of efficient tools for resource management
for dealing with these new systems.

This talk will investigate some scheduling 
problems and focus on reservations.



Parallel computing today.

Different kinds of platforms
Clusters, collection of clusters, grid, global computing

Set of temporary unused resources

Autonomous nodes (P2P)

Our view of grid computing (reasonable trade-off):
Set of computing resources under control (no hard 

authentication problems, no random addition of 
computers, etc.) 



Content

• Some preliminaries (Parallel tasks model)

• Scheduling and packing problems

• On-line versus off-line: batch scheduling 

• Multi-criteria

• Reservations



A national french initiative:
GRID5000

Several local computational grids (like CiGri)

National project with shared resources and competences 
 with almost 4000 processors today with local 
administration but centralized control.





Target Applications

New execution supports created new applications 
(data-mining, bio-computing, coupling of codes, 
interactive, virtual reality, …).

Interactive computations (human in the loop), 
adaptive algorithms, etc.. See MOAIS project for 
more details.



Scheduling problem
(informally)

     Given a set of tasks, the problem is to determine 
when and where to execute the tasks (according 
to the precedence constraints - if any - and to the 
target architecture).



Central Scheduling Problem

The basic problem P | prec, pj | Cmax is NP-hard 
[Ulmann75].

Thus, we are looking for «  good  » heuristics.



Central Scheduling Problem

The basic problem P | prec, pj | Cmax is NP-hard 
[Ulmann75].

Thus, we are looking for «  good  » heuristics.

low cost based on theoretical analysis:
good approximation factor



Available models

Extension of «  old  » existing models (delay)

Parallel Tasks

Divisible load



Delay: 
if two consecutive tasks are allocated on different 
processors, we have to pay a communication delay.



Delay: 
if two consecutive tasks are allocated on different 
processors, we have to pay a communication delay.

If L is large, the problem is very hard 
(no approximation algorithm is known)

 L   



Extensions of delay

Some tentatives have been proposed (like LogP).

Not adequate for grids (heterogeneity, large delays, 
hierarchy, incertainties)…



Parallel Tasks

Extension of classical sequential tasks: each task 
may require more than one processor for its 
execution [Feitelson and Rudolph].



Job













overhead
Computational area



Classification

rigid tasks



Classification

moldable tasks



Classification

moldable tasks

decreasing time



Classification

moldable tasks

increasing area



Classification

malleable tasks



Classification

malleable tasks

extra overhead



Divisible load

Also known as «  bag of tasks  »:

Big amount of arbitrary small computational units.



Divisible load

Also known as «  bag of tasks  »:

Big amount of arbitrary small computational units.



Divisible load

(asymptotically) optimal for some criteria (throughput).

Valid only for specific applications with regular patterns.

Popular for best effort jobs.



Resource management 
in clusters



Users queue

time

job



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Users queue

time



Integrated approach



m



m



m



m



m



m



m



m



m



m



m



m



(strip) Packing problems

The schedule is divided into two successive steps: 

2. Allocation problem 

3. Scheduling with preallocation (NP-hard in 
general [Rayward-Smith 95]).



Scheduling: on-line vs off-line

On-line: no knowledge about 
the future

We take the scheduling 
decision while other jobs arrive



Scheduling: on-line vs off-line

Off-line: we have a finite set of 
works

We try to find a good 
arrangement



Off-line scheduler

Problem:
Schedule a set of independent moldable 
jobs (clairvoyant).
Penalty functions have somehow to be 
estimated (using complexity analysis or any 
prediction-measurement method like the one 
obtained by the log analysis).



Example

Let us consider 7 MT to be scheduled on 
m=10 processors.



Canonical Allotment

W/m

1



Canonical Allotment

Maximal number of processors needed for 
executing the tasks in time lower than 1.

1

m



2-shelves scheduling

Idea: to analyze the structure of the optimum 
where the tasks are either greater than 1/2 or not.

Thus, we will try to fill two shelves with these 
tasks.



2 shelves partitioning

Knapsack problem: minimizing the global surface 
under the constraint of using less than m 

processors in the first shelf.

1

m

1/2



Dynamic programming

For i = 1..n // # of tasks
for j = 1..m // #proc.

Wi,j = min(
– Wi,j-minalloc(i,1) + work(i,minalloc(i,1))
– Wi,j + work(i,minalloc(i,1))
)

work Wn,m 
<= work of an optimal solution
but the half-sized shelf may be overloaded



2 shelves partitioning

1

m

1/2



Drop down

1

m

1/2



1

m

1/2

Insertion of small tasks



 Analysis

•These transformations donot increase the work

•If the 2nd shelf is used more than m, it is always 
possible to do one of the transformations (using a global 
surface argument)

•It is always possible to insert the «  small  » sequential 
tasks (again by a surface argument)



Guaranty

•The 2-shelves algorithm has a performance 
guaranty of  3/2+ε

(SIAM J. on Computing, to appear)

•Rigid case: 2-approximation algorithm 
(Graham resource constraints)



Batch scheduling

Principle: several jobs are treated at once using 
off-line scheduling.

 



Principle of batch

jobs arrival                                                        time



Start 
batch 1





Batch chaining

Batch i



Batch chaining

Batch i



Batch chaining

Batch i



Batch chaining

Batch i



Batch chaining

Batch i



Batch chaining

Batch i Batch i+1



Constructing a batch 
scheduling

Analysis: there exists a nice (simple) result which 
gives a guaranty for an execution in batch mode 
using the guaranty of the off-line scheduling policy 
inside the batches.

 



Analysis [Shmoys]

previous last batch             last batch

Cmaxr
(last job)

n



previous last batch             last batch

Cmaxr n

Tk

DkDK-1



Proposition



Analysis

Tk is the duration of the last batch

On another hand,                     and

Thus:



Application

Applied to the best off-line algorithm for moldable 
jobs (3/2-approximation), we obtain a 3-
approximation on-line batch algorithm for Cmax.

This result holds also for rigid jobs (using the 2-
approximation Graham resource constraints), 
leading to a 4-approximation algorithm.



Multi criteria

Cmax is not always the adequate criterion.

User point of view:

Average completion time (weighted or not)

Other criteria: 

Stretch, Asymptotic throughput, fairness, … 



How to deal with this 
problem?

Hierachal approach: one criterion after the other

(Convex) combination of criteria

Transforming one criterion in a constraint

Better - but harder - ad hoc algorithms 



A first solution

Construct a feasible schedule from two schedules
of guaranty r for minsum and r’ for makespan with a 
guaranty (2r,2r’) [Stein et al.].

Instance: 7 jobs (moldable tasks) to be scheduled 
on 5 processors.



Schedules s and s’

Schedule s
(minsum)

3
5

4
1 2

6
7

Schedule s’
(makespan)

7

2

1
4

6
3
5



New schedule

3
5

4
1 2

6
7

7

2

1
4

6
3
5

r’Cmax



New schedule

3
5

4
1 2

6
7

7

6
5



New schedule

3

4
1 2

7

6
5



New schedule

3

4
1 2

7

6
5

2r’Cmax



New schedule

3

4
1 2

7

6
5

2r’Cmax

Similar bound for the first criterion



Analysis

The best known schedules are:
8 [Schwiegelsohn] for minsum and 3/2 [Mounie et 
al.] for makespan leading to (16;3).

Similarly for the weighted minsum (ratio 8.53 for 
minsum).



Improvement

We can improve this result by determining the 
Pareto curves (of the best compromises): 
(1+λ)/ λ r and (1+ λ)r’

Idea: 
take the first part of schedule s up to λ r’Cmax



Pareto curve



Pareto curve



Another way for designing better 
schedules

We proposed [SPAA’2005] a new solution for a 
better bound which has not to consider explicitly the 
schedule for minsum (based on a dynamic 
framework).

Principle: recursive doubling with smart selection 
(using a knapsack) inside each interval.
Starting from the previous algorithm for Cmax, we 
obtain a (6;6) approximation.



Bi criteria: Cmax and ΣwiCi

Generic On-line Framework [Shmoys et al.]
Exponantially increasing time intervals

Uses a max-weight ρ approximation algorithm
If the optimal schedule of length d has weight w*,  

provides a schedule of length ρd and weight ≥ w*

Yields a (4ρ, 4ρ) approximation algorithm
For moldable tasks, yields a (12, 12) approximation

With the 2-shelf algorithm, yields a (6, 6) 
approximation [Dutot et al.]                          



Example for ρ = 2

Schedule for makespan
Shortest job



Example for ρ = 2

"Contains more weight"

t0 2 4 8 16



A last trick

The intervals are shaked (like in 2-opt local optimization techniques).

This algorithm has been adapted for rigid tasks.

It is quite good in practice, but there is no theoretical guaranty…



Reservations

Motivation:
Execute large jobs that require more than m processors.

time



Reservations



Reservations
The problem is to schedule n independent parallel 

rigid tasks such that the last finishing time is 
minimum.

q

m

At each time t, r(t) m processors are not available≤



State of the art

Most existing results deal with sequential tasks (qj=1).

Without preemption:
Decreasing reservations
Only one reservation per machine

With preemption:
Optimal algorithms for independent tasks 
Optimal algorithms for some simple task graphs



Without reservation

FCFS with backfilling

1

2

4

3

5



Without reservation

FCFS with backfilling

2

4

3

5

1



Without reservation

FCFS with backfilling

4

3

5

1

2



Without reservation

FCFS with backfilling

3

5

1

2

4



Without reservation

FCFS with backfilling

5

1

2

4

3



Without reservation

FCFS with backfilling

1

2

4

3

5



Without reservation

List algorithms: use available processors for executing the first 
possible task in the list.

list algorithmFCFS with backfilling

1 1

2 2

4 4

3 35

5



Without reservation

Proposition: list algorithm is a 2-1/m approximation.

This is a special case of Graham 1975 (resource constraints), 
revisited by [Eyraud et al. IPDPS 2007].

The bound is tight (same example as in the well-known case in 
1969 for sequential tasks).



With reservation

The guaranty is not valid.

This is a special case of Graham 1975 (resource constraints), 
revisited by [Eyraud et al. IPDPS 2007].

The bound is tight (same example as in the well-known case in 
1969 for sequential tasks).



Complexity

The problem is already NP-hard with no reservation.

Even worse, an optimal solution with arbitrary reservation may be 
delayed as long as we want:

Cmax*



Complexity

The problem is already NP-hard with no reservation.

Even worse, an optimal solution with arbitrary reservation may be 
delayed as long as we want:

Cmax*



Complexity

The problem is already NP-hard with no reservation.

Even worse, an optimal solution with arbitrary reservation may be 
delayed as long as we want:

Conclusion: can not be approximated unless P=NP, even for m=1



Two preliminary results

Decreasing number of available processors

Restricted reservation problem: always a given part α of the 
processors is available r(t)  (1- ≤ α)m and for all task i, qi  ≤ αm.

αm

(1−α) m



Analysis

Case 1. The same approximation bound 2-1/m is still valid

Case 2. The list algorithm has a guaranty of 2/α
Insight of the proof: while the optimal uses m processors, list uses only α

processors with a approximation of 2…



Analysis

Case 1. The same approximation bound 2-1/m is still valid

Case 2. The list algorithm has a guaranty of 2/α
Insight of the proof: while the optimal uses m processors, list uses only α

processors with a approximation of 2…

There exists a lower bound which is arbitrary close to this bound:
2/α -1 + α/2    if 2/α is an integer



Conclusion

It remains a lot of interesting open 
problems with reservations.

Using preemption
Not rigid reservations
Better approximation (more costly) 


