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Routing

• Path selection

• Scheduling

• Admission control
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Classical Routing Theory

Given a path collection with

• congestion C (max. number of paths over 
edge) and

• dilation D (max. length of a path)

find (near-)optimal schedule for packets.



Classical Routing Theory

Leighton, Maggs, Rao 88:
There is a schedule with O(C+D) runtime.
Also for non-uniform edges [Feige & S 98]

Since then many randomized online 
protocols with runtime ~O(C+D) w.h.p.

Basic techniques: random delays or ranks



Classical Routing Theory

Extensions faulty and wireless networks.

Adler & S 98:

• G=(V,E) with probabilities p:E ! [0,1]

• H=(V,E) with latencies l(e)=1/p(e)

• Valid routing schedule of length T for H 
can be simulated in G in time O(T log L + 
L log n), w.h.p.; L: max. latency



Scheduling

Classical model: batch-like scheduling

More relevant models:

• Stochastic injection models
(packets are continuously injected using 
Poisson distribution or Markov chains)

• Adversarial queueing theory
(introduced by Borodin et al. 96)



Adversarial Queueing Theory

Basic model:

• Static network G=(V,E)

• (w,λ)-bounded adversary continuously 
injects packets subject to the condition 
that for all edges e and all time intervals of 
length w, it injects at most λw packets with 
paths containing e

• All packets have to be delivered (λ<=1)



Adversarial Queueing Theory

Basic results:

• Universal stability and instability of various 
queueing disciplines (FIFO, SIS, LIS, 
NTO,…)

• Universal stability of networks



Adversarial Queueing Theory

Networks with time-varying channels:

• Packet injections and edges under 
adversarial control

• Andrews and Zhang 04: Variant of NTO is 
universally stable in this model



Adversarial Routing Theory

Paths are not given to system:

• Aiello, Kushilevitz, Ostrovsky, Rosen ’98:
local load balancing techniques can be 
used to keep queues bounded



Adversarial Routing Theory

Paths are not given to system:

• Awerbuch, Brinkmann & S ’03:
local load balancing technique with 
bounded queues also handles admission,
works even for adversarial networks



Adversarial Routing Theory

Paths are not given to system:

• Awerbuch, Brinkmann & S ’03:
load balancing technique with O(L/ε) times 
buffer space of OPT is (1+ε)-competitive 
w.r.t. throughput; L: max path length



Path Selection

Problems: 
    - packet-based paths: slow delivery
    - destination-based paths: congestion

Better: source-based path selection 
(MPLS: Multiprotocol Label Switching)



Path Selection

Classical work: path selection strategies for 
specific networks (n£n-mesh)
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x-y routing



Path Selection

x-y routing: ~worst-case optimal congestion 
and dilation for permutation routing
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x-y routing



Path Selection

x-y routing: far from optimal in general
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Path Selection

Trick: use hierarchical randomized routing.
Θ(log n)-competitive for any problem
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Oblivious Path Selection

Räcke 02: For any network with edge capacities, path 
collections for random path selection can be set up for 
every source-destination pair s.t. the expected 
congestion of routing any routing problem is O(log3 n)-
competitive.

Best bound [HHR03]: ~O(log2 n)
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Oblivious Path Selection

Also works well for certain dynamic net-
works for peer-to-peer systems.

Trick: continuous-discrete approach

• route in virtual space

• nodes partition virtual space among them



Oblivious Path Selection

Does not work well for wireless, unknown or 
adversarial networks (e.g., unstructured 
P2P systems with adversarial presence)



Adaptive Path Selection

Basic Idea: Garg & Könemann 98

Multicommodity flow problem: collection of 
commodities (source, dest., demand)

• Solution 1: use LP

• Solution 2: combinatorial approach 
(path packing using primal-dual approach)



Garg-Könemann Framework

Problem: MCF (maximum concurrent flow 
problem), i.e., given commodities with 
demands di, find flows of value di for 
commodities s.t. maxe fe/ce minimized

Goal: find (1+ε)-approximate solution via 
path packing



Garg-Könemann Framework

Initially, fe
i=0 for all commodities i and edges e

Algorithm runs in T=ln m/ε2 phases, routes a flow 
of di/T for each commodity i in each phase

A phase consists of several steps
In each step, flows augmented simultaneously 

subject to two constraints:
• (1+ε)-shortest paths constraint, using edge 

lengths le = mconge/ε/ce with conge = fe/ce

• step-size constraint: ∆le <= ε le
(which implies  ∆fe <= ε2 ce/ln m)



Garg-Könemann Framework

Original Garg-Könemann approach:

• Route commodities in round-robin fashion, one 
commodity per step
) #steps depends linearly on #commidities

Awerbuch, Khandekar and Rao 07:

• Route commodities simultaneously in each step 
using capacities ce

i = ε2 fe
i/log m for comm i

) multiplicative-increase strategy, faster conv



Garg-Könemann Framework

Awerbuch, Khandekar and Rao 07:
runtime O(L log3 m log k)
L: max flow length, k: #commodities

• L small (hypercube): fast convergence

• L always boundable by expansion of net
(flow shortening lemma [Kolman & S 02])



Oblivious vs. Adaptive

Congestion for arbitrary routing problems in 
hypercubic networks:

• Oblivious path selection:
Θ(log n)-competitive, paths instantly, 
update of path system complicated

• Adaptive path selection:
(1+ε)-competitive, paths in polylog comm 
rounds, continuous updates easy



Adaptive Path Selection

Problem: previous approaches not stateless 
resp. self-stabilizing 

Awerbuch and Khandekar 07:
• Adaptive path selection strategy that only 

needs to know current state
• Fast convergence through greedy strategy 

based on multiplicative increase, additive 
decrease



Adversarial Path Selection

Scenario I: Adversaries part of network, but 
path along honest nodes available
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Adversarial Path Selection

Basic approach: A fixes a path from A to B.

Path does not work: A identifies bad edge.
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Adversarial Path Selection

Identification of bad edge: 
Acknowledgements via binary search

A

B



Adversarial Path Selection

Maximum number of attempts: m (# edges)

Either successful or edge killed.
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Adversarial Path Selection

Improvement: use recommendations

If neighbor knows better, suggests a diff path

! collaborative learning
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Adversarial Path Selection

Scenario II: All nodes adversarial.

Awerbuch and Kleinberg 04: 

Learns best static path in hindsight
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Adversarial path selection

Model:

• There is a set S of static strategies (paths)

• Algorithm A interacts with adversary for T steps

• In each step j, the adversary picks a cost 
function cj:S ! IR and A picks a random strategy 
xj 2 S

• Only cost of chosen strategy revealed to A

• The regret of the algorithm A is defined as
     R(A) = E[∑j cj(xj) – minx 2 S ∑j cj(x)]



Adversarial Path Selection

Awerbuch and Kleinberg:

• Regret of O(T2/3 C m5/3) against oblivious 
adversary
C: maximum cost difference, m: #edges

• Regret of O(T2/3 C7/3 m1/3) against adaptive 
adversary 

Regret does not depend on |S| !



Adversarial Path Selection

Otto von Bismarck: 
Fools learn from experience; wise men 
learn from the experience of others.

Only collaborative learning result due to 
Awerbuch and Hayes 07, who study the 
dynamic regret for |S|=2:
   R(A) = avga E[∑j cj(xj) – ∑j minx 2 S cj(x)]



Adversarial Path Selection

Awerbuch and Hayes 07:

• N agents, n of which are honest

• In each round, agents make decisions in a 
fixed order, report the costs incurred

• Costs are either 0 or 1

• Dynamic regret: O(log N2 + T/n)
log2 N: rounds to figure out whom to trust
T/n: just one mistake per round



Adversarial Path Selection

Scenario III: Network topology unknown
but position of destination known

• Geometric spanners (wireless networks)

• Navigable graphs (small world)
pioneered by Kleinberg 96

How to design self-stabilizing processes?



Adversarial Path Selection

Scenario IV: Network topology unknown and 
position of destination unknown
! discovery via flooding
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Open Problems

• Scheduling: non-uniform problems

• Path selection: many open problems left

• Collaborative learning approaches 
particularly interesting



Questions?


