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The setting

Given a set J of preemptible jobs,
a set M of machines
precedence constraints, release times

Problem machines may “fail” online:
only M(t) ⊆ M will contribute at time t .

Goal minimize makespan or sum of completion times



A simple example

Example
Identical machines, failure probability 0 ≤ f < 1 constant.
Minimize

∑
Cj .

Main Idea
This would be easy if machines couldn’t fail. (SRPT)
Use as much information from such a solution as possible.

Two steps:
1. Build optimal offline schedule for all m machines.
2. Online:

• try to clear up backlog
• do as the offline schedule says



A simple example (cont.)

Formally:

Algorithm MIMIC
1. Calculate offline schedule
2. Build queue: job on machine i in interval t goes into position

tm + i .
3. m ′ machines available online:

schedule first m ′ jobs from queue.

Remark
Step 1, 2 need not be explicit.



A simple example (cont.)

Offline
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Job 4

Queue

2 3 1 2 3 4 2 3 4 4 4

Online
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A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)

Example
Identical machines, failure probability 0 ≤ f < 1 constant.

Lemma
Any job’s expected completion time is delayed from CJ to

1
1−f CJ + 1.

Theorem
MIMIC is a 1

1−f -approximation for Cmax,
∑

Cj ,
∑

wj Cj .
(Asymptotically.)



More structured instances

Release dates results hold trivially.
Precedences work only sometimes:

Offline

J2

J1

J4

J3

Online?

J1

J2

J3

J4

• In-trees always work
• Otherwise: may create one idle step per job



A continuous model of time

Up to now: things happen in discrete time steps.

Semi-online setting
• preemption at any time
• we know the next time the

set of available machines changes (event).

Known:

Theorem (Albers/Schmidt 99)
There is an optimal polynomial-time online algorithm for the Cmax
objective and independent jobs on identical machines.



MIMIC in the continuous case

• Calculate online area
until next event.

• Consider corresponding
offline interval.

• Insert artificial events
for job termination.

• Schedule jobs with
McNaughton’s
wraparound rule.

Offline

. . .

Job 1
Job 2
Job 3
Job 4

Job 5

Job 6
Job 7

Job 8
Job 9

Job 10

. . .

Online

8 8 8 8 8 8 8

8 8 8 8 8 8 8
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MIMIC in the continuous case

• Calculate online area
until next event.

• Consider corresponding
offline interval.

• Insert artificial events
for job termination.

• Schedule jobs with
McNaughton’s
wraparound rule.

Offline

. . .

Job 1
Job 2
Job 3
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Job 8
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. . .

Online

8 8 8 8 8 8 8
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Non-identical machines: it’s not that easy

When machines are not identical, migration can be harmful:

Offline

(Speed 1)

(Speed 1)

(Speed 4)

Job 3

Job 2

Job 1

Online

(Speed 1)

(Speed 1)

(Speed 4) 8 8 8 8 8 8



Non-identical machines: it’s not that easy

When machines are not identical, migration can be harmful:

Offline

(Speed 1)

(Speed 1)

(Speed 4)

Job 3

Job 2

Job 1

Online

(Speed 1)

(Speed 1)

(Speed 4) 8 8 8 8 8 8

Job 3 Job 2 Job 1

Job 1



A natural extension to non-identical machines

• Next event offline:
t + dt .

• Next event online:
T + dT .

• Schedule “as much as
possible” of [t , t + dt ]
into [T , T + dT ].

=⇒ at least one interval will
be used up

Offline

Job 1

Job 2

Job 3

t t+dt

Online

8 8 8 8 8 8 8 8 8

8

T T+dT



How much is “as much as possible”?

• consider all jobs running in
[t , t + dt ]

• approximately solve
R |pmtn |Cmax

• on online machineset M(T)

• fits: ok, exhausts [t , t + dt ]

Offline

Job 1
Job 2
Job 3

t t+dt

Online

8 8 8 8 8 8 8 8

8

T T+dT

Job 1 Job 2
Job 2 Job 3
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How much is “as much as possible”?

• consider all jobs running in
[t , t + dt ]

• approximately solve
R |pmtn |Cmax

• on online machineset M(T)

• doesn’t fit: scale solution
• exhaust [T , T + dT ]

Offline

Job 1
Job 2
Job 3

t t+dt

Online

8 8 8 8 8 8 8 8

8

T T+dT

Job 1 Job 2
Job 3



A different look at related machines

The algorithm look ahead
• for the current interval [t , t + δ):
• find the smallest r such that:

• Some longest jobs are executed by δ
• some jobs are shortened to remaining execution time r
• jobs shorter than r are not executed
• total area is m(t)δ

• schedule with McNaughton’s wraparound rule

Theorem (Albers, Schmidt 99)
look ahead minimizes the makespan for identical machines.



The algorithm, in a picture

timing diagram
• x axis: online time
• y axis: remaining

processing time per job
• slope: machine speed

look ahead
• give machines to jobs

with highest remaining time
• when lines intersect:

jobs “share” the machines
for rest of interval

t t + δ



The algorithm, extended to related machines

look ahead/fastest machine
• give fastest machines to

jobs with highest remaining
time

• when lines intersect:
jobs “share” the machines
for rest of interval

By similar proof as before:

Theorem
la/fm minimizes the makespan
for related machines.

t t + δ



Summary

• MIMIC: use offline algorithms for online scheduling
+ handles release times and precedences
+ good bounds for simple stochastic models
+ all completion time objectives
− hard to give bounds for complex stochastic models

(aging machines, different reliability)
− hard to give competitive ratio
− cannot handle flow time objectives
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