Applications of the Mixed Packing and Covering Problem

Florian Diedrich Klaus Jansen

Institut für Informatik, Universität zu Kiel

AEOLUS 2007

Outline

Introduction

Algorithm

Sketch of Analysis

Applications

Conclusion

The Problem

- $N, M \in \mathbb{N}$
$\triangleright \emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $a: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

Problem:

$$
\begin{aligned}
& \text { find } x \in B \text { such that } f(x) \leq a, \quad g(x) \geq b \\
& \text { or decide that }\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset
\end{aligned}
$$

W.l.o.g. $a=e=b, e \in \mathbb{R}^{M}$ unit vector

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{+\perp}^{M}$ positive vectors

Problem:

$$
\begin{aligned}
& \text { find } x \in B \text { such that } f(x) \leq a, \quad g(x) \geq b \\
& \text { or decide that }\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset
\end{aligned}
$$

W.I.o.g. $a=e=b, e \in \mathbb{R}^{M}$ unit vector

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
$g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

Problem:

$$
\begin{aligned}
& \text { find } x \in B \text { such that } f(x) \leq a, \quad g(x) \geq b \\
& \text { or decide that }\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset
\end{aligned}
$$

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions

Problem:

$$
\begin{aligned}
& \text { find } x \in B \text { such that } f(x) \leq a, \quad g(x) \geq b \\
& \text { or decide that }\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset
\end{aligned}
$$

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

Problem:

$$
\begin{aligned}
& \text { find } x \in B \text { such that } f(x) \leq a, \quad g(x) \geq b \\
& \text { or decide that }\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset
\end{aligned}
$$

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

Problem:
find $x \in B$ such that $f(x) \leq a, \quad g(x) \geq b$ or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$
W.I.o.g. $a=e=b, e \in \mathbb{R}^{M}$ unit vector

The Problem

- $N, M \in \mathbb{N}$
- $\emptyset \neq B \subseteq \mathbb{R}^{N}$ convex, compact
- $f: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous convex functions
- $g: B \rightarrow \mathbb{R}_{+}^{M}$ vector of continuous concave functions
- $a, b \in \mathbb{R}_{++}^{M}$ positive vectors

Problem:
find $x \in B$ such that $f(x) \leq a, \quad g(x) \geq b$
or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$
W.I.o.g. $a=e=b, e \in \mathbb{R}^{M}$ unit vector

Linear Case

- $B \subseteq \mathbb{R}_{+}^{N}$ polytope
- f consists of linear functions
- g consists of linear functions

In this case MPC is an IP with nonnegative coefficients (feasibility version).

Linear Case

- $B \subseteq \mathbb{R}_{+}^{N}$ polytope
- f consists of linear functions
g consists of linear functions In this case, MPC is an LP with nonnegative coefficients (feasibility version).

Linear Case

- $B \subseteq \mathbb{R}_{+}^{N}$ polytope
- f consists of linear functions
- g consists of linear functions

In this case, MPC is an LP with nonnegative coefficients (feasibility version).

Linear Case

- $B \subseteq \mathbb{R}_{+}^{N}$ polytope
- f consists of linear functions
- g consists of linear functions

In this case, MPC is an LP with nonnegative coefficients (feasibility version).

Linear Case

- $B \subseteq \mathbb{R}_{+}^{N}$ polytope
- f consists of linear functions
- g consists of linear functions

In this case, MPC is an LP with nonnegative coefficients (feasibility version).

Motivation

LPs are well-studied; classical methods:

Both aim at solving to optimality (or exact feasibility).

 Drawbacks:
Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility).
Drawbacks:

Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility).

 Drawbacks:
Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility).

 Drawbacks:
Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility).

Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

Motivation

LPs are well-studied; classical methods:

- Simplex Algorithm
- Ellipsoid Algorithm

Both aim at solving to optimality (or exact feasibility). Drawbacks:

- "exact feasibility" limited by data structures
- paid for with excessive running time for massive instances
- input might be inexact

Alternative Approach

We drop the goal to solve exactly.
 We like to approximate instead, with in a better running time.

Restate the problem:

find $x \in B$ such that $f(x) \leq c(1+\epsilon) a, \quad g(x) \geq(1-\epsilon) b / c$
or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$

Alternative Approach

We drop the goal to solve exactly.

We like to approximate instead, within a better running time.

Restate the problem:

find $x \in B$ such that $f(x) \leq c(1+\epsilon) a, \quad g(x) \geq(1-\epsilon) b / c$ or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$

Alternative Approach

We drop the goal to solve exactly.
We like to approximate instead, within a better running time.

Restate the problem:

find $x \in B$ such that $f(x) \leq c(1+\epsilon) a, \quad g(x) \geq(1-\epsilon) b / c$ or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$

Alternative Approach

We drop the goal to solve exactly.
We like to approximate instead, within a better running time.

- $c \geq 1, \epsilon \in(0,1)$

Restate the problem:
find $x \in B$ such that $f(x) \leq c(1+\epsilon) a, \quad g(x) \geq(1-\epsilon) b / c$ or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$

Alternative Approach

We drop the goal to solve exactly.
We like to approximate instead, within a better running time.

- $c \geq 1, \epsilon \in(0,1)$

Restate the problem:
find $x \in B$ such that $f(x) \leq c(1+\epsilon) a, \quad g(x) \geq(1-\epsilon) b / c$ or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$

Alternative Approach

We drop the goal to solve exactly.
We like to approximate instead, within a better running time.

- $c \geq 1, \epsilon \in(0,1)$

Restate the problem:
find $x \in B$ such that $f(x) \leq c(1+\epsilon) a, \quad g(x) \geq(1-\epsilon) b / c$ or decide that $\{x \in B \mid f(x) \leq a, g(x) \geq b\}=\emptyset$
$\left(M P C_{c, \epsilon}\right)$

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

Algorithm is based on the so-called Lagrangian decomposition.

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
potentially faster
potentially easier to implement
potentially easier to parallelize
generate only approximate solutions
can handle models where N is exponential
in a "compact formulation" of the instance
(by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
potentially easier to implement
potentially easier to parallelize
generate only approximate solutions
can handle models where N is exponential
in a "compact formulation" of the instance
(by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
> potentially easier to parallelize
> generate only approximate solutions
> can handle models where N is exponential
> in a "compact formulation" of the instance
> (by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
> generate only approximate solutions
> can handle models where N is exponential
> in a "compact formulation" of the instance
> (by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
> can handle models where N is exponential
> in a "compact formulation" of the instance
> (by column generation)

Algorithm is based on the so-called Lagrangian decomposition. Several key properties:

- iterative algorithms
- potentially faster
- potentially easier to implement
- potentially easier to parallelize
- generate only approximate solutions
- can handle models where N is exponential in a "compact formulation" of the instance (by column generation)

Sketch of Algorithm

The algorithm can be sketched as follows.

- compute an initial solution $x \in B$ via feasibility oracle
- as long as x is not "feasible enough":
- find suitable $\hat{x} \in B$ via feasibility oracle
- set $x:=(1-\tau) x+\tau \hat{x}$ for a step length $\tau \in(0,1)$
- assert that x becomes "more feasible"

The Block Solver

The feasibility oracle is of the form
find $\hat{x} \in B$ such that

$$
\frac{p^{T} f(\hat{x})}{c(1+t)(1+8 / 3 t)}-q^{T} g(\hat{x}) c(1+t)(1+8 / 3 t) \leq \alpha:=2 e^{T} p-1-2 t
$$

or decide that there is no $x \in B$ with

$$
\frac{p^{T} f(\hat{x})}{(1+8 / 3 t)}-q^{T} g(\hat{x})(1+8 / 3 t) \leq \alpha
$$

$\left(A B S_{c}(p, q, \alpha, t)\right)$
where $p, q \in \mathbb{R}_{+}^{M}$ such that $\sum_{m=1}^{M} p_{i}+\sum_{i=1}^{M} q_{i}=1$.

$A B S_{c}(p, q, \alpha, t)$ can be implemented by minimizing a convex function over B.
 In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $A B S_{c}(p, q, \alpha, t)$ for certain special cases of $\left(M P C_{c, \epsilon}\right)$.

$A B S_{c}(p, q, \alpha, t)$ can be implemented by minimizing a convex function over B.
In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $A B S_{c}(p, q, \alpha, t)$ for certain special cases of $\left(M P C_{c, \epsilon}\right)$.
$A B S_{c}(p, q, \alpha, t)$ can be implemented by minimizing a convex function over B.
In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $A B S_{c}(p, q, \alpha, t)$ for certain special cases of $\left(M P C_{c, \epsilon}\right)$.
$A B S_{c}(p, q, \alpha, t)$ can be implemented by minimizing a convex function over B.
In the linear case it can be done by minimizing a linear function. We aim at using fast combinatorial algorithms to implement $A B S_{c}(p, q, \alpha, t)$ for certain special cases of $\left(M P C_{c, \epsilon}\right)$.

Theorem
 The algorithm solves MPC $C_{0, ~}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{C, \epsilon}$ is invoked once. Some additional low-complexity coordination tasks in each iteration:

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once. Some additional low-complexity coordination tasks in each iteration:

However, the number of iterations is the primary measure of

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{C, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

Theorem

The algorithm solves $M P C_{c, \epsilon}$ in

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right)\right)
$$

iterations, where in each iteration $M P C_{c, \epsilon}$ is invoked once.
Some additional low-complexity coordination tasks in each iteration:

- evaluation of f, g
- interpolation in \mathbb{R}^{M}
- numerically finding a root of an equation
- comparison of vector entries
- administration of an index mask

However, the number of iterations is the primary measure of complexity.

More precisely, the algorithm aims at minimizing

$$
\lambda_{A}: B \rightarrow \mathbb{R} \cup\{\infty\}, \quad x \mapsto \max \left\{\max _{m \in[M]} f_{m}(x), \max _{m \in A} 1 / g_{m}(x)\right\}
$$

which "measures the infeasibility" of $x \in B$. Here also the connection to the resource sharing algorithms is visible.

More precisely, the algorithm aims at minimizing

$$
\lambda_{A}: B \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad x \mapsto \max \left\{\max _{m \in[M]} f_{m}(x), \max _{m \in A} 1 / g_{m}(x)\right\}
$$

which "measures the infeasibility" of $x \in B$.
Here also the connection to the resource sharing algorithms is visible.

More precisely, the algorithm aims at minimizing

$$
\lambda_{A}: B \rightarrow \mathbb{R}_{+} \cup\{\infty\}, \quad x \mapsto \max \left\{\max _{m \in[M]} f_{m}(x), \max _{m \in A} 1 / g_{m}(x)\right\}
$$

which "measures the infeasibility" of $x \in B$.
Here also the connection to the resource sharing algorithms is visible.

1. Setup some parameters; compute initial point $x^{(0)}$. If $\lambda\left(x^{(0)}\right) \leq c(1+\epsilon / 2)$, go to Step 3 .
2. Repeat Steps $2.1-2.3$ \{scaling phase $s\}$ until ϵ_{s} small enough or
$\lambda\left(x^{(s)}\right) \leq c /(1-\epsilon)$.
2.1. Set $\epsilon_{s}:=\epsilon_{s-1} / 2, x:=x^{(s-1)}$, and T_{s}.
2.2. Set $A:=\left\{m \in[M] \mid g_{m}<T_{s}\right\}$.
2.3. Repeat Steps 2.3.1-2.3.5 \{coordination phase\} forever.
2.3.1. If $\lambda_{A}(x) \leq c /\left(1-\epsilon_{s}\right)$ go to Step 2.4.
2.3.2. Compute θ, p and q, let $t_{s}:=\epsilon_{s} / 8, \alpha:=2 \bar{p}-1-2 t_{s}$ and call $\hat{x}:=\operatorname{ABS}\left(p, q, \alpha, t_{s}\right)$.
2.3.3. Compute suitable $\tau \in(0,1)$ and set $x^{\prime}:=(1-\tau) x+\tau \hat{x}$.
2.3.4. If $\max \left\{(1-\tau) g_{m}+\tau \hat{g}_{m} \mid m \in A\right\}>T_{s}$ then reduce τ to τ^{\prime} and set $x^{\prime}:=\left(1-\tau^{\prime}\right) x+\tau^{\prime} \hat{x}$.
2.3.5. Set $A:=A \backslash\left\{m \in[M] \mid g_{m}\left(x^{\prime}\right) \geq T_{s}\right\}$ and $x:=x^{\prime}$.
2.4. Set $x^{(s)}:=x$. \{end of scaling phase s \}
3. Return the final iterate $x^{(s)} \in B$.

The analysis is based on a logarithmic potential function which also

 governs the choice of p, q and τ.We use

$$
\left.+\sum_{m \in A} \ln \left(g_{m}(x)-\frac{1}{\theta}\right)+(M-|A|) \ln T\right]
$$

where $C=8$ is a constant.
 It is based on two potential functions that have been used for the so-called min-max and max-min resource sharing problem.

The analysis is based on a logarithmic potential function which also governs the choice of p, q and τ.

We use

where $C=8$ is a constant.

It is based on two potential functions that have been used for the so-called min-max and max-min resource sharing problem.

The analysis is based on a logarithmic potential function which also governs the choice of p, q and τ.
We use

$$
\begin{aligned}
\Phi_{t}(\theta, x, A):=2 \ln \theta-\frac{t}{C M}\left[\sum_{m=1}^{M}\right. & \ln \left(\theta-f_{m}(x)\right) \\
& \left.+\sum_{m \in A} \ln \left(g_{m}(x)-\frac{1}{\theta}\right)+(M-|A|) \ln T\right]
\end{aligned}
$$

where $C=8$ is a constant.
It is based on two potential functions that have been used for the so-called min-max and max-min resource sharing problem.

The analysis is based on a logarithmic potential function which also governs the choice of p, q and τ.
We use

$$
\begin{aligned}
\Phi_{t}(\theta, x, A):=2 \ln \theta-\frac{t}{C M}\left[\sum_{m=1}^{M}\right. & \ln \left(\theta-f_{m}(x)\right) \\
& \left.+\sum_{m \in A} \ln \left(g_{m}(x)-\frac{1}{\theta}\right)+(M-|A|) \ln T\right]
\end{aligned}
$$

where $C=8$ is a constant.
It is based on two potential functions that have been used for the so-called min-max and max-min resource sharing problem.

```
For fixed }A,x\mathrm{ there is a uniquely determined }0\in\mp@subsup{\mathbb{R}}{+}{}\mathrm{ that minimizes
\Phit}(0,x,A)
This }0\mathrm{ approximates }\mp@subsup{\lambda}{A}{}(x)\mathrm{ .
The corresponding minimum is denoted }\mp@subsup{\phi}{t}{}(x,A)\mathrm{ and termed the
reduced potential in x.
Key Ideas of the analysis:
```

For fixed A, x there is a uniquely determined $\theta \in \mathbb{R}_{+}$that minimizes $\Phi_{t}(\theta, x, A)$.
This θ approximates $\lambda_{A}(x)$.
The corresponding minimum is denoted $\phi_{t}(x, A)$ and termed the reduced potential in x. Key Ideas of the analysis:

For fixed A, x there is a uniquely determined $\theta \in \mathbb{R}_{+}$that minimizes $\Phi_{t}(\theta, x, A)$.
This θ approximates $\lambda_{A}(x)$.
The corresponding minimum is denoted $\phi_{t}(x, A)$ and termed the reduced potential in x. Key Ideas of the analysis:

For fixed A, x there is a uniquely determined $\theta \in \mathbb{R}_{+}$that minimizes $\Phi_{t}(\theta, x, A)$.
This θ approximates $\lambda_{A}(x)$.
The corresponding minimum is denoted $\phi_{t}(x, A)$ and termed the reduced potential in x.

For fixed A, x there is a uniquely determined $\theta \in \mathbb{R}_{+}$that minimizes $\Phi_{t}(\theta, x, A)$.
This θ approximates $\lambda_{A}(x)$.
The corresponding minimum is denoted $\phi_{t}(x, A)$ and termed the reduced potential in x. Key Ideas of the analysis:

For fixed A, x there is a uniquely determined $\theta \in \mathbb{R}_{+}$that minimizes $\Phi_{t}(\theta, x, A)$.
This θ approximates $\lambda_{A}(x)$.
The corresponding minimum is denoted $\phi_{t}(x, \boldsymbol{A})$ and termed the reduced potential in x.
Key Ideas of the analysis:

- each iteration suitably decreases the reduced potential
- within a scaling phase, the possible difference between reduced potientials is bounded

For fixed A, x there is a uniquely determined $\theta \in \mathbb{R}_{+}$that minimizes $\Phi_{t}(\theta, x, A)$.
This θ approximates $\lambda_{A}(x)$.
The corresponding minimum is denoted $\phi_{t}(x, \boldsymbol{A})$ and termed the reduced potential in x.
Key Ideas of the analysis:

- each iteration suitably decreases the reduced potential
- within a scaling phase, the possible difference between reduced potientials is bounded

Application: Fractional Multicommodity Flow

Given:

- directed graph $G=(V, E)$
- demands $d_{i} \in \mathbb{R}_{++}$from s_{i} to t_{i} for each $i \in[k]$
- capacities c_{e} for each edge $e \in E$
- P_{i} set of all $s_{i}-t_{i}$-paths
- costs $w(p) \in \mathbb{R}_{+}$for each $p \in \cup P_{i}$
- budget $W \in \mathbb{R}_{+}$

Application: Fractional Multicommodity Flow

Given:

- directed graph $G=(V, E)$
- demands $d_{i} \in \mathbb{R}_{++}$from s_{i} to t_{i} for each $i \in[k]$
- capacities c_{e} for each edge $e \in E$
- P_{i} set of all $s_{i}-t_{i}$-paths
- costs $w(p) \in \mathbb{R}_{+}$for each $p \in \cup P_{i}$
- budget $W \in \mathbb{R}_{+}$

Application: Fractional Multicommodity Flow

Given:

- directed graph $G=(V, E)$
- demands $d_{i} \in \mathbb{R}_{++}$from s_{i} to t_{i} for each $i \in[k]$
- capacities c_{e} for each edge $e \in E$
- P_{i} set of all $s_{i}-t_{i}$-paths
- costs $w(p) \in \mathbb{R}_{+}$for each $p \in \cup P_{i}$
- budget $W \in \mathbb{R}_{+}$

Application: Fractional Multicommodity Flow

Given:

- directed graph $G=(V, E)$
- demands $d_{i} \in \mathbb{R}_{++}$from s_{i} to t_{i} for each $i \in[k]$
- capacities c_{e} for each edge $e \in E$
- P_{i} set of all $s_{i}-t_{i}$-paths
- costs $w(p) \in \mathbb{R}_{+}$for each $p \in \cup P_{i}$
- budget $W \in \mathbb{R}_{+}$

Application: Fractional Multicommodity Flow

Given:

- directed graph $G=(V, E)$
- demands $d_{i} \in \mathbb{R}_{++}$from s_{i} to t_{i} for each $i \in[k]$
- capacities c_{e} for each edge $e \in E$
- P_{i} set of all $s_{i}-t_{i}$-paths
- costs $w(p) \in \mathbb{R}_{+}$for each $p \in \cup P_{i}$

Application: Fractional Multicommodity Flow

Given:

- directed graph $G=(V, E)$
- demands $d_{i} \in \mathbb{R}_{++}$from s_{i} to t_{i} for each $i \in[k]$
- capacities c_{e} for each edge $e \in E$
- P_{i} set of all $s_{i}-t_{i}$-paths
- costs $w(p) \in \mathbb{R}_{+}$for each $p \in \cup P_{i}$
- budget $W \in \mathbb{R}_{+}$

Fractional Multicommodity Flow LP

Use a variable x_{p} for each $p \in \cup P_{i}$.

Note that the flow conservation is not explicitly modelled.

Fractional Multicommodity Flow LP

Use a variable x_{p} for each $p \in \cup P_{i}$.

$$
\begin{aligned}
\sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p} & =W \\
\sum_{p \in P_{i}} x_{p} & \geq d_{i} \text { for each } i \in[k] \\
\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} & \leq c_{e} \text { for each } e \in E \\
x_{p} & \geq 0 \text { for each } p \in \cup P_{i}
\end{aligned}
$$

Note that the flow conservation is not explicitly modelled.

Fractional Multicommodity Flow LP

Use a variable x_{p} for each $p \in \cup P_{i}$.

$$
\begin{aligned}
\sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p} & =w \\
\sum_{p \in P_{i}} x_{p} & \geq d_{i} \text { for each } i \in[k] \\
\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} & \leq c_{e} \text { for each } e \in E \\
x_{p} & \geq 0 \text { for each } p \in \cup P_{i}
\end{aligned}
$$

Note that the flow conservation is not explicitly modelled.

Formulation for Mixed Problem

We set

- $f_{e}(x):=\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} / c_{e} \leq 1$ for each $e \in E$

Here B is a standard simplex (distorted by w) over which it is "easy" to optimize a linear objective since the vertices are easily found.

Formulation for Mixed Problem

We set

- $f_{e}(x):=\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} / c_{e} \leq 1$ for each $e \in E$
- $g_{i}(x):=\sum_{p \in P_{i}} x_{p} / d_{i} \geq 1$ for each $i \in[k]$

and furthermore

Here B is a standard simplex (distorted by w) over which it is "easy" to optimize a linear objective since the vertices are easily found.

Formulation for Mixed Problem

We set

- $f_{e}(x):=\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} / c_{e} \leq 1$ for each $e \in E$
- $g_{i}(x):=\sum_{p \in P_{i}} x_{p} / d_{i} \geq 1$ for each $i \in[k]$

and furthermore

Here B is a standard simplex (distorted by w) over which it is "easy" to optimize a linear objective since the vertices are easily found.

Formulation for Mixed Problem

We set

- $f_{e}(x):=\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} / c_{e} \leq 1$ for each $e \in E$
- $g_{i}(x):=\sum_{p \in P_{i}} x_{p} / d_{i} \geq 1$ for each $i \in[k]$
and furthermore
- $B:=\left\{x_{p} \mid p \in \cup P_{i}, x_{p} \geq 0, \sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p}=W\right\}$

Here B is a standard simplex (distorted by w) over which it is "easy" to optimize a linear objective since the vertices are easily found.

Formulation for Mixed Problem

We set

- $f_{e}(x):=\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} / c_{e} \leq 1$ for each $e \in E$
- $g_{i}(x):=\sum_{p \in P_{i}} x_{p} / d_{i} \geq 1$ for each $i \in[k]$
and furthermore
- $B:=\left\{x_{p} \mid p \in \cup P_{i}, x_{p} \geq 0, \sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p}=W\right\}$

Here B is a standard simplex (distorted by w) over which it is "easy" to optimize a linear objective since the vertices are easily found.

Formulation for Mixed Problem

We set

- $f_{e}(x):=\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} / c_{e} \leq 1$ for each $e \in E$
- $g_{i}(x):=\sum_{p \in P_{i}} x_{p} / d_{i} \geq 1$ for each $i \in[k]$
and furthermore
- $B:=\left\{x_{p} \mid p \in \cup P_{i}, x_{p} \geq 0, \sum_{i=1}^{k} \sum_{p \in P_{i}} w(p) x_{p}=W\right\}$

Here B is a standard simplex (distorted by w) over which it is "easy" to optimize a linear objective since the vertices are easily found.

The Blocksolver

The resulting block solver is

$\min p^{\top} f(\hat{x}) / Y(c, t)-q^{\top} g(\hat{x}) Y(c, t)$

where $Y(c, t)=c(1+t)(1+8 / 3 t)$ is the parameter from the beginning. Let $\ell(p)=\sum_{e \in p} \frac{p_{e}}{c_{e} Y(c, t)}$ be the length of path p w.r.t. edge weights

The Blocksolver

The resulting block solver is

$$
\begin{aligned}
\min p^{T} f(\hat{x}) / Y(c, t)-q^{T} g(\hat{x}) & Y(c, t) \\
& =\sum_{i=1}^{k} \sum_{p \in P_{i}}\left(\sum_{e \in P} \frac{p_{e}}{c_{e} Y(c, t)}-\frac{q_{i}}{d_{i}} Y(c, t)\right) x_{p}
\end{aligned}
$$

where $Y(c, t)=c(1+t)(1+8 / 3 t)$ is the parameter from the beginning.

The Blocksolver

The resulting block solver is

$$
\begin{aligned}
\min p^{T} f(\hat{x}) / Y(c, t)-q^{T} g(\hat{x}) & Y(c, t) \\
& =\sum_{i=1}^{k} \sum_{p \in P_{i}}\left(\sum_{e \in P} \frac{p_{e}}{c_{e} Y(c, t)}-\frac{q_{i}}{d_{i}} Y(c, t)\right) x_{p}
\end{aligned}
$$

where $Y(c, t)=c(1+t)(1+8 / 3 t)$ is the parameter from the beginning. Let $\ell(p)=\sum_{e \in p} \frac{p_{e}}{c_{e} Y(c, t)}$ be the length of path p w.r.t. edge weights

$$
\frac{p_{e}}{c_{e} Y(c, t)} .
$$

Since B is a distorted standard simplex, the optimum is attained for the

 incidence variable of exactly one path $p \in \cup P_{i}$. Hence we can enumerate the k commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_{i}$.Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.
Overall running time is

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right) \cdot M^{2}\right)=O\left(M^{3} \ln M+M^{3} e^{-2} \ln \epsilon^{-1}\right)
$$

Since B is a distorted standard simplex, the optimum is attained for the incidence variable of exactly one path $p \in \cup P_{i}$.
Hence we can enumerate the k commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_{i}$.
Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.
Overall running time is

Since B is a distorted standard simplex, the optimum is attained for the incidence variable of exactly one path $p \in \cup P_{i}$. Hence we can enumerate the k commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_{i}$.
Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems. Overall running time is

Since B is a distorted standard simplex, the optimum is attained for the incidence variable of exactly one path $p \in \cup P_{i}$. Hence we can enumerate the k commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_{i}$. Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.

Overall running time is

Since B is a distorted standard simplex, the optimum is attained for the incidence variable of exactly one path $p \in \cup P_{i}$. Hence we can enumerate the k commodities and solve a shortest path problem to minimize $\ell(p)$ for $p \in P_{i}$.
Our approach decomposes Fractional Multicommodity Flow to a sequence of shortest path problems.
Overall running time is

$$
O\left(M\left(\ln M+\epsilon^{-2} \ln \epsilon^{-1}\right) \cdot M^{2}\right)=O\left(M^{3} \ln M+M^{3} \epsilon^{-2} \ln \epsilon^{-1}\right)
$$

Different Model

We study the following optimization variant ("throughput maximization")

Can be solved with a smiliar technique by Jansen \& Zhang [IFIP TCS 2004] where also in each iteration M shortest path computations are necessary. Skip the details here.

Different Model

We study the following optimization variant ("throughput maximization")

Can be solved with a smiliar technique by Jansen \& Zhang [IFIP TCS 2004] where also in each iteration M shortest path computations are necessary. Skip the details here.

Different Model

We study the following optimization variant ("throughput maximization")

$$
\begin{aligned}
\max \theta & \\
\text { s.t. } & \\
\sum_{p \in P_{i}} x_{p} & =\theta d_{i} \text { for each } i \in[k] \\
\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} & \leq c_{e} \text { for each } e \in E \\
x_{p} & \geq 0 \text { for each } p \in \cup P_{i}
\end{aligned}
$$

Can be solved with a smiliar technique by Jansen \& Zhang [IFIP TCS 2004] where also in each iteration M shortest path computations are necessary. Skip the details here.

Different Model

We study the following optimization variant ("throughput maximization")

$$
\begin{aligned}
\max \theta & \\
\text { s.t. } & \\
\sum_{p \in P_{i}} x_{p} & =\theta d_{i} \text { for each } i \in[k] \\
\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} & \leq c_{e} \text { for each } e \in E \\
x_{p} & \geq 0 \text { for each } p \in \cup P_{i}
\end{aligned}
$$

Can be solved with a smiliar technique by Jansen \& Zhang [IFIP TCS 2004] where also in each iteration M shortest path computations are necessary. Skip the details here.

Different Model

We study the following optimization variant ("throughput maximization")

$$
\begin{aligned}
\max \theta & \\
\text { s.t. } & \\
\sum_{p \in P_{i}} x_{p} & =\theta d_{i} \text { for each } i \in[k] \\
\sum_{i=1}^{k} \sum_{e \in p \in P_{i}} x_{p} & \leq c_{e} \text { for each } e \in E \\
x_{p} & \geq 0 \text { for each } p \in \cup P_{i}
\end{aligned}
$$

Can be solved with a smiliar technique by Jansen \& Zhang [IFIP TCS 2004] where also in each iteration M shortest path computations are necessary. Skip the details here.

In total, large-scale mixed packing and covering problems can be solved efficiently (in theory). So far, no experimental study of this algorithm.

In total, large-scale mixed packing and covering problems can be solved efficiently (in theory). So far, no experimental study of this algorithm.

In total, large-scale mixed packing and covering problems can be solved efficiently (in theory).
So far, no experimental study of this algorithm.

Open Problems

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by

Open Problems

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by

Open Problems

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by

Open Problems

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
- Fleischer [Soda 2004]
- Garg \& Könemann [FOCS 1998]

Open Problems

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
- Fleischer [Soda 2004]
- Young [FOCS 2001]
- Garg \& Könemann [FOCS 1998]

Open Problems

- Possible to minimize budget for the mixed model?
- Possible to reduce the running times?
- Experimental comparision with algorithms by
- Fleischer [Soda 2004]
- Young [FOCS 2001]
- Garg \& Könemann [FOCS 1998]

End

Thanks for your attention!

