Introduction	
000000000000	

Congestion Games with Shifted Latency Functions

Igal Milchtaich¹, Burkhard Monien², Karsten Tiemann²

¹ Bar-Ilan University Ramat Gan, Israel. ² University of Paderborn, Germany.

AEOLUS Workshop on Scheduling (March 9, 2007)

Shifted latency functions

Unweighted Players

Weighted Players

- 2 Shifted latency functions
- Onweighted Players
- Weighted Players

Congestion Games with Shifted Latency Functions

Shifted latency functions

Unweighted Players

Weighted Players

Self-Organizing Systems & Games with Selfish Agents

Situation in many dynamic self-organizing systems

- There is no central control in the system.
- Each autonomous agent tries to improve its private cost.
- The private cost of an agent depends on the behavior of all agents.

< ロ > < 同 > < 回 > < 回 >

Shifted latency functions

Unweighted Players

Weighted Players

Example: Traffic System (1/2)

- There is no central control that steers all cars.
- Autonomous agent: Each car driver is an autonomous agent.
- Private cost: Each car driver wants to minimize its time of travel.
- The traveling time of a car driver also depends on the decision of other car drivers.

• • • • • • • • • • • •

Shifted latency functions

Unweighted Players

Weighted Players

Example: Traffic System (2/2)

 Question: Outcome?
What are the decisions of the car drivers?
Which roads do they select for their trip?

• Answer: Stable state

Each car driver decides for a route that minimizes his travel time.

• • • • • • • • • • • •

 Shifted latency functions

Unweighted Players

Weighted Players

Strategic Games and Strategies

Game $\mathcal{G} = (n, S_1, \dots, S_n, PC_1, \dots, PC_n)$ in normal form

A game G is described by $G = (n, S_1, \dots, S_n, PC_1, \dots, PC_n)$ where

- *n* defines how many players 1,2,...,*n* are present,
- S_i is the set of strategies of player i,
- $PC_i : S_1 \times \ldots \times S_n \to \mathbb{R}$ is the private cost function of player *i*.

Strategies and strategy profiles

• $s_i \in S_i$ is a (pure) strategy of player *i*

• $(s_1, \ldots, s_n) \in S_1 \times \ldots \times S_n$ is a (pure) strategy profile

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shifted latency functions

Unweighted Players

Weighted Players

Nash Equilibria

(Pure) Nash equilibrium

A (pure) strategy profile $(s_1, ..., s_n)$ is a (pure) Nash equilibrium if, for each player *i* and $\forall s'_i \in S_i$:

$$\mathsf{PC}_i(s_1,\ldots,s_i,\ldots,s_n) \leq \mathsf{PC}_i(s_1,\ldots,s_{i-1},s_i',s_{i+1},\ldots,s_n).$$

Existence of pure Nash equilibria

In general games, pure Nash equilibria may not exist.

Open problem

Which games possess a pure Nash equilibrium?

Shifted latency functions

Unweighted Players

Weighted Players

Nash Equilibria

(Pure) Nash equilibrium

A (pure) strategy profile $(s_1, ..., s_n)$ is a (pure) Nash equilibrium if, for each player *i* and $\forall s'_i \in S_i$:

$$\mathsf{PC}_i(s_1,\ldots,s_i,\ldots,s_n) \leq \mathsf{PC}_i(s_1,\ldots,s_{i-1},s_i',s_{i+1},\ldots,s_n).$$

Existence of pure Nash equilibria

In general games, pure Nash equilibria may not exist.

Open problem

Which games possess a pure Nash equilibrium?

Shifted latency functions

Unweighted Players

Weighted Players

Nash Equilibria

(Pure) Nash equilibrium

A (pure) strategy profile $(s_1, ..., s_n)$ is a (pure) Nash equilibrium if, for each player *i* and $\forall s'_i \in S_i$:

$$\mathsf{PC}_i(s_1,\ldots,s_i,\ldots,s_n) \leq \mathsf{PC}_i(s_1,\ldots,s_{i-1},s_i',s_{i+1},\ldots,s_n).$$

Existence of pure Nash equilibria

In general games, pure Nash equilibria may not exist.

Open problem

Which games possess a pure Nash equilibrium?

Shifted latency functions

Unweighted Players

Weighted Players

(Greedy) Selfish Steps

(Greedy) selfish steps

Player *i* unilaterally deviates to another strategy. This is

- a selfish step if *i* decreases its private cost,
- a greedy selfish step if the new strategy minimizes *i*'s private cost.

Finite improvement and finite best-reply property

A game possesses the

- finite improvement property if any sequence of selfish steps is finite.
- finite best-reply property if any sequence of greedy selfish steps is finite.

Shifted latency functions

Unweighted Players

Weighted Players

(Greedy) Selfish Steps

(Greedy) selfish steps

Player *i* unilaterally deviates to another strategy. This is

- a selfish step if *i* decreases its private cost,
- a greedy selfish step if the new strategy minimizes *i*'s private cost.

Finite improvement and finite best-reply property

- A game possesses the
 - finite improvement property if any sequence of selfish steps is finite.
 - finite best-reply property if any sequence of greedy selfish steps is finite.

• • • • • • • • • • •

Shifted latency functions

Unweighted Players

Weighted Players

Selfish Steps and the Existence of Nash Equilibria

Helpful fact 1

Game \mathcal{G} possesses the finite improvement property.

 \Rightarrow

 \mathcal{G} possesses the finite best-reply property.

Helpful fact 2

Game G possesses the finite best-reply property. \Rightarrow G possesses at least one pure Nash equilibrium.

Shifted latency functions

Unweighted Players

Weighted Players

Selfish Steps and the Existence of Nash Equilibria

Helpful fact 1

Game \mathcal{G} possesses the finite improvement property.

 \Rightarrow

 \mathcal{G} possesses the finite best-reply property.

Helpful fact 2

Game \mathcal{G} possesses the finite best-reply property.

 $\ensuremath{\mathcal{G}}$ possesses at least one pure Nash equilibrium.

Shifted latency functions

Unweighted Players

Weighted Players

Finite Improvement Property

How to show the finite improvement property

- Define a function $\Phi : S_1 \times \ldots \times S_n \to \mathbb{R}$.
- Show that this function Φ decreases whenever a player does a selfish step.

Shifted latency functions

Unweighted Players

Weighted Players

Routing Games: Network Congestion Games

Example of a network congestion game

- There are 3 players of weight 3, 5, and 2.
- Each player selects as its strategy a path from s to t.
- A strategy profile defines a load on each edge.

A D b 4 A b

Shifted latency functions

Unweighted Players

Weighted Players

Load and Private Cost

Shifted latency functions

Unweighted Players

Weighted Players

Load and Private Cost

Load on resource *e*
$$\delta_{e}(s) = \sum_{i:e \in s_{i}} w_{i}$$
where *w_i* is player *i*'s weight

Private cost of player *i*

$$PC_i(s) = \sum_{e \in s_i} f_e(\delta_e(s))$$

where f_e is the latency function of edge e

 $PC_1 = f_1(8) + f_2(3)$ $PC_2 = f_1(8) + f_3(5) + f_5(7)$ $PC_3 = f_4(2) + f_5(7)$

Congestion Games with Shifted Latency Functions

Shifted latency functions

Unweighted Players

Weighted Players

Congestion Games

Karsten Tiemann · 13

イロト イヨト イヨト イヨト

Shifted latency functions

Unweighted Players

Weighted Players

Congestion Games

(a)

Shifted latency functions

Unweighted Players

Weighted Players

Congestion Games

• • • • • • • • • • • •

Shifted latency functions

Unweighted Players

Weighted Players

Congestion Games

Shifted latency functions

Unweighted Players

Weighted Players

Congestion Games

 $PC_1 = f_{e_1}(w_1) + f_{e_2}(w_1 + w_2), PC_2 = f_{e_2}(w_1 + w_2) + f_{e_3}(w_2)$

Shifted latency functions

Unweighted Players

Weighted Players

Player-specific Latency Functions

More latency functions per edge

- Congestion games:
 - 1 latency function per edge.
- Congestion games with player-specific latency functions: *n* latency functions per edge, one for each player.

Scenarios where player-specific functions are reasonable

- Players have different preferences or objectives.
- Players do not know the actual latency function. (Incomplete information.)

Shifted latency functions

Unweighted Players

Weighted Players

Player-specific Latency Functions

More latency functions per edge

- Congestion games:
 - 1 latency function per edge.
- Congestion games with player-specific latency functions: *n* latency functions per edge, one for each player.

Scenarios where player-specific functions are reasonable

- Players have different preferences or objectives.
- Players do not know the actual latency function. (Incomplete information.)

Shifted latency functions

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (1/3)

One latency function per edge

Player-specific latency functions

Private cost of player i

$$PC_i(s) = \sum_{e \in s_i} f_e(\delta_e(s))$$

where f_e is the latency function of edge e

[ROSENTHAL, 1973]

Congestion Games with Shifted Latency Functions

Private cost of player *i*

[MILCHTAICH, 1996]

$$PC_i(s) = \sum_{e \in s_i} f_{ie}(\delta_e(s))$$

where f_{ie} is the latency function player *i* assigns to edge *e*

Karsten Tiemann · 15

Shifted latency functions

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (1/3)

Private cost of player i

$$PC_i(s) = \sum_{e \in s_i} f_e(\delta_e(s))$$

where f_e is the latency function of edge e

[ROSENTHAL, 1973]

Congestion Games with Shifted Latency Functions

Player-specific latency functions

Private cost of player i

$$PC_i(s) = \sum_{e \in s_i} f_{ie}(\delta_e(s))$$

where f_{ie} is the latency function player *i* assigns to edge *e*

[MILCHTAICH, 1996]

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (2/3)

One latency function per edge:

2x + 22x + 2

[ROSENTHAL, 1973]

Shifted latency functions

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (2/3)

One latency function per edge:

Player-specific latency functions:

2*x* + 2

$$\frac{2x+2}{2x+2}$$

[ROSENTHAL, 1973]

[MILCHTAICH, 1996]

Shifted latency functions

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (2/3)

Congestion Games with Shifted Latency Functions

Karsten Tiemann · 16

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (3/3)

Congestion games

[ROSENTHAL, 1973]

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (3/3)

Congestion games

Congestion games with player-specific latency functions

[ROSENTHAL, 1973]

[MILCHTAICH, 1996]

Unweighted Players

Weighted Players

Different Kinds of Latency Functions (3/3)

Congestion games

Congestion games with player-specific latency functions Congestion games with shifted latency functions

[ROSENTHAL, 1973]

[MILCHTAICH, 1996]

Considered here.

Shifted latency functions

Unweighted Players

Weighted Players

Shifted Latency Functions

Shifted latency functions

- For an edge e we have
 - one common non-decreasing latency function f_e and
 - non-negative player-specific constants $c_{1e}, c_{2e}, \ldots, c_{ne}$.

• The latency that player *i* assigns to edge *e* is given by $c_{ie} + f_e(x)$.

Shifted latency functions

Unweighted Players

Weighted Players

Shifted Latency Functions

Shifted latency functions

- For an edge e we have
 - one common non-decreasing latency function f_e and
 - non-negative player-specific constants $c_{1e}, c_{2e}, \ldots, c_{ne}$.
- The latency that player *i* assigns to edge *e* is given by $c_{ie} + f_e(x)$.

Shifted latency functions

Unweighted Players

Weighted Players

Unweighted Players: Finite Improvement Property

Existence of Nash equilibria for unweighted games

• We start with unweighted players, i.e.,

 $w_1 = w_2 = \ldots = w_n = 1.$

• It is well-known that all unweighted congestion games possess the finite improvement property. The proof by [Rosenthal, 1973] uses this potential function:

$$\Phi(s) = \sum_{e \in E} \sum_{i=1}^{\delta_e(s)} f_e(i)$$

Congestion Games with Shifted Latency Functions

Karsten Tiemann · 19

Unweighted Players

Weighted Players

Unweighted Players: Finite Improvement Property

Existence of Nash equilibria for unweighted games

• We start with unweighted players, i.e.,

 $w_1 = w_2 = \ldots = w_n = 1.$

• It is well-known that all unweighted congestion games possess the finite improvement property. The proof by [Rosenthal, 1973] uses this potential function:

$$\Phi(s) = \sum_{e \in E} \sum_{i=1}^{\delta_e(s)} f_e(i)$$

Congestion Games with Shifted Latency Functions
Shifted latency functions

Unweighted Players

Weighted Players

Unweighted Players, Shifted Latency Functions: Finite Impr. Pr.

Theorem (Facchini, van Megen, Borm, Tijs, 1997)

All congestion games with

- unweighted players and
- shifted latency functions

possess the finite improvement property.

$$\Phi(s) = \sum_{e \in E} \sum_{i=1}^{\delta_e(s)} f_e(i) + \sum_{i=1}^n \sum_{e \in s_i} c_{ie}$$

(4) The (b)

Shifted latency functions

Unweighted Players

Weighted Players

Unweighted Players, Shifted Latency Functions: Finite Impr. Pr.

Theorem (Facchini, van Megen, Borm, Tijs, 1997)

All congestion games with

- unweighted players and
- shifted latency functions

possess the finite improvement property.

$$\Phi(s) = \sum_{e \in E} \sum_{i=1}^{\delta_e(s)} f_e(i) + \sum_{i=1}^n \sum_{e \in s_i} c_{ie}$$

Shifted latency functions

Unweighted Players

Weighted Players

Unweighted Players: Nash Computation

Shifted latency functions

Unweighted Players

Weighted Players

Unw. Players, Shifted Latency Functions: Nash Computation

Theorem

It is PLS-complete to find a pure Nash equilibrium in a congestion game with

- unweighted players and
- shifted latency functions on a
- symmetric network.

Congestion Games with Shifted Latency Functions

< ロ > < 同 > < 回 > < 回 >

Shifted latency functions

Unweighted Players

Weighted Players

Unweighted Players 0000000000

Weighted Players

Unw. Players, Shifted Latency Functions: Nash Computation

Unweighted Players 00000000000

Weighted Players

Unweighted Players 00000000000

Weighted Players

Shifted latency functions

Unweighted Players

Weighted Players

Shifted latency functions

Unweighted Players

Weighted Players

Unw. Players, Shifted Latency Functions: Nash Computation

Nash computation for unw. asymmetric network congestion game is PLS-complete

implies

Nash computation for unw. symmetric network congestion game with shifted latency functions is PLS-complete

4 A N

Shifted latency functions

Unweighted Players

Weighted Players

Unw. Players, Shifted Latency Functions: Summary

Summary: Unweighted players				
	Traditional Congestion Games	Congestion games with shifted latency functions		
Finite improvement	Yes	Yes		
property	[Rosenthal, 1973]			
Nash polynomial	Yes	No		
time computation symmetric networks	[Fabrikant et al., 2004]	(unless all <i>PLS</i> -problems are solvable in polytime)		

Shifted latency functions

Unweighted Players

Weighted Players

Unw. Players, Shifted Latency Functions: Summary

Summary: Unweighted players				
	Traditional Congestion Games	Congestion games with shifted latency functions		
Finite improvement	Yes	Yes		
property	[Rosenthal, 1973]			
Nash polynomial	Yes	No		
time computation symmetric networks	[Fabrikant et al., 2004]	(unless all <i>PLS</i> -problems are solvable in polytime)		

Shifted latency functions

Unweighted Players

Weighted Players

Existence of Pure Nash Equilibria: Negative Result

Theorem (Libman & Orda 2001, Fotakis, Kontogiannis, Spirakis 2004)

There is a weighted network congestion game for that **no** pure Nash equilibrium exists.

Cycle of selfish steps: (P3,P2), (P3,P4), (P1,P4), (P1,P2), (P3,P2)

Shifted latency functions

Unweighted Players

Weighted Players

Existence of Pure Nash Equilibria: Positive Result

Theorem (e.g. Fotakis et al. 2002)

Each congestion game with

- weighted players and
- non-decreasing latency functions on
- parallel links

possesses the finite improvement property.

Unweighted Players

Weighted Players

Weighted Players & Parallel Links

Question

Do all congestion games with

- weighted players and
- shifted latency functions
- on parallel links

possess the finite improvement property?

Answer

No, in general. Yes, if the latency functions are linear.

Unweighted Players

Weighted Players

Weighted Players & Parallel Links

Question

Do all congestion games with

- weighted players and
- shifted latency functions
- on parallel links

possess the finite improvement property?

Answer

No, in general. Yes, if the latency functions are linear.

Shifted latency functions

Unweighted Players

Weighted Players

General Latency Functions: No Finite B.-rep. Property

Theorem

There is a congestion game with

- weighted players and
- shifted latency functions
- on parallel links

that does **not** possess the finite best-reply property.

< ロ > < 同 > < 回 > < 回 >

Shifted latency functions

Unweighted Players

Weighted Players

General Latency Functions: No Finite B.-rep. Property

Instance

3 players $w_1 = 1$, $w_2 = 2$, $w_3 = 1$ on 3 parallel links.

Player *i*'s latency for link *j* is $c_{ij} + f_j(x)$ where:

C _{ij}	Link 1	Link 2	Link 3
Player 1	15	2	99
Player 2	4	99	18
Player 3	99	3	20
Link j	$f_{j}(1)$	$f_j(2)$	$f_j(3)$
Link 1	13	27	31
Link 2	27	38	51
Link 3	11	12	20

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Shifted latency functions

Unweighted Players

Weighted Players

General Latency Functions: No Finite B.-rep. Property

Instance

3 players $w_1 = 1$, $w_2 = 2$, $w_3 = 1$ on 3 parallel links.

Player *i*'s latency for link *j* is $c_{ij} + f_j(x)$ where:

C _{ij}	Link 1	Link 2	Link 3
Player 1	15	2	99
Player 2	4	99	18
Player 3	99	3	20
Link j	$f_{j}(1)$	$f_{j}(2)$	$f_j(3)$
Link 1	13	27	31
Link 2	27	38	51
Link 3	11	12	20

Cycle of selfish steps $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow$ $S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow S_1$ where				
	PC_1	PC_2	PC_3	
S_1			31	
S_2	46			
S ₃	40	31		
S_4			41	
S_5	29		40	
S_6	28			

Unweighted Players

Weighted Players 00000000

General Latency Functions: No Finite B.-rep. Property

S3 2

	4	
Ine	tan	00
1110	laii	66

3 players $w_1 = 1$, $w_2 = 2$, $w_3 = 1$ on 3 parallel links.

Player *i*'s latency for link *j* is $c_{ii} + f_i(x)$ where:

C _{ij}	Link 1	Link 2	Link 3
Player 1	15	2	99
Player 2	4	99	18
Player 3	99	3	20
Link j	$f_{j}(1)$	$f_{j}(2)$	$f_j(3)$
Link 1	13	27	31
Link 2	27	38	51
Link 3	11	12	20

\mathbf{S}_1	2				
	1_3	Selfi	sh step	o cycle)
S ₂	2	Cycle of selfish steps $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow$ $S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow S_1$			
S ₃	$\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$	where	e	Ū	•
~			PC_1	PC_2	PC_3
S ₄	$\frac{1}{3}$ 2	S ₁		35	31
~		S ₂	46		30
S_5	3	S ₃	40	31	
	12	S_4		30	41
c		S_5	29		40
36		S_6	28	38	
	1 * 1				

4 A 1

- 3 →

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Linear latency functions $f_j(x) = a_j \cdot x$

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

Theorem

- All congestion games with
 - weighted players and
 - shifted linear latency functions

possess the finite improvement property.

$$\Psi(s) = \sum_{i=1}^{n} w_i \cdot \sum_{e \in s_i} c_{ie} + \sum_{e \in E} a_e \cdot \left(\sum_{\substack{o:\\ s_o = e}} w_o^2 + \sum_{\substack{\{u, v\}:\\ s_u = S_v = e}} w_u \cdot w_v \right)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Linear latency functions $f_j(x) = a_j \cdot x$

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

Theorem

All congestion games with

- weighted players and
- shifted linear latency functions

possess the finite improvement property.

$$\Psi(s) = \sum_{i=1}^{n} w_i \cdot \sum_{e \in s_i} c_{ie} + \sum_{e \in E} a_e \cdot \left(\sum_{\substack{c:\\s_o = e}} w_o^2 + \sum_{\substack{\{u,v\}:\\s_u = s_o = e}} w_u \cdot w_v \right)$$

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Linear latency functions $f_j(x) = a_j \cdot x$

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

Theorem

All congestion games with

- weighted players and
- shifted linear latency functions

possess the finite improvement property.

$$\Psi(s) = \sum_{i=1}^{n} w_i \cdot \sum_{e \in s_i} c_{ie} + \sum_{e \in E} a_e \cdot \left(\sum_{\substack{s_o \\ s_o = e}} w_o^2 + \sum_{\substack{\{u,v\}:\\ s_u = s_v = e}} w_u \cdot w_v \right)$$

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}}^{o} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}}^{w_{u}} w_{u} \cdot w_{v}\right)$$

$$\begin{split} \Psi & \text{decreases if player } k \text{ does a selfish step } s \to s' \\ \text{Let } s = (\dots, p, \dots), \ s' = (\dots, q, \dots). \\ \mathsf{PC}_k(s) &= c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s'). \\ \Psi(s) - \Psi(s') \\ &= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)]) \\ &= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s')) \\ &= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s')) \\ &> 0 \end{split}$$

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}}^{o} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}}^{w_{u}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)]$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}}^{o} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}}^{w_{u}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}}^{o:} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}}^{\{u,v\}:} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}}^{o} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}}^{w_{u}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{s_{i} \\ s_{o}=j}} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\ s_{u}=s_{v}=j}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{s_{i} \\ s_{o}=j}} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\ s_{u}=s_{v}=j}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

L

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{o:\\s_{o}=j}}^{o} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\s_{u}=s_{v}=j}}^{w_{u}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$

14

Shifted latency functions

Unweighted Players

Weighted Players

Linear Latency Functions: Finite Impr. Property

Latency that player *i* assigns to link *j* is given by $c_{ij} + a_j \cdot x$.

$$\Psi(s) = \sum_{i=1}^{n} w_{i} \cdot c_{is_{i}} + \sum_{j=1}^{m} a_{j} \cdot \left(\sum_{\substack{s_{i} \\ s_{o}=j}} w_{o}^{2} + \sum_{\substack{\{u,v\}:\\ s_{u}=s_{v}=j}} w_{u} \cdot w_{v}\right)$$

 Ψ decreases if player *k* does a selfish step $s \rightarrow s'$

Let
$$s = (\dots, p, \dots)$$
, $s' = (\dots, q, \dots)$.
 $\mathsf{PC}_k(s) = c_{kp} + a_p \cdot \delta_p(s) > c_{kq} + a_q \cdot \delta_q(s') = \mathsf{PC}_k(s')$.
 $\Psi(s) - \Psi(s')$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot [w_k + \delta_p(s')] - a_q \cdot [w_k + \delta_q(s)])$
 $= w_k \cdot (c_{kp} - c_{kq} + a_p \cdot \delta_p(s) - a_q \cdot \delta_q(s'))$
 $= w_k \cdot (\mathsf{PC}_k(s) - \mathsf{PC}_k(s'))$
 > 0

Shifted latency functions

Unweighted Players

Weighted Players

Weighted Players, Shifted Latency Functions: Summary

Summary: Weighted players				
Finite improvement property	Traditional Congestion Games	Congestion games with shifted latency functions		
non-decreasing latency functions, parallel links	Yes e.g. [Fotakis et al., 2002]	No		
linear latency functions	Yes e.g. [Fotakis et al., 2004]	Yes		

Shifted latency functions

Unweighted Players

Weighted Players

Weighted Players, Shifted Latency Functions: Summary

Summary: Weighted players			
Finite improvement	Traditional Congestion	Congestion games with shifted	
	Games	latency functions	
non-decreasing			
latency functions,	Yes	No	
parallel links	e.g. [Fotakis et al., 2002]		
linear			
latency	Yes	Yes	
functions	e.g. [Fotakis et al., 2004]		

Introduction	Shifted latency functions	Unweighted Players	Weighted Playe

Thank you!

Your questions?

4 A 1