Applications of the Mixed Packing and Covering Problem

Florian Diedrich Klaus Jansen

Institut für Informatik, Universität zu Kiel

AEOLUS 2007

Introduction

Algorithm

Sketch of Analysis

Applications

Conclusion

Florian Diedrich (CAU Kiel)

► *N*, *M* ∈ ℕ

- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- ▶ $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.I.o.g. $a = e = b, e \in \mathbb{R}^{M}$ unit vector

- ► *N*, *M* ∈ ℕ
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- ▶ $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.l.o.g. a = e = b, $e \in \mathbb{R}^{M}$ unit vector

- ► *N*, *M* ∈ ℕ
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- ▶ $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.l.o.g. $a = e = b, e \in \mathbb{R}^{M}$ unit vector

- ► $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- ▶ $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.I.o.g. a = e = b, $e \in \mathbb{R}^{M}$ unit vector

- ► $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.l.o.g. $a = e = b, e \in \mathbb{R}^{M}$ unit vector

- ► $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.l.o.g. $a = e = b, e \in \mathbb{R}^{M}$ unit vector

- ► *N*, *M* ∈ ℕ
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

(MPC)

W.I.o.g. $a = e = b, e \in \mathbb{R}^{M}$ unit vector

- ► $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$

W.I.o.g. a = e = b, $e \in \mathbb{R}^{M}$ unit vector

(MPC

- ► $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^N$ convex, compact
- $f: B \to \mathbb{R}^M_+$ vector of continuous convex functions
- ▶ $g: B \to \mathbb{R}^M_+$ vector of continuous concave functions
- $a, b \in \mathbb{R}^{M}_{++}$ positive vectors

Problem:

find $x \in B$ such that $f(x) \le a$, $g(x) \ge b$ or decide that $\{x \in B | f(x) \le a, g(x) \ge b\} = \emptyset$ (MPC)

W.I.o.g. $a = e = b, e \in \mathbb{R}^{M}$ unit vector

• $B \subseteq \mathbb{R}^N_+$ polytope

- f consists of linear functions
- g consists of linear functions

• $B \subseteq \mathbb{R}^N_+$ polytope

f consists of linear functions

g consists of linear functions

- $B \subseteq \mathbb{R}^N_+$ polytope
- f consists of linear functions
- g consists of linear functions

- $B \subseteq \mathbb{R}^N_+$ polytope
- f consists of linear functions
- g consists of linear functions

- $B \subseteq \mathbb{R}^N_+$ polytope
- f consists of linear functions
- g consists of linear functions

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- ▶ input might be inexact

LPs are well-studied; classical methods:

Simplex Algorithm

Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances

input might be inexact

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

We drop the goal to solve exactly.

We like to approximate instead, within a better running time.

▶ $c \ge 1, \epsilon \in (0, 1)$

Restate the problem:

We drop the goal to solve exactly.

We like to approximate instead, within a better running time. • $c \ge 1, c \in (0, 1)$

Restate the problem:

We drop the goal to solve exactly.

We like to approximate instead, within a better running time.

▶ $c \ge 1, \epsilon \in (0, 1)$

Restate the problem:

We drop the goal to solve exactly.

We like to approximate instead, within a better running time.

Restate the problem:

We drop the goal to solve exactly.

We like to approximate instead, within a better running time.

Restate the problem:

We drop the goal to solve exactly.

We like to approximate instead, within a better running time.

Restate the problem:

$$\begin{array}{l} \text{find } x \in B \text{ such that } f(x) \leq c(1+\epsilon)a, \quad g(x) \geq (1-\epsilon)b/c \\ \text{ or decide that } \{x \in B | f(x) \leq a, g(x) \geq b\} = \emptyset \end{array} (MPC_{c,\epsilon})$$

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)
- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

Sketch of Algorithm

The algorithm can be sketched as follows.

- compute an initial solution $x \in B$ via feasibility oracle
- as long as x is not "feasible enough":
- Find suitable $\hat{x} \in B$ via feasibility oracle
- set $x := (1 \tau)x + \tau \hat{x}$ for a step length $\tau \in (0, 1)$
- assert that x becomes "more feasible"

The Block Solver

The feasibility oracle is of the form

find $\hat{x} \in B$ such that $\frac{p^T f(\hat{x})}{c(1+t)(1+8/3t)} - q^T g(\hat{x})c(1+t)(1+8/3t) \le \alpha := 2e^T p - 1 - 2t$ or decide that there is no $x \in B$ with $\frac{p^T f(\hat{x})}{(1+8/3t)} - q^T g(\hat{x})(1+8/3t) \le \alpha$

where $p, q \in \mathbb{R}^M_+$ such that $\sum_{m=1}^M p_i + \sum_{i=1}^M q_i = 1$. (ABS_c(p, q, α, t))

 $ABS_c(p, q, \alpha, t)$ can be implemented by minimizing a convex function over *B*.

In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $ABS_c(p, q, \alpha, t)$ for certain special cases of $(MPC_{c,\epsilon})$.

$ABS_c(p, q, \alpha, t)$ can be implemented by minimizing a convex function over *B*.

In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $ABS_c(p, q, \alpha, t)$ for certain special cases of $(MPC_{c,\epsilon})$.

$ABS_c(p, q, \alpha, t)$ can be implemented by minimizing a convex function over *B*. In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $ABS_c(p, q, \alpha, t)$ for certain special cases of $(MPC_{c,\epsilon})$.

 $ABS_c(p, q, \alpha, t)$ can be implemented by minimizing a convex function over *B*.

In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $ABS_c(p, q, \alpha, t)$ for certain special cases of $(MPC_{c,\epsilon})$.

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- ▶ interpolation in ℝ^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

$O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))$

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- ▶ interpolation in ℝ^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

```
O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}))
```

iterations, where in each iteration $MPC_{c,\epsilon}$ is invoked once.

Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^M
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

More precisely, the algorithm aims at minimizing

$$\lambda_A: B \to \mathbb{R}_+ \cup \{\infty\}, \quad x \mapsto \max\{\max_{m \in [M]} f_m(x), \max_{m \in A} 1/g_m(x)\}$$

which "measures the infeasibility" of $x \in B$.

Here also the connection to the resource sharing algorithms is visible.

More precisely, the algorithm aims at minimizing

$$\lambda_{A}: B \to \mathbb{R}_{+} \cup \{\infty\}, \quad x \mapsto \max\{\max_{m \in [M]} f_{m}(x), \max_{m \in A} 1/g_{m}(x)\}$$

which "measures the infeasibility" of $x \in B$.

Here also the connection to the resource sharing algorithms is visible.

More precisely, the algorithm aims at minimizing

$$\lambda_{\mathcal{A}}: \mathcal{B} \to \mathbb{R}_+ \cup \{\infty\}, \quad x \mapsto \max\{\max_{m \in [\mathcal{M}]} f_m(x), \max_{m \in \mathcal{A}} 1/g_m(x)\}$$

which "measures the infeasibility" of $x \in B$.

Here also the connection to the resource sharing algorithms is visible.

- 1. Setup some parameters; compute initial point $x^{(0)}$. If $\lambda(x^{(0)}) \leq c(1 + \epsilon/2)$, go to Step 3.
- 2. Repeat Steps 2.1 2.3 (scaling phase *s*) until ϵ_s small enough or $\lambda(x^{(s)}) \leq c/(1-\epsilon)$.
 - 2.1. Set $\epsilon_s := \epsilon_{s-1}/2$, $x := x^{(s-1)}$, and T_s .
 - 2.2. Set $A := \{m \in [M] | g_m < T_s\}.$
 - 2.3. Repeat Steps 2.3.1 2.3.5 (coordination phase) forever.

2.3.1. If
$$\lambda_A(x) \le c/(1 - \epsilon_s)$$
 go to Step 2.4.

- 2.3.2. Compute θ , p and q, let $t_s := \epsilon_s/8$, $\alpha := 2\bar{p} 1 2t_s$ and call $\hat{x} := ABS(p, q, \alpha, t_s)$.
- 2.3.3. Compute suitable $\tau \in (0, 1)$ and set $x' := (1 \tau)x + \tau \hat{x}$.
- 2.3.4. If max{ $(1 \tau)g_m + \tau \hat{g}_m | m \in A$ } > T_s then reduce τ to τ' and set $x' := (1 \tau')x + \tau' \hat{x}$.
- 2.3.5. Set $A := A \setminus \{m \in [M] | g_m(x') \ge T_s\}$ and x := x'.
- 2.4. Set $x^{(s)} := x$. {end of scaling phase *s*}
- 3. Return the final iterate $x^{(s)} \in B$.

The analysis is based on a *logarithmic potential function* which also governs the choice of p, q and τ . We use

$$\Phi_t(\theta, x, A) := 2 \ln \theta - \frac{t}{CM} \left[\sum_{m=1}^M \ln(\theta - f_m(x)) + \sum_{m \in A} \ln(g_m(x) - \frac{1}{\theta}) + (M - |A|) \ln T \right]$$

where C = 8 is a constant.

The analysis is based on a *logarithmic potential function* which also governs the choice of p, q and τ .

We use

$$\Phi_t(\theta, x, A) := 2 \ln \theta - \frac{t}{CM} \left[\sum_{m=1}^M \ln(\theta - f_m(x)) + \sum_{m \in A} \ln(g_m(x) - \frac{1}{\theta}) + (M - |A|) \ln T \right]$$

where C = 8 is a constant.

The analysis is based on a *logarithmic potential function* which also governs the choice of p, q and τ . We use

$$\Phi_t(\theta, x, A) := 2 \ln \theta - \frac{t}{CM} \left[\sum_{m=1}^M \ln(\theta - f_m(x)) + \sum_{m \in A} \ln(g_m(x) - \frac{1}{\theta}) + (M - |A|) \ln T \right]$$

where C = 8 is a constant.

The analysis is based on a *logarithmic potential function* which also governs the choice of p, q and τ . We use

$$\Phi_t(\theta, x, A) := 2 \ln \theta - \frac{t}{CM} \left[\sum_{m=1}^M \ln(\theta - f_m(x)) + \sum_{m \in A} \ln(g_m(x) - \frac{1}{\theta}) + (M - |A|) \ln T \right]$$

where C = 8 is a constant.

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

each iteration suitably decreases the reduced potential

within a scaling phase, the possible difference between reduced potientials is bounded

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

- each iteration suitably decreases the reduced potential
- within a scaling phase, the possible difference between reduced potientials is bounded

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

each iteration suitably decreases the reduced potential

within a scaling phase, the possible difference between reduced potientials is bounded

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

each iteration suitably decreases the reduced potential

within a scaling phase, the possible difference between reduced potientials is bounded

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

each iteration suitably decreases the reduced potential
within a scaling phase, the possible difference between reduced potientials is bounded

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

- each iteration suitably decreases the reduced potential
- within a scaling phase, the possible difference between reduced potientials is bounded

This θ approximates $\lambda_A(x)$.

The corresponding minimum is denoted $\phi_t(x, A)$ and termed the *reduced potential* in *x*.

Key Ideas of the analysis:

- each iteration suitably decreases the reduced potential
- within a scaling phase, the possible difference between reduced potientials is bounded

Application: Fractional Multicommodity Flow

Given:

- directed graph G = (V, E)
- demands $d_i \in \mathbb{R}_{++}$ from s_i to t_i for each $i \in [k]$
- capacities c_e for each edge $e \in E$
- ▶ *P_i* set of all *s_i-t_i*-paths
- ▶ costs $w(p) \in \mathbb{R}_+$ for each $p \in \cup P_i$
- budget $W \in \mathbb{R}_+$
Given:

- directed graph G = (V, E)
- ▶ demands $d_i \in \mathbb{R}_{++}$ from s_i to t_i for each $i \in [k]$
- capacities c_e for each edge $e \in E$
- P_i set of all s_i-t_i-paths
- ▶ costs $w(p) \in \mathbb{R}_+$ for each $p \in \cup P_i$

• budget $W \in \mathbb{R}_+$

Given:

- directed graph G = (V, E)
- ▶ demands $d_i \in \mathbb{R}_{++}$ from s_i to t_i for each $i \in [k]$
- capacities c_e for each edge $e \in E$
- P_i set of all s_i-t_i-paths
- ▶ costs $w(p) \in \mathbb{R}_+$ for each $p \in \cup P_i$

▶ budget $W \in \mathbb{R}_+$

Given:

- directed graph G = (V, E)
- ▶ demands $d_i \in \mathbb{R}_{++}$ from s_i to t_i for each $i \in [k]$
- capacities c_e for each edge $e \in E$
- P_i set of all s_i-t_i-paths
- costs $w(p) \in \mathbb{R}_+$ for each $p \in \cup P_i$

• budget $W \in \mathbb{R}_+$

Given:

- directed graph G = (V, E)
- ▶ demands $d_i \in \mathbb{R}_{++}$ from s_i to t_i for each $i \in [k]$
- capacities c_e for each edge $e \in E$
- P_i set of all s_i-t_i-paths
- ▶ costs $w(p) \in \mathbb{R}_+$ for each $p \in \cup P_i$

• budget $W \in \mathbb{R}_+$

Given:

- directed graph G = (V, E)
- ▶ demands $d_i \in \mathbb{R}_{++}$ from s_i to t_i for each $i \in [k]$
- capacities c_e for each edge $e \in E$
- P_i set of all s_i-t_i-paths
- ▶ costs $w(p) \in \mathbb{R}_+$ for each $p \in \cup P_i$
- budget $W \in \mathbb{R}_+$

Fractional Multicommodity Flow LP

Use a variable x_p for each $p \in \cup P_i$.

$$\begin{array}{rcl} \sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p} &= & W \\ & \sum_{p \in P_{i}} x_{p} &\geq & d_{i} \text{ for each } i \in [k] \\ \sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} &\leq & c_{e} \text{ for each } e \in E \\ & x_{p} &\geq & 0 \text{ for each } p \in \cup P_{i} \end{array}$$

Note that the flow conservation is not explicitly modelled.

Fractional Multicommodity Flow LP

Use a variable x_p for each $p \in \cup P_i$.

$$egin{array}{rcl} \sum_{i=1}^k \sum_{p\in P_i} w(p) x_p &= W \ & \sum_{p\in P_i} x_p &\geq d_i ext{ for each } i\in [k] \ & \sum_{i=1}^k \sum_{e\in p\in P_i} x_p &\leq c_e ext{ for each } e\in E \ & x_p &\geq 0 ext{ for each } p\in \cup P_i \end{array}$$

Note that the flow conservation is not explicitly modelled.

Fractional Multicommodity Flow LP

Use a variable x_p for each $p \in \cup P_i$.

$$\begin{array}{rcl} \sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p} &= & W \\ & \sum_{p \in P_{i}} x_{p} &\geq & d_{i} \text{ for each } i \in [k] \\ \sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} &\leq & c_{e} \text{ for each } e \in E \\ & x_{p} &\geq & 0 \text{ for each } p \in \cup P_{i} \end{array}$$

Note that the flow conservation is not explicitly modelled.

We set

- $f_e(x) := \sum_{i=1}^k \sum_{e \in p \in P_i} x_p / c_e \le 1$ for each $e \in E$
- $g_i(x) := \sum_{p \in P_i} x_p/d_i \ge 1$ for each $i \in [k]$

and furthermore

• $B := \{x_p | p \in \cup P_i, x_p \ge 0, \sum_{i=1}^k \sum_{p \in P_i} w(p) x_p = W\}$

We set

- $f_e(x) := \sum_{i=1}^k \sum_{e \in p \in P_i} x_p / c_e \le 1$ for each $e \in E$
- $g_i(x) := \sum_{p \in P_i} x_p/d_i \ge 1$ for each $i \in [k]$

and furthermore

• $B := \{x_{\rho} | \rho \in \cup P_i, x_{\rho} \ge 0, \sum_{i=1}^{k} \sum_{\rho \in P_i} w(\rho) x_{\rho} = W\}$

We set

- $f_e(x) := \sum_{i=1}^k \sum_{e \in p \in P_i} x_p / c_e \le 1$ for each $e \in E$
- $g_i(x) := \sum_{p \in P_i} x_p/d_i \ge 1$ for each $i \in [k]$

and furthermore

• $B := \{x_{\rho} | \rho \in \cup P_i, x_{\rho} \ge 0, \sum_{i=1}^{k} \sum_{\rho \in P_i} w(\rho) x_{\rho} = W\}$

We set

- $f_e(x) := \sum_{i=1}^k \sum_{e \in p \in P_i} x_p / c_e \le 1$ for each $e \in E$
- $g_i(x) := \sum_{p \in P_i} x_p/d_i \ge 1$ for each $i \in [k]$

and furthermore

► $B := \{x_{\rho} | \rho \in \cup P_i, x_{\rho} \ge 0, \sum_{i=1}^{k} \sum_{\rho \in P_i} w(\rho) x_{\rho} = W\}$

We set

- $f_e(x) := \sum_{i=1}^k \sum_{e \in p \in P_i} x_p / c_e \le 1$ for each $e \in E$
- $g_i(x) := \sum_{p \in P_i} x_p/d_i \ge 1$ for each $i \in [k]$

and furthermore

► $B := \{x_{\rho} | \rho \in \cup P_i, x_{\rho} \ge 0, \sum_{i=1}^{k} \sum_{\rho \in P_i} w(\rho) x_{\rho} = W\}$

We set

- ► $f_e(x) := \sum_{i=1}^k \sum_{e \in p \in P_i} x_p / c_e \le 1$ for each $e \in E$
- $g_i(x) := \sum_{p \in P_i} x_p/d_i \ge 1$ for each $i \in [k]$

and furthermore

$$\blacktriangleright B := \{x_p | p \in \bigcup P_i, x_p \ge 0, \sum_{i=1}^k \sum_{p \in P_i} w(p) x_p = W\}$$

The Blocksolver

The resulting block solver is

$$\min p^{T} f(\hat{x}) / Y(c, t) - q^{T} g(\hat{x}) Y(c, t) \\= \sum_{i=1}^{k} \sum_{\rho \in P_{i}} (\sum_{e \in P} \frac{p_{e}}{c_{e} Y(c, t)} - \frac{q_{i}}{d_{i}} Y(c, t)) x_{\rho}$$

where Y(c, t) = c(1+t)(1+8/3t) is the parameter from the beginning. Let $\ell(p) = \sum_{e \in p} \frac{p_e}{c_e Y(c,t)}$ be the length of path *p* w.r.t. edge weights

$$\frac{p_e}{c_e Y(c,t)}.$$

The Blocksolver

The resulting block solver is

$$\min p^T f(\hat{x}) / Y(c, t) - q^T g(\hat{x}) Y(c, t)$$
$$= \sum_{i=1}^k \sum_{p \in P_i} (\sum_{e \in P} \frac{p_e}{c_e Y(c, t)} - \frac{q_i}{d_i} Y(c, t)) x_p$$

where Y(c, t) = c(1 + t)(1 + 8/3t) is the parameter from the beginning. Let $\ell(p) = \sum_{e \in p} \frac{p_e}{c_e Y(c,t)}$ be the length of path *p* w.r.t. edge weights

 $\frac{p_e}{c_e Y(c,t)}.$

The Blocksolver

The resulting block solver is

$$\min p^T f(\hat{x}) / Y(c, t) - q^T g(\hat{x}) Y(c, t)$$
$$= \sum_{i=1}^k \sum_{p \in P_i} (\sum_{e \in P} \frac{p_e}{c_e Y(c, t)} - \frac{q_i}{d_i} Y(c, t)) x_p$$

where Y(c, t) = c(1+t)(1+8/3t) is the parameter from the beginning. Let $\ell(p) = \sum_{e \in p} \frac{p_e}{c_e Y(c,t)}$ be the length of path *p* w.r.t. edge weights

$$\frac{p_e}{c_e Y(c,t)}$$

Hence we can enumerate the *k* commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_i$.

Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.

$$O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}) \cdot M^2) = O(M^3 \ln M + M^3 \epsilon^{-2} \ln \epsilon^{-1}).$$

- Hence we can enumerate the *k* commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_i$.
- Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.

$$O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}) \cdot M^2) = O(M^3 \ln M + M^3 \epsilon^{-2} \ln \epsilon^{-1}).$$

Hence we can enumerate the *k* commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_i$.

Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.

$$O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}) \cdot M^2) = O(M^3 \ln M + M^3 \epsilon^{-2} \ln \epsilon^{-1}).$$

Hence we can enumerate the *k* commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_i$.

Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.

Overall running time is

 $O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}) \cdot M^2) = O(M^3 \ln M + M^3 \epsilon^{-2} \ln \epsilon^{-1}).$

Hence we can enumerate the *k* commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_i$.

Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.

$$O(M(\ln M + \epsilon^{-2} \ln \epsilon^{-1}) \cdot M^2) = O(M^3 \ln M + M^3 \epsilon^{-2} \ln \epsilon^{-1}).$$

We study the following optimization variant ("throughput maximization")

$$\begin{array}{rcl} \max \ \theta \\ & \text{s.t.} \\ & \sum_{p \in P_i} x_p &= \ \theta d_i \text{ for each } i \in [k] \\ & \sum_{i=1}^k \sum_{e \in p \in P_i} x_p &\leq \ c_e \text{ for each } e \in E \\ & x_p &\geq \ 0 \text{ for each } p \in \cup P_i \end{array}$$

We study the following optimization variant ("throughput maximization")

$$\begin{array}{rcl} \max \theta \\ \text{s.t.} \\ \sum_{p \in P_i} x_p &= & \theta d_i \text{ for each } i \in [k] \\ \sum_{i=1}^k \sum_{e \in p \in P_i} x_p &\leq & c_e \text{ for each } e \in E \\ & x_p &\geq & 0 \text{ for each } p \in \cup P_i \end{array}$$

We study the following optimization variant ("throughput maximization")

$$\begin{array}{rcl} \max \theta \\ \text{s.t.} \\ \sum_{p \in P_i} x_p &= & \theta d_i \text{ for each } i \in [k] \\ \sum_{i=1}^k \sum_{e \in p \in P_i} x_p &\leq & c_e \text{ for each } e \in E \\ x_p &\geq & 0 \text{ for each } p \in \cup P_i \end{array}$$

We study the following optimization variant ("throughput maximization")

$$\begin{array}{rcl} \max \theta \\ \text{s.t.} \\ \sum_{p \in P_i} x_p &= & \theta d_i \text{ for each } i \in [k] \\ \sum_{i=1}^k \sum_{e \in p \in P_i} x_p &\leq & c_e \text{ for each } e \in E \\ x_p &\geq & 0 \text{ for each } p \in \cup P_i \end{array}$$

We study the following optimization variant ("throughput maximization")

$$\begin{array}{rcl} \max \theta \\ \mathrm{s.t.} \\ \sum_{p \in P_i} x_p &= & \theta d_i \text{ for each } i \in [k] \\ \sum_{i=1}^k \sum_{e \in p \in P_i} x_p &\leq & c_e \text{ for each } e \in E \\ x_p &\geq & 0 \text{ for each } p \in \cup P_i \end{array}$$

In total, large-scale mixed packing and covering problems can be solved efficiently (in theory). So far, no experimental study of this algorithm.

In total, large-scale mixed packing and covering problems can be solved efficiently (in theory).

So far, no experimental study of this algorithm.

In total, large-scale mixed packing and covering problems can be solved efficiently (in theory). So far, no experimental study of this algorithm.

Possible to minimize budget for the mixed model?

- Possible to reduce the running times?
- Experimental comparision with algorithms by
 - Fleischer [Soda 2004]
 - Young [FOCS 2001]
 - Garg & Könemann [FOCS 1998]

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
 - Fleischer [Soda 2004]
 - Young [FOCS 2001]
 - Garg & Könemann [FOCS 1998]

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
 - Fleischer [Soda 2004]
 - Young [FOCS 2001]
 - Garg & Könemann [FOCS 1998]

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
 - Fleischer [Soda 2004]
 - Young [FOCS 2001]
 - Garg & Könemann [FOCS 1998]

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
 - Fleischer [Soda 2004]
 - Young [FOCS 2001]
 - Garg & Könemann [FOCS 1998]

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
 - Fleischer [Soda 2004]
 - Young [FOCS 2001]
 - Garg & Könemann [FOCS 1998]
End

Thanks for your attention!