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The setting

Given a set J of preemptible jobs,
a set M of machines
precedence constraints, release times

Problem machines may “fail” online:
only M(t) € M will contribute at time t.

Goal minimize makespan or sum of completion times



A simple example

Example

Identical machines, failure probability 0 < f < 1 constant.
Minimize ) C;.

Main ldea

This would be easy if machines couldn't fail. (SRPT)
Use as much information from such a solution as possible.

Two steps:
1. Build optimal offline schedule for all m machines.
2. Online:

* try to clear up backlog
* do as the offline schedule says



A simple example (cont.)

Formally:

Algorithm MIMIC
1. Calculate offline schedule
2. Build queue: job on machine i in interval t goes into position
tm +i.
3. m’ machines available online:
schedule first m’ jobs from queue.

Remark
Step 1, 2 need not be explicit.




A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)
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A simple example (cont.)

Example
Identical machines, failure probability 0 < f < 1 constant.

Lemma

Any job's expected completion time is delayed from C; to
=C+ 1.

Theorem

MIMIC is a ﬁ-approximation for Cinax, y_, Gj, > w; C;.
(Asymptotically.)




More structured instances

Release dates results hold trivially.
Precedences work only sometimes:

Offline Online?

JQ_';J4 J3

J1
Ji—>J3 % Jo | J4

* In-trees always work
* Otherwise: may create one idle step per job



A continuous model of time

Up to now: things happen in discrete time steps.

Semi-online setting
* preemption at any time

* we know the next time the
set of available machines changes (event).

Known:

Theorem (Albers/Schmidt 99)

There is an optimal polynomial-time online algorithm for the Ciax
objective and independent jobs on identical machines.

y




MIMIC in the continuous case

Calculate online area
until next event.

Consider corresponding
offline interval.

Insert artificial events
for job termination.
Schedule jobs with

McNaughton's
wraparound rule.

Offline
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| Job3 [ Job8 | -
| bb2 [ Job7 |
Job1|| Job6 |
Online
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MIMIC in the continuous case
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MIMIC in the continuous case

Calculate online area
until next event.
Consider corresponding
offline interval.

Insert artificial events
for job termination.
Schedule jobs with
McNaughton's
wraparound rule.

Offline
| Job5 | ob1p |
| Jab4 Job 9 ‘
o Hob3 ob8\"'
| Job2 [ ] Jod7 |
Job 1! job6 | |
Online
4] 5 9| 10

X X X
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Non-identical machines: it's not that easy

When machines are not identical, migration can be harmful:

Offline
(Speed 4)
(Speed 1)

(Speed 1)
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Non-identical machines: it's not that easy

When machines are not identical, migration can be harmful:
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A natural extension to non-identical machines

Offline

t t+dt
* Next event offline:
t + dt. Job 1 |

 Next event online: ’ Job 2
T +dT. | Job 3 |

* Schedule “as much as
possible” of [t, t + dt] Online
into [T, T + dT]. T T+dT
— at least one interval will
be used up

XX XX XX XXX




How much is “as much as possible”?

Offline
t t+dt
_ , . Job 1 \
consider all jobs running in ‘ Job 2
[t,t+ dt] ‘ T e ‘
approximately solve
Rt G Online
on online machineset M(T) T o
fits: ok, exhausts [t, t + dt] 5 | o3 y
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How much is “as much as possible”?

consider all jobs running in
[t,t + dt]

approximately solve
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on online machineset M(T)
doesn't fit: scale solution
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How much is “as much as possible”?

consider all jobs running in
[t,t + dt]

approximately solve
R|pmtn|Cmnax

on online machineset M(T)
doesn't fit: scale solution

exhaust [T, T + dT]

Offline

t

t+dt
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Online
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A different look at related machines

The algorithm look ahead

* for the current interval [t, t + §):
* find the smallest r such that:

* Some longest jobs are executed by §

* some jobs are shortened to remaining execution time r
* jobs shorter than r are not executed

* total area is m(t)d

* schedule with McNaughton's wraparound rule

Theorem (Albers, Schmidt 99)
look ahead minimizes the makespan for identical machines.




The algorithm, in a picture

timing diagram
* x axis: online time
* y axis: remaining
processing time per job
* slope: machine speed

look ahead

* give machines to jobs
with highest remaining time

* when lines intersect:
jobs “share” the machines
for rest of interval

t+9



The algorithm, extended to related machines

look ahead/fastest machine

* give fastest machines to
jobs with highest remaining
time

* when lines intersect:
jobs “share” the machines
for rest of interval

By similar proof as before:

Theorem

la/fm minimizes the makespan
for related machines.

t+46



+ + +

Summary

MIMIC: use offline algorithms for online scheduling
handles release times and precedences

good bounds for simple stochastic models

all completion time objectives

hard to give bounds for complex stochastic models
(aging machines, different reliability)

hard to give competitive ratio
cannot handle flow time objectives
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