Selfish Load Balancing under Partial Knowledge

Panagiota N. Panagopoulou

Research Academic Computer Technology Institute University of Patras, Greece panagopp@cti.gr

joint work with Elias Koutsoupias and Paul Spirakis

AEOLUS Workshop on Scheduling Nice, March 8–9, 2007

イロト イポト イラト イラト

Outline

- Agents and strategies
- Selfish Costs and Nash equilibria
- The Divergence Ratio
- 2 Zero Knowledge
 - All Nash equilibria
 - The Divergence Ratio
- 3 Arbitrary Knowledge
 - Bounding the Players' Optimum
 - Bounding the worst Social Cost
 - A lower bound on the Divergence Ratio

4 Full Knowledge

• The Divergence Ratio

Agents and strategies Selfish Costs and Nash equilibria Fhe Divergence Ratio

Outline

The Model

- Agents and strategies
- Selfish Costs and Nash equilibria
- The Divergence Ratio

2 Zero Knowledge

- All Nash equilibriaThe Divergence Ratio
- 3 Arbitrary Knowledge
 - Bounding the Players' Optimum
 - Bounding the worst Social Cost
 - A lower bound on the Divergence Ratio
 - Full Knowledge
 - The Divergence Ratio

▲□ ► < □ ► </p>

Agents and strategies Selfish Costs and Nash equilibria The Divergence Ratio

Agents, loads and information

- A set $N = \{1, 2, \dots, n\}$ of n > 1 selfish agents
- Each $i \in N$ has a load $w_i \in [0, 1]$
- Two bins (bin 0 and bin 1) of unbounded capacity
- Each agent has to select one of the two available bins to put her load
- For any $(i,j) \in N \times N$, agent *i* knows either
 - (a) the exact value of w_j or
 - (b) that w_j is uniformly distributed on [0, 1]
- Let $I_i = \{j \in N : \text{agent } i \text{ knows the exact value of } w_j\}$ and denote $I = (I_i)_{i \in N}$

Agents and strategies Selfish Costs and Nash equilibria The Divergence Ratio

Single-threshold strategies

- A strategy for agent i is a function s_i : [0, 1] → {0, 1} such that s_i(w_i) is the bin that agent i selects when her load is w_i.
- We only consider single-threshold strategies, i.e. a strategy for agent *i* is some t_i ∈ [0, 1] so that

$$s_i(w_i) = \left\{egin{array}{cc} 0 & w_i \leq t_i \ 1 & w_i > t_i \end{array}
ight.$$

- A strategy profile t = (t₁,..., t_n) ∈ [0, 1]ⁿ is a combination of strategies, one for each agent.
- Denote by (t'_i, t_{-i}) the strategy profile that is identical to t except for agent i, who chooses strategy t'_i instead of t_i.

(日) (同) (三) (三)

Agents and strategies Selfish Costs and Nash equilibria The Divergence Ratio

Selfish Costs and Nash equilibria

The Selfish Cost $Cost_i(\mathbf{t}; I_i)$ of agent *i* is the expected load of the bin she selects, based on

- **(**) her information about the exact loads of all $j \in I_i$ and
- e her knowledge that the loads of all j ∉ I_i are uniformly distributed on [0, 1].

Agents and strategies Selfish Costs and Nash equilibria The Divergence Ratio

Selfish Costs and Nash equilibria

The Selfish Cost $Cost_i(\mathbf{t}; I_i)$ of agent *i* is the expected load of the bin she selects, based on

- **(**) her information about the exact loads of all $j \in I_i$ and
- e her knowledge that the loads of all j ∉ I_i are uniformly distributed on [0, 1].

In a *Nash equilibrium*, no agent can decrease her Selfish Cost by deviating:

Definition

The strategy profile $\mathbf{t} = (t_1, \ldots, t_n) \in [0, 1]^n$ is a Nash equilibrium if and only if, for all $i \in N$,

$$\operatorname{Cost}_i(\mathbf{t}; I_i) \leq \operatorname{Cost}_i((t'_i, \mathbf{t}_{-i}); I_i) \quad \forall t'_i \in [0, 1].$$

< ロ > < 同 > < 回 > < 回 >

Agents and strategies Selfish Costs and Nash equilibria **The Divergence Ratio**

The Divergence Ratio

• Associated with a strategy profile $\mathbf{t} \in [0,1]^n$ is the Social Cost:

$$SC(\mathbf{t}, \mathbf{I}) = \max_{i \in N} Cost_i(\mathbf{t}; I_i)$$
.

The *Players' Optimum* PO(I) is the minimum, over all possible strategy profiles t ∈ [0, 1]ⁿ, Social Cost:

$$\mathsf{PO}(\mathbf{I}) = \min_{\mathbf{t} \in [0,1]^n} \mathsf{SC}(\mathbf{t},\mathbf{I})$$
.

 The Divergence Ratio DR(I) is the maximum, over all Nash equilibria t, of the ratio SC(t,I) PO(I):

$$\mathsf{DR}(\mathbf{I}) = \max_{\mathbf{t}:\mathbf{t} \text{ N.E.}} \frac{\mathsf{SC}(\mathbf{t},\mathbf{I})}{\mathsf{PO}(\mathbf{I})}$$

.

All Nash equilibria The Divergence Ratio

Outline

The Model

- Agents and strategies
- Selfish Costs and Nash equilibria
- The Divergence Ratio
- Zero Knowledge
 All Nash equilibria
 The Divergence Ratio
- 3 Arbitrary Knowledge
 - Bounding the Players' Optimum
 - Bounding the worst Social Cost
 - A lower bound on the Divergence Ratio

Full Knowledge

• The Divergence Ratio

< 🗇 > < 🖃 >

All Nash equilibria The Divergence Ratic

Zero Knowledge

Assume $I_i = \emptyset$ for all $i \in N$. Then

 $\operatorname{Cost}_i(\mathbf{t}; I_i) =$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All Nash equilibria The Divergence Ratic

Zero Knowledge

Assume $I_i = \emptyset$ for all $i \in N$. Then

$$\operatorname{Cost}_i(\mathbf{t}; l_i) = t_i \left(\frac{t_i}{2} + \sum_{j \neq i} t_j \frac{t_j}{2} \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All Nash equilibria The Divergence Ratio

Zero Knowledge

Assume $I_i = \emptyset$ for all $i \in N$. Then

$$Cost_{i}(\mathbf{t}; I_{i}) = t_{i} \left(\frac{t_{i}}{2} + \sum_{j \neq i} t_{j} \frac{t_{j}}{2} \right) + (1 - t_{i}) \left(\frac{t_{i} + 1}{2} + \sum_{j \neq i} (1 - t_{j}) \frac{t_{j} + 1}{2} \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All Nash equilibria The Divergence Ratic

Zero Knowledge

Assume $I_i = \emptyset$ for all $i \in N$. Then

$$\begin{aligned} \mathsf{Cost}_i(\mathbf{t}; l_i) &= t_i \left(\frac{t_i}{2} + \sum_{j \neq i} t_j \frac{t_j}{2} \right) \\ &+ (1 - t_i) \left(\frac{t_i + 1}{2} + \sum_{j \neq i} (1 - t_j) \frac{t_j + 1}{2} \right) \end{aligned}$$

Proposition

$$\operatorname{Cost}_{i}(\mathbf{t}; I_{i}) = t_{i} \left(\sum_{j \neq i} t_{j}^{2} - \frac{n-1}{2} \right) + \frac{n}{2} - \frac{1}{2} \sum_{j \neq i} t_{j}^{2} .$$

Panagiota N. Panagopoulou Selfish Load Balancing under Partial Knowledge

All Nash equilibria The Divergence Ratio

Characterization of Nash equilibria

ti

Since
$$\text{Cost}_i(\mathbf{t}; I_i) = t_i \left(\sum_{j \neq i} t_j^2 - \frac{n-1}{2} \right) + \frac{n}{2} - \frac{1}{2} \sum_{j \neq i} t_j^2$$
:

Proposition

Consider the case where $I_i = \emptyset$ for all $i \in N$. Then the strategy profile $\mathbf{t} \in [0, 1]^n$ is a Nash equilibrium if and only if, for all $i \in N$,

$$egin{array}{rcl} t_i = 0 & \Rightarrow & \displaystyle\sum_{j
eq i} t_j^2 \geq \displaystylerac{n-1}{2} \ t_i = 1 & \Rightarrow & \displaystyle\sum_{j
eq i} t_j^2 \leq \displaystylerac{n-1}{2} \ \in (0,1) & \Rightarrow & \displaystyle\sum_{j
eq i} t_j^2 = \displaystylerac{n-1}{2} \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All Nash equilibria The Divergence Ratio

All Nash equilibria

Theorem

Consider the case where $I_i = \emptyset$ for all $i \in N$. Then the strategy profile $\mathbf{t} \in [0,1]^n$ is a Nash equilibrium if and only if κ agents choose threshold 1, λ agents choose threshold $t_A \in (0, 1)$, $n - \kappa - \lambda$ agents choose threshold 0 and (1) $\frac{n-1}{2} - \lambda \le \kappa \le \frac{n-1}{2}, \ \lambda > 1, \ t_A^2 = \frac{n-1}{2(\lambda-1)} - \frac{\kappa}{\lambda-1}$ or (2) *n* is even, $\kappa = \frac{n}{2}$, $\lambda = 0$ or (3) *n* is odd, $\kappa = \frac{n+1}{2}$, $\lambda = 0$ or (4) *n* is odd, $\kappa = \frac{n-1}{2}$, $\lambda = 0$ or (5) *n* is odd, $\kappa = \frac{n-1}{2}$, $\lambda = 1$. The maximum, over all Nash equilibria, Social Cost is $\frac{n+1}{4}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

All Nash equilibria The Divergence Ratio

All Nash equilibria

Sketch of Proof.

In order to find all Nash equilibria we have to find all the possible partitions of the set of agents into three sets A, B and C so that

- For all $i \in A$, $t_i = t_A$ for some $t_A \in (0, 1)$ and $(|A| 1)t_A^2 + |C| = \frac{n-1}{2}$.
- For all $i \in B$, $t_i = 0$ and $|A|t_A^2 + |C| \ge \frac{n-1}{2}$.
- For all $i \in C$, $t_i = 1$ and $|A|t_A^2 + |C| 1 \le \frac{n-1}{2}$.

We consider the cases |A| = 0, |A| = 1 and |A| > 1 so as to find all Nash equilibria and calculate their Social Cost.

- 4 同 6 4 日 6 4 日 6

All Nash equilibria The Divergence Ratio

The Divergence Ratio

Lemma

$$PO(I) = \frac{n}{4}$$
 if n is even and $PO(I) = \frac{n+1}{4}$ if n is odd.

Therefore

Theorem

Consider the case where $I_i = \emptyset$ for all $i \in N$. Then

•
$$\mathsf{DR}(\mathsf{I}) = 1 + rac{1}{n}$$
 if n is even and

(日) (同) (三) (三)

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

Outline

The Model

- Agents and strategies
- Selfish Costs and Nash equilibria
- The Divergence Ratio
- 2 Zero Knowledge
 - All Nash equilibria
 - The Divergence Ratio
- 3 Arbitrary Knowledge
 - Bounding the Players' Optimum
 - Bounding the worst Social Cost
 - A lower bound on the Divergence Ratio

Full Knowledge

• The Divergence Ratio

▲□ ► < □ ► </p>

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

Arbitrary Knowledge

- Assume arbitrary I_i 's for all $i \in N$.
- We will show that, if $i \in I_i$ and the cardinality of I_i is sufficiently small for all $i \in N$, then the divergence ratio can be as bad as n.

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

Arbitrary Knowledge

- Assume arbitrary I_i 's for all $i \in N$.
- We will show that, if i ∈ I_i and the cardinality of I_i is sufficiently small for all i ∈ N, then the divergence ratio can be as bad as n.

Sketch of Proof:

- Assume that $i \in I_i$ and $|I_i| \leq \frac{n-2}{3}$ for all $i \in N$.
- Consider the instance where $w_i = 1$ for all $i \in N$.
- Our goal is to find
 - a Nash equilibrium t of low Social Cost, so as to upper bound the Players' Optimum, and
 - a Nash equilibrium t' of high Social Cost, so as to lower bound the worst possible Social Cost.

(日) (同) (三) (三)

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

Bounding the Players' Optimum

Consider the strategy profile **t** such that $t_i = 1 - \frac{1}{n - |l_i|}$ for all $i \in N$. Then

$$Cost_i(\mathbf{t}; I_i) = |I_i| + 1 - \frac{1}{2(n - |I_i|)}$$

The profile \mathbf{t} is a Nash equilibrium, since the cost for i if she chose bin 0 would be

$$1 + \frac{n - |I_i|}{2} \left(1 - \frac{1}{n - |I_i|} \right)^2 \geq |I_i| + 1 + \frac{1}{2(n - |I_i|)} > \operatorname{Cost}_i(\mathbf{t}; I_i)$$

The Social Cost of the Nash equilibrium \mathbf{t} is

$$\mathsf{SC}(\mathbf{t}, \mathbf{I}) = \max_{i \in N} \mathsf{Cost}_i(\mathbf{t}; \mathbf{I}) \le \max_{i \in N} |I_i| + 1$$

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

Bounding the worst Social Cost

Now consider the profile \mathbf{t}' where $t'_i = \frac{\sqrt{8+16\frac{|l_i|-1}{n-|l_i|}}}{4}$ for all $i \in N$. Then

$$\operatorname{Cost}_i(\mathbf{t}'; I_i) = \frac{n + |I_i| + 2}{4}$$

The profile \mathbf{t}' is also a Nash equilibrium, since the cost for *i* if she chose bin 0 would be

$$1 + \frac{n - |I_i|}{2} (t'_i)^2 = \frac{n + |I_i| + 2}{4} \\ = \operatorname{Cost}_i(\mathbf{t}'; I_i)$$

The Social Cost the Nash equilibrium \mathbf{t}' is

$$SC(\mathbf{t}',\mathbf{I}) = \max_{i \in N} Cost_i(\mathbf{t}';\mathbf{I}) = \frac{n + \max_{i \in N} |I_i| + 2}{4}$$

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

.

э

A lower bound on the Divergence Ratio

Thus the Divergence Ratio is

$$\mathsf{DR}(\mathbf{I}) = \max_{\mathbf{\hat{t}}:\mathbf{\hat{t}}} \sum_{N.E.} \frac{\mathsf{SC}(\mathbf{\hat{t}},\mathbf{I})}{\mathsf{PO}(\mathbf{I})} \geq \frac{\mathsf{SC}(\mathbf{t}',\mathbf{I})}{\mathsf{SC}(\mathbf{t},\mathbf{I})} \geq \frac{n + \max_{i \in N} |I_i| + 2}{4 \max_{i \in N} |I_i| + 4}$$

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

A lower bound on the Divergence Ratio

Thus the Divergence Ratio is

$$\mathsf{DR}(\mathsf{I}) = \max_{\mathbf{\hat{t}}:\mathbf{\hat{t}}} \frac{\mathsf{SC}(\mathbf{\hat{t}},\mathsf{I})}{\mathsf{PO}(\mathsf{I})} \geq \frac{\mathsf{SC}(\mathbf{t}',\mathsf{I})}{\mathsf{SC}(\mathbf{t},\mathsf{I})} \geq \frac{n + \max_{i \in N} |I_i| + 2}{4 \max_{i \in N} |I_i| + 4}$$

Theorem

If
$$|I_i| \leq \frac{n-2}{3}$$
 and $i \in I_i$ for all $i \in N$, then $\mathsf{DR}(\mathsf{I}) \geq \frac{n+\max_i |I_i|+2}{4\max_i |I_i|+4}$.

Bounding the Players' Optimum Bounding the worst Social Cost A lower bound on the Divergence Ratio

A lower bound on the Divergence Ratio

Thus the Divergence Ratio is

$$\mathsf{DR}(\mathsf{I}) = \max_{\mathbf{\hat{t}}:\mathbf{\hat{t}}} \frac{\mathsf{SC}(\mathbf{\hat{t}},\mathsf{I})}{\mathsf{PO}(\mathsf{I})} \geq \frac{\mathsf{SC}(\mathbf{t}',\mathsf{I})}{\mathsf{SC}(\mathbf{t},\mathsf{I})} \geq \frac{n + \max_{i \in N} |I_i| + 2}{4 \max_{i \in N} |I_i| + 4}$$

Theorem

If
$$|I_i| \leq \frac{n-2}{3}$$
 and $i \in I_i$ for all $i \in N$, then $\mathsf{DR}(\mathbf{I}) \geq \frac{n+\max_i |I_i|+2}{4\max_i |I_i|+4}$.

Corollary

If
$$|I_i| = o(n)$$
 and $i \in I_i$ for all $i \in N$, then $\lim_{n\to\infty} DR(I) = \infty$.

The Divergence Ratio

Outline

The Model

- Agents and strategies
- Selfish Costs and Nash equilibria
- The Divergence Ratio
- 2 Zero Knowledge
 - All Nash equilibria The Divergence Ratio

 - 3 Arbitrary Knowledge
 - Bounding the Players' Optimum
 - Bounding the worst Social Cost
 - A lower bound on the Divergence Ratio

4 Full Knowledge

The Divergence Ratio

▲ 同 ▶ → 三 ▶

The Divergence Ratio

Full Knowledge

- Assume that $I_i = N$ for all $i \in N$.
- The cost of $i \in N$ for a strategy profile $\mathbf{t} = (t_1, \dots, t_n) \in [0, 1]^n$ is

$$\mathsf{Cost}_i(\mathbf{t}; I_i) = \begin{cases} \sum_{j \in N: w_j \le t_j} w_j & \text{if } w_i \le t_i \\ \sum_{j \in N: w_j > t_j} w_j & \text{if } w_i > t_i \end{cases}$$

• It suffices to consider single-threshold strategies of the form $t_i = 0$ or $t_i = 1$, for all $i \in N$.

Theorem

Consider the case where $I_i = N$ for all $i \in N$. Then $DR(I) = \frac{4}{3}$.

・ロト ・同ト ・ヨト ・ヨト

The Divergence Ratio

The Divergence Ratio

Proof of the upper bound.

- Consider a Nash equilibrium **t**. The total loads on the bins are $B_0(\mathbf{t}) = \sum_{i:t_i=1} w_i$ and $B_1(\mathbf{t}) = \sum_{i:t_i=0} w_i$. Assume that $B_0(\mathbf{t}) \ge B_1(\mathbf{t})$. Thus SC(\mathbf{t}, \mathbf{l}) = $B_0(\mathbf{t})$.
- Moreover, $\mathsf{PO}(\mathbf{I}) \geq \frac{\sum_{i \in N} w_i}{2} = \frac{B_0(\mathbf{t}) + B_1(\mathbf{t})}{2}.$
- If only one agent places her load on bin 0 then DR(I) = 1.
- Otherwise, there exists an agent *i* who chooses bin 0 such that $w_i \leq \frac{B_0(\mathbf{t})}{2}$ implying that $B_0(\mathbf{t}) \leq B_1(\mathbf{t}) + \frac{B_0(\mathbf{t})}{2}$. Therefore,

$$\mathsf{DR}(\mathsf{I}) = \max_{\mathsf{t}:\mathsf{t} \text{ N.E.}} \frac{\mathsf{SC}(\mathsf{t},\mathsf{I})}{\mathsf{PO}(\mathsf{I})} \le \frac{B_0(\mathsf{t})}{\frac{B_0(\mathsf{t})+B_1(\mathsf{t})}{2}} \le \frac{4}{3}$$

The Divergence Ratio

The Divergence Ratio

Proof of Tightness.

- Consider the case where *n* is even and n > 2, $w_1 = w_2 = (n-2)\alpha$ and $w_i = \alpha$ for all $i \neq 1, 2$, for some $\alpha \in \left(0, \frac{1}{n-2}\right]$.
- Then the strategy profile t where t₁ = t₂ = 1 and t_i = 0 for all i ≠ 1, 2 is a Nash equilibrium which gives a Social Cost equal to 2(n − 2)α.
- In this case, $\mathsf{PO}(\mathbf{I}) = \frac{3}{2}(n-2)lpha$ and thus

$$\mathsf{DR}(\mathbf{I}) \ge \frac{2(n-2)\alpha}{\frac{3}{2}(n-2)\alpha} = \frac{4}{3}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

- If $I_i = \emptyset$ for all $i \in N$, then the Divergence Ratio is almost 1.
- If $|I_i|$ is constant for all $i \in N$, then the Divergence Ratio is lower bounded by n.
- If |*I_i*| = o(n) for all *i* ∈ N, then the Divergence Ratio tends to infinity with n.
- If $I_i = N$ for all $i \in N$, then the Divergence Ratio is $\frac{4}{3}$.

- 4 回 ト 4 ヨト 4 ヨト

Thank you

Panagiota N. Panagopoulou Selfish Load Balancing under Partial Knowledge

æ