Scheduling on unreliable machines AEOLUS Workshop on Scheduling

Florian Diedrich Ulrich Schwarz

Christian-Albrechts-Universität zu Kiel
March 8, 2007

Overview

The setting

Identical machines
Re-using knowledge
Further constraints
The continuous case

Non-identical machines

A different look at related machines

The setting

Given a set J of preemptible jobs, a set M of machines precedence constraints, release times
Problem machines may "fail" online: only $M(t) \subseteq M$ will contribute at time t.
Goal minimize makespan or sum of completion times

A simple example

Example

Identical machines, failure probability $0 \leq f<1$ constant. Minimize $\sum C_{j}$.

Main Idea

This would be easy if machines couldn't fail. (SRPT)
Use as much information from such a solution as possible.
Two steps:

1. Build optimal offline schedule for all m machines.
2. Online:

- try to clear up backlog
- do as the offline schedule says

A simple example (cont.)

Formally:
Algorithm MIMIC

1. Calculate offline schedule
2. Build queue: job on machine i in interval t goes into position $t m+i$.
3. m^{\prime} machines available online: schedule first m^{\prime} jobs from queue.

Remark

Step 1, 2 need not be explicit.

A simple example (cont.)

Offline

Job 2	
Job 3	
J. 1	Job 4

Queue

2	3	1	2	3	4	2	3	4			4			4

Online

A simple example (cont.)

Offline

Job 2	
Job 3	
J. 1	Job 4

Queue

2	3	1	2	3	4	2	3	4			4			4

Online

J. 2
J. 3
\boldsymbol{x}

X

A simple example (cont.)

Offline

Job 2	
Job 3	
J. 1	Job 4

Queue

2	3	1	2	3	4	2	3	4			4			4

Online

J. 2
J. 3

$x \times$

A simple example (cont.)

Offline

Job 2	
Job 3	
J. 1	Job 4

Queue

2	3	1	2	3	4	2	3	4			4			4

Online

J. 2	J. 1
J. 3	J. 2
$X \quad X$	

A simple example (cont.)

Offline

Job 2		
Job 3		
J. 1 Job 4		

Queue

2	3	1	2	3	4	2	3	4			4			4	

Online

J.	J. 1	J. 3	J. 3	
J.	J. 2	J. 4	J. 4	J. 4 J. 4
X	X	J. 2		

A simple example (cont.)

Example

Identical machines, failure probability $0 \leq f<1$ constant.

Lemma

Any job's expected completion time is delayed from C_{\jmath} to $\frac{1}{1-f} C_{j}+1$.

Theorem
MIMIC is a $\frac{1}{1-f}$-approximation for $C_{\text {max }}, \sum C_{j}, \sum w_{j} C_{j}$. (Asymptotically.)

More structured instances

Release dates results hold trivially.
Precedences work only sometimes:
Offline

- In-trees always work
- Otherwise: may create one idle step per job

A continuous model of time

Up to now: things happen in discrete time steps.

Semi-online setting

- preemption at any time
- we know the next time the set of available machines changes (event).

Known:

Theorem (Albers/Schmidt 99)

There is an optimal polynomial-time online algorithm for the $C_{\max }$ objective and independent jobs on identical machines.

MIMIC in the continuous case

- Calculate online area until next event.
- Consider corresponding offline interval.
- Insert artificial events for job termination.
- Schedule jobs with McNaughton's wraparound rule.

Offline

Job 5		Job 10	
	Job 4	Job 9	
Job 3		Job 8	
Jpb 2		Job 7	
Job 1		Job 6	

Online

MIMIC in the continuous case

- Calculate online area until next event.
- Consider corresponding offline interval.
- Insert artificial events for job termination.
- Schedule jobs with McNaughton's wraparound rule.

Offline

Online

MIMIC in the continuous case

- Calculate online area until next event.
- Consider corresponding offline interval.
- Insert artificial events for job termination.
- Schedule jobs with McNaughton's wraparound rule.

Offline

Job 5		Job 10	
Job 4		Job 9	
Jdb 3		Job 8	
Job 2		Job 7	
Job 1		Job 6	

Online

Non-identical machines: it's not that easy

When machines are not identical, migration can be harmful:

Offline

(Speed 4)	Job 1
(Speed 1)	Job 2
(Speed 1)	Job 3

Online
(Speed 4) $\times \times \times \times \times \times$
(Speed 1)
(Speed 1)

Non-identical machines: it's not that easy

When machines are not identical, migration can be harmful:

Offline

(Speed 4)	Job 1
(Speed 1)	Job 2
(Speed 1)	Job 3

Online
(Speed 4) $\times \times \times \times \times \times$

	(Speed 1)		
Job 1			
(Speed 1)	Job 3		
	Job 2	Job 1	

A natural extension to non-identical machines

Offline

- Next event offline: $t+d t$.
- Next event online: $T+d T$.
- Schedule "as much as possible" of $[t, t+d t]$ into $[T, T+d T]$.
\Longrightarrow at least one interval will be used up

Online
T

$$
T+d T
$$

x
$\times \times \times \times \times \times \times \times$

How much is "as much as possible"?

Offline

- consider all jobs running in $[t, t+d t]$
- approximately solve
$R|p m t n| C_{\text {max }}$
- on online machineset $M(T)$
- fits: ok, exhausts $[t, t+d t]$

How much is "as much as possible"?

Offline

- consider all jobs running in $[t, t+d t]$
- approximately solve $R|p m t n| C_{\text {max }}$
- on online machineset $M(T)$
- doesn't fit: scale solution

Online

How much is "as much as possible"?

Offline

- consider all jobs running in $[t, t+d t]$
- approximately solve $R|p m t n| C_{\text {max }}$
- on online machineset $M(T)$
- doesn't fit: scale solution
- exhaust $[T, T+d T]$

Online

A different look at related machines

The algorithm look ahead

- for the current interval $[t, t+\delta)$:
- find the smallest r such that:
- Some longest jobs are executed by δ
- some jobs are shortened to remaining execution time r
- jobs shorter than r are not executed
- total area is $m(t) \delta$
- schedule with McNaughton's wraparound rule

Theorem (Albers, Schmidt 99)

look ahead minimizes the makespan for identical machines.

The algorithm, in a picture

timing diagram

- x axis: online time
- y axis: remaining processing time per job
- slope: machine speed
look ahead
- give machines to jobs
with highest remaining time
- when lines intersect:
jobs "share" the machines for rest of interval

The algorithm, extended to related machines

look ahead/fastest machine

- give fastest machines to jobs with highest remaining time
- when lines intersect: jobs "share" the machines for rest of interval

By similar proof as before:
Theorem
la/fm minimizes the makespan
 for related machines.

Summary

- MIMIC: use offline algorithms for online scheduling
+ handles release times and precedences
+ good bounds for simple stochastic models
+ all completion time objectives
- hard to give bounds for complex stochastic models (aging machines, different reliability)
- hard to give competitive ratio
- cannot handle flow time objectives

