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Introduction

The Problem

I N, M ∈ N
I ∅ 6= B ⊆ RN convex, compact
I f : B → RM

+ vector of continuous convex functions
I g : B → RM

+ vector of continuous concave functions
I a, b ∈ RM

++ positive vectors

Problem:

find x ∈ B such that f (x) ≤ a, g(x) ≥ b
or decide that {x ∈ B|f (x) ≤ a, g(x) ≥ b} = ∅

(MPC)

W.l.o.g. a = e = b, e ∈ RM unit vector
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Introduction

Linear Case

I B ⊆ RN
+ polytope

I f consists of linear functions
I g consists of linear functions

In this case, MPC is an LP with nonnegative coefficients
(feasibility version).
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Introduction

Motivation

LPs are well-studied; classical methods:
I Simplex Algorithm
I Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility).
Drawbacks:

I “exact feasibility” limited by data structures
I paid for with excessive running time for massive instances
I input might be inexact
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Introduction

Alternative Approach

We drop the goal to solve exactly.
We like to approximate instead, within a better running time.

I c ≥ 1, ε ∈ (0, 1)

Restate the problem:

find x ∈ B such that f (x) ≤ c(1 + ε)a, g(x) ≥ (1− ε)b/c
or decide that {x ∈ B|f (x) ≤ a, g(x) ≥ b} = ∅

(MPCc,ε)
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Algorithm

Algorithm is based on the so-called Lagrangian decomposition.
Several key properties:

I iterative algorithms
I potentially faster
I potentially easier to implement
I potentially easier to parallelize
I generate only approximate solutions
I can handle models where N is exponential

in a “compact formulation” of the instance
(by column generation)
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Algorithm

Sketch of Algorithm

The algorithm can be sketched as follows.
I compute an initial solution x ∈ B via feasibility oracle
I as long as x is not “feasible enough”:
I find suitable x̂ ∈ B via feasibility oracle
I set x := (1− τ)x + τ x̂ for a step length τ ∈ (0, 1)

I assert that x becomes “more feasible”

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 11 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 12 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 13 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 14 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 15 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 16 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 17 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 18 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 19 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 20 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 21 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 22 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 23 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 24 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 25 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 26 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 27 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 28 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 29 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 30 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 31 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 32 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 33 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 34 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 35 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 36 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 37 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 38 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 39 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 40 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 41 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 42 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 43 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 44 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 45 / 63



Algorithm

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 46 / 63



Algorithm

The Block Solver

The feasibility oracle is of the form

find x̂ ∈ B such that

pT f (x̂)

c(1 + t)(1 + 8/3t)
− qT g(x̂)c(1 + t)(1 + 8/3t) ≤ α := 2eT p − 1− 2t

or decide that there is no x ∈ B with

pT f (x̂)

(1 + 8/3t)
− qT g(x̂)(1 + 8/3t) ≤ α

(ABSc(p, q, α, t))
where p, q ∈ RM

+ such that
∑M

m=1 pi +
∑M

i=1 qi = 1.
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Algorithm

ABSc(p, q, α, t) can be implemented by minimizing a convex function
over B.
In the linear case it can be done by minimizing a linear function.
We aim at using fast combinatorial algorithms to implement
ABSc(p, q, α, t) for certain special cases of (MPCc,ε).
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Algorithm

Theorem
The algorithm solves MPCc,ε in

O(M(ln M + ε−2 ln ε−1))

iterations, where in each iteration MPCc,ε is invoked once.
Some additional low-complexity coordination tasks in each iteration:

I evaluation of f , g
I interpolation in RM

I numerically finding a root of an equation
I comparison of vector entries
I administration of an index mask

However, the number of iterations is the primary measure of
complexity.
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Algorithm

More precisely, the algorithm aims at minimizing

λA : B → R+ ∪ {∞}, x 7→ max{max
m∈[M]

fm(x), max
m∈A

1/gm(x)}

which “measures the infeasibility” of x ∈ B.
Here also the connection to the resource sharing algorithms is visible.
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Algorithm

1. Setup some parameters; compute initial point x (0).
If λ(x (0)) ≤ c(1 + ε/2), go to Step 3.

2. Repeat Steps 2.1 – 2.3 {scaling phase s} until εs small enough or
λ(x (s)) ≤ c/(1− ε).
2.1. Set εs := εs−1/2, x := x (s−1), and Ts.
2.2. Set A := {m ∈ [M]|gm < Ts}.
2.3. Repeat Steps 2.3.1 – 2.3.5 {coordination phase} forever.

2.3.1. If λA(x) ≤ c/(1 − εs) go to Step 2.4.
2.3.2. Compute θ, p and q, let ts := εs/8, α := 2p̄ − 1 − 2ts and call

x̂ := ABS(p, q, α, ts).
2.3.3. Compute suitable τ ∈ (0, 1) and set x ′ := (1 − τ)x + τ x̂ .
2.3.4. If max{(1 − τ)gm + τ ĝm|m ∈ A} > Ts then reduce τ to τ ′ and set

x ′ := (1 − τ ′)x + τ ′x̂ .
2.3.5. Set A := A \ {m ∈ [M]|gm(x ′) ≥ Ts} and x := x ′.

2.4. Set x (s) := x . {end of scaling phase s}

3. Return the final iterate x (s) ∈ B.
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Sketch of Analysis

The analysis is based on a logarithmic potential function which also
governs the choice of p, q and τ .
We use

Φt(θ, x , A) := 2 ln θ − t
CM

[
M∑

m=1

ln(θ − fm(x))

+
∑
m∈A

ln(gm(x)− 1
θ
) + (M − |A|) ln T ]

where C = 8 is a constant.
It is based on two potential functions that have been used for the
so-called min-max and max-min resource sharing problem.
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Sketch of Analysis

For fixed A,x there is a uniquely determined θ ∈ R+ that minimizes
Φt(θ, x , A).
This θ approximates λA(x).
The corresponding minimum is denoted φt(x , A) and termed the
reduced potential in x .
Key Ideas of the analysis:

I each iteration suitably decreases the reduced potential
I within a scaling phase, the possible difference between reduced

potientials is bounded
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Sketch of Analysis

number of iterations

φt(x)

= O(lnM) or O(t ln t)

= Θ(t3/M)
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Applications

Application: Fractional Multicommodity Flow

Given:
I directed graph G = (V , E)

I demands di ∈ R++ from si to ti for each i ∈ [k ]

I capacities ce for each edge e ∈ E
I Pi set of all si -ti -paths
I costs w(p) ∈ R+ for each p ∈ ∪Pi

I budget W ∈ R+
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Applications

Fractional Multicommodity Flow LP

Use a variable xp for each p ∈ ∪Pi .∑k
i=1

∑
p∈Pi

w(p)xp = W∑
p∈Pi

xp ≥ di for each i ∈ [k ]∑k
i=1

∑
e∈p∈Pi

xp ≤ ce for each e ∈ E
xp ≥ 0 for each p ∈ ∪Pi

Note that the flow conservation is not explicitly modelled.
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Applications

Formulation for Mixed Problem

We set
I fe(x) :=

∑k
i=1

∑
e∈p∈Pi

xp/ce ≤ 1 for each e ∈ E
I gi(x) :=

∑
p∈Pi

xp/di ≥ 1 for each i ∈ [k ]

and furthermore
I B := {xp|p ∈ ∪Pi , xp ≥ 0,

∑k
i=1

∑
p∈Pi

w(p)xp = W}
Here B is a standard simplex (distorted by w) over which it is “easy” to
optimize a linear objective since the vertices are easily found.
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Applications

The Blocksolver

The resulting block solver is

min pT f (x̂)/Y (c, t)− qT g(x̂)Y (c, t)

=
k∑

i=1

∑
p∈Pi

(
∑
e∈P

pe

ceY (c, t)
− qi

di
Y (c, t))xp

where Y (c, t) = c(1 + t)(1 + 8/3t) is the parameter from the beginning.
Let `(p) =

∑
e∈p

pe
ceY (c,t) be the length of path p w.r.t. edge weights

pe

ceY (c, t)
.

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 58 / 63



Applications

The Blocksolver

The resulting block solver is

min pT f (x̂)/Y (c, t)− qT g(x̂)Y (c, t)

=
k∑

i=1

∑
p∈Pi

(
∑
e∈P

pe

ceY (c, t)
− qi

di
Y (c, t))xp

where Y (c, t) = c(1 + t)(1 + 8/3t) is the parameter from the beginning.
Let `(p) =

∑
e∈p

pe
ceY (c,t) be the length of path p w.r.t. edge weights

pe

ceY (c, t)
.

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 58 / 63



Applications

The Blocksolver

The resulting block solver is

min pT f (x̂)/Y (c, t)− qT g(x̂)Y (c, t)

=
k∑

i=1

∑
p∈Pi

(
∑
e∈P

pe

ceY (c, t)
− qi

di
Y (c, t))xp

where Y (c, t) = c(1 + t)(1 + 8/3t) is the parameter from the beginning.
Let `(p) =

∑
e∈p

pe
ceY (c,t) be the length of path p w.r.t. edge weights

pe

ceY (c, t)
.

Florian Diedrich (CAU Kiel) Mixed Packing and Covering AEOLUS 2007 58 / 63



Applications

Since B is a distorted standard simplex, the optimum is attained for the
incidence variable of exactly one path p ∈ ∪Pi .
Hence we can enumerate the k commodities and solve a shortest path
problem to minimize `(p) for p ∈ Pi .
Our approach decomposes Fractional Multicommodity Flow to a
sequence of shortest path problems.
Overall running time is

O(M(ln M + ε−2 ln ε−1) ·M2) = O(M3 ln M + M3ε−2 ln ε−1).
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Applications

Different Model

We study the following optimization variant (“throughput maximization”)

max θ
s.t.∑

p∈Pi
xp = θdi for each i ∈ [k ]∑k

i=1
∑

e∈p∈Pi
xp ≤ ce for each e ∈ E
xp ≥ 0 for each p ∈ ∪Pi

Can be solved with a smiliar technique by Jansen & Zhang [IFIP TCS
2004] where also in each iteration M shortest path computations are
necessary. Skip the details here.
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Conclusion

In total, large-scale mixed packing and covering problems can be
solved efficiently (in theory).
So far, no experimental study of this algorithm.
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Conclusion

Open Problems

I Possible to minimize budget for the mixed model?
I Possible to reduce the running times?
I Experimental comparision with algorithms by

I Fleischer [Soda 2004]
I Young [FOCS 2001]
I Garg & Könemann [FOCS 1998]
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Conclusion

End

Thanks for your attention!
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