
A Hyper-heuristic for
scheduling independent jobs

in Computational Grids

Author: Juan Antonio Gonzalez Sanchez
Coauthors: Maria Serna and Fatos Xhafa

Overview

• Introduction and motivation

• Hyper-heuristic design

• Hyper-heuristic tests

• Conclusions

• Future work

Introduction and motivation
• Computational Grid

– Parallel and distributed system that enables the sharing, selection
and aggregation of geographically distributed resources

• Efficient scheduling of tasks in resources in a global,
heterogeneous and dynamic environment

• Tasks
– From different users
– Executed in unique resource
– Different types (intensive numeric computation vs data process) /

(immediate vs batch)
• Resources

– Dynamically added/dropped from the Grid
– Can process one task at a time
– Specialiced resources (intensive numeric computation vs data

process)

Introduction and motivation

• Ad-hoc heuristics:
– Simples
– Deterministic
– Short execution time

• E.g.: Opportunistic Load balancing, Minimum
Completion Time, Minimum Execution Time,
etc...

• No one method performs best!
– Need to select them in an accordance with grid

instance to yield best performance

Problem definition (instances)
– Tasks to be scheduled

– Resources to be used in scheduling

– Workload of each task (in millions of instructions)

– Computing capacity of each resource in mips

– Ready time: ready[m] - when the resource m will
finish executing its scheduled tasks.

– ETC[t][m] – Expected Time to Compute task t in
resource m (from Simulation Model of Braun et al.
2001)

Problem definition (Objectives)
• Makespan: finishing time of latest task

max{Ft : t in Tasks}

or
max{Cr: r in Resources}

• Flowtime: sum of finishing times of tasks
sum {Ft: t in Tasks}

Note: Completion time:
Cr = ready[r] + sum {ETC[t][r] for tasks scheduled

in r}

Ad-hoc heuristics

• Our Ad-hoc heuristics:
– Immediate mode: tasks are scheduled as soon as

they arrive in the system

• Opportunistic Load Balancing, Minimum
Completion Time, Minimum Execution Time,
Switching Algorithm and K-Percent Best

– Batch mode: The schedule is done for a set of
tasks (a batch).

• Min-Min, Max-Min, Sufferage and Relative-Cost

Evaluating instance characteristics

• Instance notation x_yyzz (Braun et al. 2001)
– X : computing consistency (c-consistent, i-inconsistent and

s-semiconsistent)
– YY: Tasks heterogeneity (hi-high and lo-low)
– ZZ: Resources heterogeneity (hi-high and lo-low)

• Preprocess input information
– Workload variance task heterogeneity

– Mips variance resource heterogeneity

– ETC matrix analysis matrix consistency

Note: ETC=Expected Time to Compute

Performance of Hyper-heuristic for Braun et
al.’s instances - Makespan

XXS_LOLO

XXS_LOHI

XXS_HILO

XXS_HIHI

XXI_LOLO

XXI_LOHI

XXI_HILO

XXI_HIHI

XXC_LOL
O

XXC_LOHI

XXC_HILO

XXC_HIHI

RCSuffMax-
Min

Min-
Min

KPBSAMETMCTOL
B

X-the method was chosen most of the times out of 100 independent runs

Performance of Hyper-heuristic for Braun et
al.’s instances - Flowtime

XXS_LOLO

XXS_LOHI

XXS_HILO

XXS_HIHI

XXI_LOLO

XXI_LOHI

XXI_HILO

XXI_HIHI

XXC_LOL
O

XXC_LOHI

XXC_HILO

XXC_HIHI

RCSuffMax-
Min

Min-
Min

KPBSAMETMCTOL
B

X-the method was chosen most of the times out of 100 independent runs

Proposal: Hyper-heuristic design

• Parameters of the hyper-heuristic:
– Parameter to fix task heterogeneity threshold

– Parameter to fix resource heterogeneity threshold

– Parameter to work with immediate or batch
methods

– Parameter to fix the measure to optimize
(makespan or flowtime)

Proposal: Hyper-heuristic design

• High-level algorithm:
 Input: parameters, tasks, resources, ready-times,

ETC matrix
1. Evaluate task heterogeneity
2. Evaluate resource heterogeneity
3. Examine ETC matrix to deduce its consistency
4. Choose (based on parameters) the ad-hoc

method to execute
5. Execute ad-hoc method

Output: schedule

Performance Evaluation of Hyper-heuristic for a grid
simulation environment

• We use a Grid Simulator implemented with a discrete
event simulation library (HyperSim).

• Highly parametrizable:
– Distributions of arriving and leaving of resources in the Grid

and its mips
– Distributions of task arrival to the Grid and its workloads
– Initial resources/tasks in the system and maximum tasks to

generate
– Task and resource types
– Percentage of immediate/batch tasks.

• For a schedule event the simulator calls the hyper-
heuristic and passes it the ETC matrix, ready times,
resources and tasks that will be scheduled as input

Simulator trace example
• time= 000000000.00 event= EVN_NEW_HOST info: Host# 00000,

Mips = 000000200.00
• time= 000000000.00 event= EVN_NEW_HOST info: Host# 00001,

Mips = 000000200.00
• time= 000000000.00 event= EVN_ENTER info: Task# 00000,

Work = 000006000.00
• time= 000000000.00 event= EVN_ENTER info: Task# 00001,

Work = 000006000.00
• time= 000000000.00 event= EVN_ENTER info: Task# 00002,

Work = 000006000.00
• time= 000000000.00 event= EVN_ENTER info: Task# 00003,

Work = 000006000.00
• time= 000000000.00 event= EVN_SCHEDULE info:

Scheduled 00004 Tasks, 00002 Hosts
• time= 000000000.00 event= EVN_START info: Task# 00001 on Host# 00001
 finishTime = 000000030.00

 exeTime = 000000030.00
• time= 000000000.00 event= EVN_START info: Task# 00000 on Host# 00000

 finishTime = 000000030.00
 exeTime = 000000030.00

Simulator + Hyperheuristic

Simulator HyperParameters

Statistic
Results

Performance Evaluation of Hyper-heuristic using
the simulator: static vs dynamic

• Two environment types for tests:
– Static: generate concrete instances (a priori fixed

configuration)
– Dynamic: the usual use of the simulator intended for a real

environment
• Using the Simulator for generating 3 Grid types:

Small, Medium and Large size
• Tests for the 2 measures: Makespan and Flowtime
• We compare the hyper-heuristic versus an hyper-

heuristic with fully random decisions
• Percentage ratio of tasks immediate/batch is modified

too: 0%, 25%, 50%, 75% and 100%.

Static – Makespan
(small, medium and large size instances)

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

0.00 0.25 0.50 0.75 1.00

Immediate vs Batch ratio

M
ak

es
pa

n
(m

ill
is

ec
s) Small

Small_RND

Medium

Medium_RND

Large

Large_RND

Static – Flowtime
 (small, medium and large size instances)

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

0.00 0.25 0.50 0.75 1.00

Immediate vs Batch ratio

F
lo

w
ti

m
e

(m
il

li
se

cs
) Small

Small_RND

Medium

Medium_RND

Large

Large_RND

Dynamic - Makespan

0

5000000

10000000

15000000

20000000

25000000

30000000

0.00 0.25 0.50 0.75 1.00

Immediate vs Batch ratio

M
ak

es
pa

n
(m

ill
is

ec
s)

Small

Small_RND

Medium

Medium_RND

Large

Large_RND

Dynamic - Flowtime

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

0.00 0.25 0.50 0.75 1.00

Immediate vs Batch ratio

Fl
ow

tim
e

(m
ill

is
ec

s)

Small

Small_RND

Medium

Medium_RND

Large

Large_RND

Conclusions
• As expected, the schedules done by the HH using
guided decisions are better than decisions without any
knowledge.

•For Makespan, we have seen that the results increase
when the ratio of immediate/batch is 0.5, this indicates
that both types of ad-hocs damage each other’s strategy

•For Flowtime, when the ratio of immediate/batch is
favorable to batch, better results are produced.

Future Work

• Add transmission time in our
simulations

• Make the hyperheursitic more
“intelligent” in decision-taking

• Evaluate the HH in a real grid:
– Develop an interface to use it in a real grid

– Extract the state of the net (grid
characteristics, job characteristics etc.)

